
Leveraging CAOM to Implement
SIA2 and SSA on a Billion*

Row Table

Walter Landry

Common Archive Object Model
• "A general purpose data model for use as

 the core data model of an astronomical

 data center"

• CADC has based their whole infrastructure

 around it.

• MAST uses it for operational data.

• INAF is moving towards it

• IRSA has decided to adopt it for all of their

 image and spectra (not catalogs).

CAOM Maps Well to a Series of Tables
• Observation
 • High level information: telescope, PI,

 instrument, ...

• Plane
 • Physics information: geometry, energy

 bounds, time bounds, ...

• Artifact
 • File level information: MIME type, URI, ...

Row ID's
• Every Plane belongs to an Observation, and

 every Artifact belongs to a Plane.

• Every row of every table has a globally

 unique ID (==UUID?).

Other CAOM Tables
• There are two other tables, but we have not

 found them useful.

• For example, they are not required to

 implement SIA2 or SSA.

CAOM is Complete
• ObsCore is too simple of a model to really

 capture all of our data.

• CAOM is, if anything, too rich.

 • Geolocation for balloons?

• There are some keywords available for

 mission-specific data

 • Keywords field is plain text.

 • We structure it as a JSON object.

 {"reqmode":["IracMap"]}

CAOM is Quite Complicated
• We needed contributions from almost

 everyone at IRSA to get this working.

• Still fixing some bugs in our interpretation

• Mostly stable?

CAOM at
• Operational tables have WISE, 2MASS, and

 Spitzer (SHA)

Spitzer Heritage Archive is HUGE
• 250 million files

 • A single SHA observation can yield

 80,000 files.

 • Searching a relatively small cone yielded

 543,098 results.

File Duplication
• Some of Spitzer's calibration files are valid

 for a whole campaign.

• This means that a single file can be

 associated with multiple observations.

• Datalink?

 • We tried something like that (tables link

 to other tables)

 • Performance was terrible

 • Ended up duplicating rows => 750 million

Optimizing Search
• Consider a typical search by an archive user

 • Cone search on Plane
 • Join against Observation and Artifact for

 other details.

• What is the best way to order the records on

 disk?

Ordering and Indexing
• Order and index Plane by a geometric index

 • PostGIS makes this easy for us

 • Also have an index on the ID.

• To make the joins with Observation and Plane
 fast, we need to index them by their ID.

• A natural thing to do is to then order

 Observation by it's ID, and Artifact by the

 Plane ID.

• What is the performance of this structure?

Fetch Plane Results

Observation Plane Artifact

Fetching Plane Records is Fast
• The rows that are close on the sky are

 close on disk.

Fetch Observation Results

Observation Plane Artifact

Fetching Observation Rows is Terrible
• Ordering by UUID's randomizes disk location.

• In practice, it is not too bad since there are

 typically many Plane rows for each

 Observation row.

Fetching Artifact Results is Even Worse

Observation Plane Artifact

Fixed by Making UUID's Spatial
• Replace the upper 32 bits of the ID columns

 with a 32 bit spatial index.

• Modified version of Q3C index

 • Hilbert Ordering

 • Less area variability via a quadratic remap

• The geometry for an Observation row comes

 from it's first Plane row.

• The geometry for an Artifact row comes from

 the Plane row that it belongs to.

Spatial Queries Are Now Fast

Observation Plane Artifact

Fast For Some Other Uses As Well
• A search by a PI for their observation

 might start with looking for a particular

 Observation and then joining against Plane
 and Artifact.
• Observation's usually look at one place in

 the sky, so fetching the Plane and Artifact
 rows will also be fast.

• A search for all of a PI's data would still

 have to skip around the Observation table.

Except When It Is Not
• Postgres can decide to do full table scans

 if you limit the number of records..........

• We do not have a good solution right now.

🐌

SIA2 is Easy
• After doing all of this work (which took many

 many months), implementing SIA2 is

 straightforward.

• This is no accident, since CAOM follows

 the ObsCore data model.

• Without that metadata regularization, SIA2

 would be quite difficult to implement.

• This is in contrast to SCS, which places very

 few constraints on what columns are present.

SIA2 is Necessary to Test CAOM
• Asking astronomers to write joins to look at

 CAOM data is just going to result in a bad

 day for everyone.

• The parameter-based query allows them

 to quickly drill down to exactly what they

 want.

Spectra in SIA2?
• No?

 • Not in the name

 • The text for Data Product Type (dptype)

 says it will only be an image or cube

• Yes?

 • SIA2 services are required to support

 searching by resolving power.

SIA2 Makes SSA Obsolete?
• All of the mandated SSA search parameters

 and most of the recommended ones are

 included in SIA2.

• The data retrieval part of SSA is somewhat

 covered by SODA.

SSA is Also Easy
• If you are only trying to be 'query-compliant'.

• And the metadata is regularized.

 • Needed to disambiguate time cubes from

 spectral cubes by looking for whether

 resolving power is NULL.

• 'minimal-compliance' requires transforming

 our tables.

 • Maybe not hard, but more than an

 afternoon's work.

Time is Uncertain
• Projects sometimes only deliver observation

 timestamp and exposure time.

• Not always sure if that is the beginning,

 middle, end, or something else.

• In these cases, we make t_min=t_max.

Spectral Resolving Power
• Spitzer spectra capture multiple orders

 on a single CCD exposure.

• Different orders have different resolving

 power.

• Results are delivered as a single table.

• We store the minimum in the table.

Number of Points in a Spectra?
• SSA requires this as a result column.

• Resolving power and energy bounds seem

 like enough for queries

 • a similar argument can be made for the

 number of pixels in an image

• It is annoying for us to calculate, so we

 currently leave this NULL.

