

FRESSIA: A Testing
Framework for VO
Applications

Christopher J. Miller, Alvaro Egana, Exequiel
Fuentes, and Ricardo Massad

Data Products Program
CTIO/NOAO

 Web-based testing (client side)
 So many browsers
 So many shared services
 So many features (AJAX, FLASH, etc.)

 More than just the web (server side)
 SOAP and REST work behind the scenes
 Internal DBs
 Security mechanisms

 Users EXPECT a working INTEGRATED system
 Testing moves beyond simple unit tests and functional tests.....
and into the realm of true integrated testing frameworks.

 VO App Testing

 SOA-based
 Distributed Apps

Move Data Archive Data

Process Data

Serve Data

VO Data VO Analysis

VO Security

 Enter FRESSIA
 What is it?

 A framework for writing tests for rich applications
 Written in JAVA
 Utilizes a simple Domain Specific Language (DSL).

 Who is it for?
 Anyone who needs integrated application testing (i.e.,

beyond unit tests and simple functional tests).
 Anyone whose applications utilize multiple languages (Java,

C, IRAF, etc.) or multiple service calls (SOAP, REST, etc.).
 Scientists!

 Why do we need it?
 Allows testers to work at the highest application level i.e., the

user) and outside of the middleware layers.
 Eases integrated application Regression, Stress, and

Performance testing.

 A FRESSIA Test

 Test
 identifier
 action block

 action definition
 action options
 action events

 asserts blok
 assert definitions

suite suite_id {

test
test_id
{

[action] : <the action>;
<option> : <value>;
<type> <cond> [(<argument>)];

}
asserts
{

<type> <cond> [(<argument>)];
}

}

 FRESSIA: example

suite google_tests {

$var=”http://www.google.com”;

test can_call {
[action] : rest call;
url : $var;

}

test test_html_integrity {
[action] : rest call;
url : $var;

}
asserts {

 html isValid;
 text contains ("<title>Google</title>");

}

}

ACTION NAME DESCRIPTION

Used for browser-based user actions (called events)
blocking command email reception

command

HTTP/REST calls returning either HTML or XML

HTTP/REST calls and downloading the result

email reception
email

Used to deteremine whether a message has been received
(via an SMTP server)

webgui events
webgui

Used for any command line user action (e.g., compiled
binaries)

rest call
http call
https call
rest download
http download
https download

EVENT NAME DESCRIPTION CALL

click at

execute javascript Run a piece of JS
enter Enter text into a form box

Click the mouse at a web
page object element ID click at (“ id “);

click onLink
Click the mouse on a link in
the webpage click onLink (“ [sw=vm] ; nl “);

selectFrom
Select from a LIST, OPTION
box, or CHECK BOX selectFrom list (“ id { et1 ; et2 ; ... ; etN } “);

execute elementVerification
Verify that web page
element ID exists execute elementVerification (“ timew ; id “);

execute javascript (“ ${ ra } “);
 enter text (“ id { t1;t2;..;tn } “);

 FRESSIA: WEBGUI
 Events

FRESSIA's
WEBGUI action
and its associated
events uses the
Selenium Remote
Control

In practice, the
Selenium IDE
allows testers to
get started, while
the RC and Grid
are used for
“production testing”

 DOES NOT replace unit tests, aliveness tests, functional tests, etc.
 Provides a simple Domain Specific Language for Selenium browser-based

app testing.
 The browser-based approach allows for testing in the “user's

space” as opposed to the “developer's space”.
 This same DSL is then enabled for other tests (e.g., unit tests,

aliveness tests, functional tests, etc).
 Integrates all forms of application testing into one environment.

 The environment is based upon a user-friendly (i.e., readable) DSL
 The environment allows multiple test suites to be strung together
 The environment enables result reporting on the entire integrated

test suite.

 FRESSIA: Summary

