
VO-DML Tooling Update
Paul Harrison (JBO)
IVOA Interop Autumn 2022

Contents

VO-DML Tooling Updates

Serialization

Python generation

2

Gradle based VO-DML Tooling
Introduced the new effort to update the VO-DML tooling at the last two Interops

Focus on text-represented, model-first development with code generation

improve the tooling setup (see PhotDM setup example fork)

generated code can then implement serialization.

Make collaborative development of DMs less painful.

easy “rigorous” modular reuse of existing models.

the generated code is another way to judge “quality” of data model.

Gradle-based tooling now ‘standard’ (plug-in at version 0.3.10)

https://github.com/ivoa/vo-dml/blob/master/tools/ReadMe.md

Additional functionality and improvements have been driven by use on ProposalDM

3

https://wiki.ivoa.net/internal/IVOA/InterOpApr2022DM/VO-DML_TOOLS_Update_PAH.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpNov2021DM/VO-DML_TOOLS_PAH.pdf
https://github.com/ivoa-std/PhotDM/compare/master...pahjbo:PhotDM:vodml-tools-integration
https://github.com/ivoa/vo-dml/blob/master/tools/ReadMe.md
https://github.com/ivoa/ProposalDM

Serialization
“natural” (hierarchical objects) serialization vs. mapping to VOTable.

compact and easy to read - vs dealing with the “meta model”

different use cases (e.g. service api, config file)

should be possible to translate automatically between the
MIVOT and this serialization

Generated code achieves round-trip serialization (naturally!)

does UType = VODML-REF (or not)?

still not sure the there is a rigorous definition of UType anywhere

4

XML serialization
Whole model instance
serialization - all
references are included
first

This is different from
previous VO-DML XML
serializations.

Would be good for VO-
DML to have distinction
between internal and
external references.

5

JSON Serialisation (new)

6

referenced�
first

_id�is�
conventional�
name�if�no�
natural�key

UType�used�
as�type�
identifier�

Anonymous�object�
if�the�type�can�be�
inferred�

unambiguously�
from�model

Reference�to�a�
“natural”�key

RDB serialization
Use object ⇒ relational facilities provided by Java JPA tools

Implemented using Hibernate

Main design decisions

Using the “Joined Table” default methodology for inheritance - SingleTable as new optional mapping

DataTypes become embedded within parent table as extra rows

“NOT NULL” constraints difficult to be comprehensive with (especially for the embeddable and
SingleTable cases)

There are some “edge cases” still to be determined

what to do about arrays? - solution will have to be RDB specific

Details of this are not yet documented anywhere except by the generated code and DDL

However, round trips with instances are being done frequently with real models - e.g. ProposalDM

7

https://hibernate.org/orm/

Python generation (new)
Have put in place the “scaffolding” to complete the task of proper Python
code generation

vodmlPythonGenerate gradle task

vo-dml2python.xsl

does basic @dataclass generation

need to add XML,JSON & RDB support

⇒ Python code generation not yet “production ready”

when the full serialization interoperability with Java code achieved then the
tooling will be deemed to have reached v1.0 status.

8

TODO
Finish Python code generation (volunteers?)

Add “MIVOT VOTable mapping” serialisation code.

Formal changes to the VO-DML standard and schema (v1.1)

Making optional some of the repeated information in VO-DML

the “Natural Keys” extension..

Would be good to have an updated DM Designers’ Cookbook.

C++ code generation?

TODOs actually managed as usual with GitHub issues

9

https://github.com/ivoa/vo-dml/issues

