
ADQL WD update
• ADQL Grammar is added in Appendix.

– Construct
– Identifier (rule for naming a table and a column)
– Data type (numeric, character, date/time …)
– Functions, operators, predicates

• Syntax is divided into two categories
– Core syntax -- Skynode MUST conform to
– Extension syntax
– Specification number is assigned, and it is used

to check conformity of the service.

Why Core and Extensions ?
• Minimize the effort for building a skynode.

– Core syntax provides minimum functionalities:
– Easy transition from a DAL to a SkyNode service.

• Maximize interoperability
– It is unlikely that all the skynodes have the same

level of conformity to the full ADQL syntax.
– Use Core syntax for complete interoperability

among all the skynodes.
• Extend capability of skynode

– The skynode capability is easily extended by
extension syntax.

Core Query Syntax

• Restriction to the standard SQL
– No expression in the selection list.

• Just return column values or the number of query result.
– No multiple tables, No join in FROM clause.

• One query for one table.
• Table join is assumed to be done on upper level services, such

as a skynode portal.
– No other clauses like DISTINCT, ORDER BY, GROUP

BY, HAVING …

SELECT { [table_alias.]* | count(*) |
[table_alias].column_name [[AS] alias] [,…] }
FROM table_name [AS] table_alias
WHERE condition

Full Query Syntax

SQL-92 + “INTO” + “TOP” + “OFFSET” + “#upload”
+ table name qualified by an archive name
- mandatory table alias

SELECT [ALL | DISTINCT] [INTO table_name]
[TOP number] [OFFSET number]
selection_list
FROM from_item [,…]
[WHERE condition]
[GROUP BY expression [,…]]
[HAVING condition [,…]]
[ORDER BY expression

[ASC | DESC | USING operator] [,…]]

TOP and OFFSET (extensions)
• “TOP n” returns the first n-rows.
• “OFFSET n” skips the first n-rows. [new]
• Caution:

– It is meaningless unless the order of the query result is
not specified.

– The order of the result may change query by query if it
is not explicitly specified by ORDER BY clause.

• Use case:
– Retrieve only the first 100 records by SELECT TOP 100
– Retrieve the next 100 records by SELECT TOP 100

OFFSET 100.
– …

UCD and UTYPE in selection list
(extensions)

• Select columns based on a UCD name and UCD
pattern matching
– SELECT UCD ‘pos.eq.RA’
– SELECT UCD ‘phot.mag;em.opt.%’

• It is not allowed to be used in the Where clause.
– UCD may be mapped to multiple columns.

• XML representation
– <item xsi:type=“ucdSelectionItemType”

table=“t” ucd=“pos.eq.RA”/>

Keyword and Identifier (Core)
• Keyword:

– SELECT, FROM, WHER …
– Case insensitive

• Identifier:
– name of a table, a column and a function.
– Restriction on ADQL-s

• Must begins with a letter {a-z}, or an underscore.
• Subsequent characters in an identifier can be letters,

underscores or digits {0-9}.
• Keyword is not allowed.
• No restriction on the used character in ADQL-x

– Case insensitive.

Delimited Identifier (Core)
• Used to allow for the use of keywords or

special characters in naming the column
and table.

• “[“ and “]” are used as delimiters.
• Two adjacent brackets between the

delimiters are taken as a single bracket
character.

• Case sensitive: “CaseSensitive” attribute
in ADQL-x

• Examples
– 2mass  [2mass], [O/Fe]  [[[O/Fe]]]
– M, m  [M], [m]

Data types
• Follows VOTable data types
• One of the following data types must be

assigned to each column
–char
–char[n]
–char*
–unicodeChar
–Array (int[2], double[2]…)
–timestamp
–date
–time
–time interval
–Space

–boolean
–bit
–unsignedByte
–short
–int
–long
–float
–double
–floatComplex
–doubleComplex

Timestamp literal expression

[timestamp] ‘2005-10-02 10:00:00+9’

<Literal xsi:type=“timestampType”>
2005-10-02 10:00:00+9

</Literal>

Space data type
[Space] ‘Circle FK5 30.0 20.0 1.0 [unit]’
Coordinate Frame :

ICRS, FK5, FK4, J2000, B1950, GALACTIC

<Literal xsi:type="reg:searchLocationType">
<stc:AstroCoordSystem>

<stc:SpaceFrame><FK5/><GEOCENTER/></stc:SpaceFrame>
</stc:AstroCoordSystem>
<stc:AstroCoordArea>

<stc:Region>
<reg:Circle unit="deg">

<reg:Center>30.0 20.0</reg:Center>
<reg:Radius>1.0</reg:Radius>

</reg:Circle>
</stc:Region>

</stc:AstroCoordArea>
</Literal>

Example usage of space data type

SELECT access_URL
FROM imageTable
WHERE region overlaps

‘Box FK5 120 40 0.1 0.1’

Xmatch functions (Extension)
• A user is not satisfied with only one specific

xmatch function.
• 2 or 3 xmatch functions are defined as

standards
• xmatch_chi2() : XMATCH() function of the previous

specification.
• xmatch_distance() : does xmatch based on the angular

distance between two objects.
• …

• Skynode may implement any specific xmatch
function. That information should be
provided through a “Functions” interface.

Table name qualified by an archive name
(Extension)

• Use SHORTNAME or Identifier.
PhotoPrimary table of a service

ivo://archive.stsci.edu/hdfn/SKYNODE
 HDF:photoprimary (shortname)
or
archive.stsci.edu:hdfn.skynode.photoprimary

(identifier)

Returned VOTable (SkyNode Interface ?)

• The order of the fields must be the same
as the order in the selection list.

• Column name must be filled in the NAME
attributes of a FIELD element.
– If an alias is specified in the query, the alias

name must be filled.
– If alias is not specified

• If the field is a column or a function, the column
name or function name qualified by the table alias
name must be filled.  tableAlias.columnName

• If the field is an expression, it may be empty

Date/Time data type

• literal syntax
[timestamp | date | time | time interval]

‘SQL expression’

[date] ‘2005-10-24’
[date] ‘20051024’
[time] ‘10:20:08.25’
[time] ‘10:20:08’
[time] ‘10:20’
[timestamp] ‘2005-10-20 04:30:21’
[time interval] ‘1 day 12 hours 59 min 10 sec’

