Franck Le Petit, Laurent Bourgès

Laboratoire Univers et Théories

Photodissociation Region simulations

Case:

codes computing the microscopic structure of astrophysical objects

They provide as outputs:

- temperature profile
- chemical abundances
- ionization degree of species
- level excitation
- line emissivities
- heating rates
- cooling rates
- many other quantities

Observables

- line intensities
- column densities

- spectra

Can SimDB be used to describe PDR simulations ?

Objectives:

- Discover simulations
 - by queries on input parameters
 - by queries on "characterisation": inverse problem
- Extract quantities for analysis, post-processing, workflows

SimDB :

- cosmology models
- 3 dimensions + time
- snapshots

Meudon PDR code

- Models of microphysics simulations of interstellar clouds
- I spatial dimension + no time
- no snapshot

Challenges :

- many input parameters:
 - ▶ At least 60 (but about 500 if chemical abundances are considered as parameters)
- many properties (more than 10 000):
 - because a simulation provides abundances as a function of position
 - abundances of several hundreds chemical species
 - abundances in several hundreds of quantum levels for some of them

• many different quantities:

- quantities function of position (ex: abundance, temperature)
- quantities function of wavelength (ex: absorption spectrum)
- quantities function of position and wavelength (ex: density of energy)

Protocol

Two challeging parts

- 1 protocol definition
- 2 parameters
- 3 full description of codes

1 - protocol definition _

An experiment is produced by :

code version + chemical network + atomic and molecular data

How to define the chemical networks and atomic and molecular data used ?

Solution 1: consider the chemical network as an input parameter (string for the file name)

- A single parameter for the name of chemistry file: string
- A list of parameters for each chemical rate: +10 000 new parameters

Solution 2: a protocol is a **code** + **chemical network** + **atomic and molecular data** - name: PDR1.2_chemistry08

Protocol	Detail of Simulator : 1 :							
	Back to : Index - Pre	vious Page						
	Data Model serializat	tion : XML						
	Property	Value						
	id	1						
	identity	[1]						
	name	Pdr1.2_chimie08-test						
	description	First test protocol						
	referenceURL	http://aristote.obspm.fr/MIS						
	publisherDID	Pdr1.2_chimie08_TEST						
	created	Fri Oct 17 18:11:05 CEST 2008						
	updated	Fri Oct 17 18:11:05 CEST 2008						
	status	private						
	code	http://aristote.obspm.fr/MIS						
	version	1.2						

Similar to another problem :

How to describe in SimDB modular codes ? Example: Ramses

- core code
- some plugins can be added to Ramses to control various processes :
 - MHD
 - forcing terms

- ...

Best solution : to define a new protocol for each "code + plugins" ?

Protocol

2 - Parameters _____

Input Parameters of Meudon PDR code can fit in SimDB

Large number of parameters

- ParameterGroup are very usefull to structure parameters
- But difficulties to **use** the DM when the number of parameters is large

No vocabulary for all parameters

- Semantic Group's vocabularies cover most of the parameters
- But some specific notions are not covered

Example:

The intensity of the flux illuminating an interstellar cloud is given as a multiplicative factor of - G or chi : for Habing or Draine's units

- Need precise definition of those quantities
- This can only be done community by community

Protocol

	http://roxxor.obspm.fr/pdrDB/Show.do?entity=Simulator&id=1		Q - Q - Inquisite	or						
o (430) ▼ ADS VO ▼ G	Grille v Informatique v Apple v Administratif v Divers v Mail v	Webmail Tools V Other	s Program GAMS	1						
	[324 - xmlId: DU_MODPARAM_S.FD_SRCNAME]		External source name	STRING						
	[308 - xmlId: DU_MODPARAM_I.FD_IFEQTH]		ifeqth	INT						
	[327 - xmlId: DU_MODPARAM_R.FD_TINIT]		tg_init	DOUBLE						
	[290 - xmlId: DU_MODPARAM_I.FD_IFISOB]		ifisob	INT						
	[277 - xmlId: DU_MODPARAM_R.FD_PRESSE]		presse	DOUBLE						
	[299 - xmlId: DU_MODPARAM_S.FD_PROFNAME]		nH - Temp profile file name	STRING						
	[318 - xmlId: DU_MODPARAM_R.FD_FMRC]		fmrc	DOUBLE						
	[322 - xmlId: DU_MODPARAM_R.FD_VTURB]		vturb	DOUBLE						
	[273 - xmlId: DU_MODPARAM_S.FD_CHEMNAME]		Chemistry file name	STRING						
	[271 - xmlId: DU_MODPARAM_R.FD_METAL_He]		MetallicityHe/H	DOUBLE						
	[301 - xmlId: DU_MODPARAM_R.FD_METAL_C]		MetallicityC/H	DOUBLE						
	[321 - xmlId: DU_MODPARAM_R.FD_METAL_N]		MetallicityN/H	DOUBLE						
	[320 - xmlId: DU_MODPARAM_R.FD_METAL_O]		MetallicityO/H	DOUBLE						
	[286 - xmlId: DU_MODPARAM_R.FD_METAL_D]		MetallicityD/H	DOUBLE						
	[315 - xmlId: DU_MODPARAM_R.FD_METAL_C13]		MetallicityC13/H	DOUBLE						
	[309 - xmlId: DU_MODPARAM_R.FD_METAL_N15]		MetallicityN15/H	DOUBLE						
	[304 - xmlId: DU_MODPARAM_R.FD_METAL_018]		MetallicityO18/H	DOUBLE						
	[288 - xmlId: DU_MODPARAM_R.FD_METAL_PAH]		MetallicityPAH/H	DOUBLE						
	[319 - xmlId: DU_MODPARAM_R.FD_METAL_F]									
	[272 - xmlId: DU_MODPARAM_R.FD_METAL_Na]		Detail of InnutParameter - 323 -							
	[316 - xmlId: DU_MODPARAM_R.FD_METAL_Mg]		Detail of InputParameter : 325 :							
	[283 - xmlId: DU_MODPARAM_R.FD_METAL_AI]	Provious Page								
	[270 - xmlId: DU_MODPARAM_R.FD_METAL_Si]	x - Frevious Page								
arameter	[312 - xmlId: DU_MODPARAM_R.FD_METAL_P]	erialization : XML								
	[307 - xmlId: DU_MODPARAM_R.FD_METAL_S]									
	[276 - xmlId: DU_MODPARAM_R.FD_METAL_CI]	Property			Value					
	[293 - xmlId: DU_MODPARAM_R.FD_METAL_Ca]	id	323							
	[296 - xmiId: DU_MODPARAM_R.FD_METAL_Fe]	[323 - xmlId: DIL MODPARAM R ED RADM INI]								
		name								
		datatype								
		andinality								
		cardinality	ONE							
		description	Scaling factor to Draine radiation field on the observer side of the cloud in the entrance parameters. The corresponding radiation field corresponds to the one seen from a position far from the cloud.							
		isEnumerated								
		label								
		Collection			Value					

Jump to: Top of Page

Protocol

3 - Description of physics covered by the code _____

Requirements: need to describe in details the physical processes in the code

Example: Rollig et al., A&A, 2007 :

	Cloudy	COSTAR	Meudon	UCL_PDR	HTBKW	KOSMA-7	Aikawa	Leiden	Lee96mod	Sternberg	Meijerink
solved self-consistently	X	X	х	х	х	х		X		X	х
simple exponential attenuation	X	X	X	х	х	Х	х	X	х	X	x
bi-exponential attenuation		X								X	
full RT in lines			X					X			
DUST											
treatment of rad. transfer	х		х		х	х		x		X	x
grain size distribution	X		Х	х		х					
extinction/scattering law	X	х	Х	х	х	Х	х	X	х	X	
albedo	X		х	х				x			х
scattering law	X		Х					X			
\mathbf{H}_2	SHIE	LDI	NG								
shielding factors	X	X			х		х		х	X	x
single line	X			х							х
detailed solution	X		х			х		X			
CO SHIELDING											
shielding factors	X	X		х	х	X	х	X	х	X	х
single line	X							X			х
detailed solution			Х					X			
isotope selective photodissociation			х			х		X			х
UV PROFILE FUNCTION											
Gaussian				Х	X						
Voigt	X		х					x		X	х
Box											
other											

- Effort by PDR modelers community to characterize codes
- Such description not possible in SimDB
- Can wait SimDB 2.0

Experiments

Experiments

Adaptative Mesh cells

We can describe the content of the simulation **BUT** Not obvious to choose between RepresentationObjects and Properties

Two solutions to describe the simulations:

• Solution 1 :

- Object is : gas
- Properties are : Temperature, density, abundance of H, H₂, C⁺, C, CO, ...
- Solution 2 :
 - Objects are : gas, H, H₂, C⁺, C, CO, ...
 - Properties are : temperature, density, abundance
- No obvious choice
- All PDR simulations in the VO should do it in the same way
- Best choice will be the one that simplify queries

Many properties (or objects depending on choosen solution): - ObjectGroup & PropertyGroup are usefull

Experiments

Second difficulty: Vocabulary

Semantic Group's vocabulary cover some of the requirements: - temperature, density, pressure, abundance, ...

But we also need to define by vocabulary (or DM ?): 1- Name for all molecules (included isotops), Ex: CH₃COOH, CH₃C¹⁸OOH

- 2- quantum levels for quantities as : "Abundance of H₂ in level v=0, J=3"
- 3- Need to define precisely properties as "emissivity of CO J=6->5"
- 4-How to define a quantity as "Abundance of H₂ sticked on silicates of size 0.1 nm"?

Atomic and Molecular Line Data Model should help for 2 and 3 => need to define quantities through SimDB and AMLDM

Try to use SimDB for PDR simulations

TargetObject

not implemented yet

- TargetObject = Interstellar Cloud
- Has for properties :
- column densities
- line intensities
- -> Allow description of observables

- This is by this way the DM provides informations to solve inverse problem.
- But difficult to use in practice.

Difficulty: description of atoms, molecules, lines, quantum levels

Try to use SimDB for PDR simulations

Some other difficulties

No way to describe **stationnary simulations**:

SimDB done for cosmology and assumes implicitly that simulations are time dependant BUT: can describe stationnary simulations, there is just one snapshot

How to do the difference between an experiment with only 1 snapshot

- corresponding to 1 time step for a time dependant code
- corresponding to a stationnary solution

No way to describe the **number of dimensions or the geometry**:

Example : How to discover through SimDB

- PDR simulations with plan parallel geometry
- PDR simulations with spherical geometry

No way to describe relationships between properties and axis

Use of SimDB

Two ways to discover simulations

- 1 Query on input parameters to find simulations Example : search for all simulations with proton density of 10⁴ cm⁻³
- 2 Query on characterisations Example : search all PDR simulations with CO column density above 10¹⁴ cm⁻³ *(inverse problem)*

Both present difficulties

- 1 Difficulty for queries on parameters:
 - The number of parameter is a challenge to browse simulations
 - The experiments in a PDR SimDB will vary often

Example on the Meudon PDR code Only a few of the 60 parameters can vary in the DB

If the user has to choose values for all parameters there is a high probability that there is no answer corresponding to his query. => need dynamical browser

The informations to build directly such a browser are not in SimDB DM. => requires many queries

Use of SimDB

- I choose protocol
- 2 choose parameters

Query the model parameters :								
Back to : Index - Previous Page								
To query the PDR models, please select a protocol : refresh cancel								
Pdr1.2_chimie08-test \$ select Protocol : Pdr1.2_chimie08-test First test protocol Please select a least one criteria on parameters :								
ID	Parameter	Possible values	Value					
282	nH_init	100.0, 500.0, 1000.0, 10000.0						
328	radp_ini	1.0, 5.0						
323	radm_ini	1.0, 5.0, 10.0						
317	Av_max	1.0						

Add another table in SimDB DM to list mandatory parameters ?

Use of SimDB

2 - Difficulty for queries on Characterisation:
SimDB DM is very hierarchical
Experiment -> RepresentationObject -> Properties -> characterisation

Queries on characterisation are very difficult to build.

SimDAP is promissing for PDR simulations

Context: PDR simulation produces more than 10 000 outputs

BUT users are usually interested in only a few of them 20 (?)

=> cutout service can be used on it

Challenge: How to deal with 10 000 properties in SimDAP services ? Sending the 10 000 properties to the client to allow him to choose is a bit tough ...

Requirement I : Queries to discover parameters should use PropertyGroups.

Possible solution:

Need iterative communication using PropertyGroup:

- 1 client requires properties for experiments
- 2 server answer PropertyGroup
 - 2.1 client choose a PropertyGroup
 - 2.2 server sends contain of PropertyGroup
- 3 client choose property

4 - ...

Users may wish to get properties for several simulations:

Example :

Contour maps in space parameters build from one property extracted in more than 100 experiments

Requirement: Download results for several Experiment/Snapshots at the same time

Data Format

No standard for file format in PDR community

Outputs are heterogenous (quantities function of position, of wavelength, of both) => a tool to read data is required

<FIELD name="AB_H3CO+" utype="" /> ID="DU_ABUNDANCES.FD_AB_H3C0p" datatype="double" unit="cm-3" ucd="phys.density" <FIELD name="AB_H2CS+" datatype="double" unit="cm-3" ucd="phys.density" utype="" /> ID="DU_ABUNDANCES.FD_AB_H2CSp" utype="" /> ucd="phys.density" <FIELD name="AB_H3CS+" ID="DU_ABUNDANCES.FD_AB_H3CSp" datatype="double" unit="cm-3" <DATA> <FITS extnum="0" > <STREAM encoding="" href="file///./fits/BINFITS/model.fits /> </FITS> </DATA> </TABLE>

Conclusion

Partial implementation of SimDB on PDR simulations done

- SimDB can describe PDR simulations
- no reflexion on spectra yet : related to SSAP

Difficulties to implement SimDB:

- to fill RepresentationObject / Properties
- Vocabulary is missing for:
 - quantities related to Atomic and Molecular physics
 - name for chemical species
 - specific parameters

Difficulties to use SimDB

- to query on parameters when the number is large
- to query on characterisation for inverse problem

SimDAP

- should be usefull for PDR simulations need to take into account:
 - Problem of large number of properties
 - Multi-download