
Implementing UWS in
Django

Klaas Kliffen - ASTRON

What is the UWS Specification

● A specification for a REST API for
asynchronous services

● Scalable interface for long running
tasks

Our implementation in ESCAPE ESAP

● ESAP (ESFRI Science Analysis
Platform)

● Query and select datasets
● Browse software
● Run on compatible compute

infrastructure
● UWS used for:

● Batch processing
● Planned: async queries

Technology Choices

● Python

● Django - Mature Web Framework
● Django REST Framework - For quickly building REST APIs in Django
● Celery - Mature message brokering software for Python

● RabbitMQ - Message Broker (but easy to switch to others! Such as Redis)

Component Architecture

Authorization

● Django uses pluggable auth for Clients of the API
○ Multiple options possible: Basic, JSON Web Tokens (JWT), X509 etc.

● Extra auth:
○ Per Job permission instead of per User
○ Plain tokens which can be used from curl (allows calls from external systems)

Lessons Learned - 1

● Test driven development (TDD) really useful!
○ Write tests following the definitions of the specification
○ Confidence in specification compliance and ease of refactoring

● Configure your Message Brokering software correctly!
○ Celery worker types: “pre-fork” vs “eventlet” (cpu vs IO heavy tasks)
○ Failing jobs not getting into an error state
○ Jobs not retried on failures outside the scope of the worker (network failures etc.)

Lessons Learned - 2

● Worker could live in the Django Project repository
○ Still requires (at least) two processes, but direct database access could be preferred over the

API

● We chose a single endpoint (api/uws/), with a type parameter
○ Multiple endpoints might be better (api/batch/uws, api/query/uws, etc.)

● Worker does not need to be a Django Project if used as microservice
○ Worker communicates via the API and Django could be dropped as a dependency

Things I missed in the specification

And implemented:

● JSON support (reach out to the JSON working group?)
● Update the Job via the same API (micro service support)

Not implemented:

● A way of describing the accepted parameters via the API (Job Description
Language)

○ Self documenting API

Future work

● First release
○ Currently in alpha
○ Reach out if you want to collaborate!
○ Implement the complete specification

■ Actions such as getting a time quote are missing
■ Filtering of Jobs

○ Support for XML
■ Currently the API only supports JSON responses
■ POST requests accept both JSON and URL encoded form data

Thank you for listening!

References

● https://www.ivoa.net/documents/UWS/ - The specification
● https://git.astron.nl/astron-sdc/django-uws - The main repository
● https://pypi.org/project/django-uws/ - Python package published on Pypi
● https://git.astron.nl/astron-sdc/escape-wp5/esap-worker - Example worker

implementation
● https://git.astron.nl/astron-sdc/esap-api-gateway - ESAP API using UWS
● https://docs.celeryq.dev/en/stable/ - Celery documentation
● https://www.django-rest-framework.org/ - Django REST Framework

https://www.ivoa.net/documents/UWS/
https://git.astron.nl/astron-sdc/django-uws
https://pypi.org/project/django-uws/
https://git.astron.nl/astron-sdc/escape-wp5/esap-worker
https://git.astron.nl/astron-sdc/esap-api-gateway
https://docs.celeryq.dev/en/stable/
https://www.django-rest-framework.org/

