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Our implementation in ESCAPE ESAP

# REFRESH
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Technology Choices

e Python

e Django - Mature Web Framework
e Django REST Framework - For quickly building REST APIs in Django
e Celery - Mature message brokering software for Python

e RabbitMQ - Message Broker (but easy to switch to others! Such as Redis)
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Authorization

e Django uses pluggable auth for Clients of the API
o  Multiple options possible: Basic, JSON Web Tokens (JWT), X509 etc.

e [Extra auth:

o Per Job permission instead of per User
o Plain tokens which can be used from curl (allows calls from external systems)



Lessons Learned - 1

e Test driven development (TDD) really useful!

o  Write tests following the definitions of the specification
o Confidence in specification compliance and ease of refactoring

e Configure your Message Brokering software correctly!
o Celery worker types: “pre-fork” vs “eventlet” (cpu vs 10 heavy tasks)
o Failing jobs not getting into an error state
o Jobs not retried on failures outside the scope of the worker (network failures etc.)



Lessons Learned - 2

e Worker could live in the Django Project repository

o  Still requires (at least) two processes, but direct database access could be preferred over the
API

e \We chose a single endpoint (api/uws/ ), with a type parameter
o Multiple endpoints might be better (api/batch/uws, api/query/uws, etc.)

e \Worker does not need to be a Django Project if used as microservice
o Worker communicates via the APIl and Django could be dropped as a dependency



Things | missed in the specification

And implemented:

e JSON support (reach out to the JSON working group?)
e Update the Job via the same API (micro service support)

Not implemented:

e A way of describing the accepted parameters via the APl (Job Description
Language)
o Self documenting API



Future work

e Firstrelease

o  Currently in alpha
o Reach out if you want to collaborate!
o Implement the complete specification
m Actions such as getting a time quote are missing
m Filtering of Jobs
o  Support for XML
m  Currently the API only supports JSON responses
m POST requests accept both JSON and URL encoded form data



Thank you for listening!
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