Implementing UWS in
Django

Klaas Kliffen - ASTRON

What is the UWS Specification

e A specification for a REST API for 'y L conpurers

. Browser Based CEERILATER Script Based
asynchronous services Apps Desktop Apps ﬁs
e Scalable interface for long runnin ' z 3
g g VO Query
t a S k S Languages

VO Data
CORE Models

i Semantics

nrooo-40xT

Formats

@oOomoo» »->»0

Data and Metadata Collection

___RESOURCE LAYER Computation

Storage

Our implementation in ESCAPE ESAP

REFRESH

e ESAP (ESFRI Science Analysis : "
Platform) " e e e
e Query and select datasets : e T —,
o
Browse softwarg i S —
e Run on compatible compute
infrastructure
e UWS used for:
e Batch processing

e Planned: async queries

Technology Choices

e Python

e Django - Mature Web Framework
e Django REST Framework - For quickly building REST APIs in Django
e Celery - Mature message brokering software for Python

e RabbitMQ - Message Broker (but easy to switch to others! Such as Redis)

Component Architecture

Django Project

Django UWS

Client only
interacts with
the UWS API

API puts job ID and
token on the Queue

Worker Project

Django UWS

Client
Worker fetches data =HIE

and updates data
via the API

IVOA Service

External Compute

Authorization

e Django uses pluggable auth for Clients of the API
o Multiple options possible: Basic, JSON Web Tokens (JWT), X509 etc.

e [Extra auth:

o Per Job permission instead of per User
o Plain tokens which can be used from curl (allows calls from external systems)

Lessons Learned - 1

e Test driven development (TDD) really useful!

o Write tests following the definitions of the specification
o Confidence in specification compliance and ease of refactoring

e Configure your Message Brokering software correctly!
o Celery worker types: “pre-fork” vs “eventlet” (cpu vs 10 heavy tasks)
o Failing jobs not getting into an error state
o Jobs not retried on failures outside the scope of the worker (network failures etc.)

Lessons Learned - 2

e Worker could live in the Django Project repository

o Still requires (at least) two processes, but direct database access could be preferred over the
API

e \We chose a single endpoint (api/uws/), with a type parameter
o Multiple endpoints might be better (api/batch/uws, api/query/uws, etc.)

e \Worker does not need to be a Django Project if used as microservice
o Worker communicates via the APIl and Django could be dropped as a dependency

Things | missed in the specification

And implemented:

e JSON support (reach out to the JSON working group?)
e Update the Job via the same API (micro service support)

Not implemented:

e A way of describing the accepted parameters via the APl (Job Description
Language)
o Self documenting API

Future work

e Firstrelease

o Currently in alpha
o Reach out if you want to collaborate!
o Implement the complete specification
m Actions such as getting a time quote are missing
m Filtering of Jobs
o Support for XML
m Currently the API only supports JSON responses
m POST requests accept both JSON and URL encoded form data

Thank you for listening!

References

https://www.ivoa.net/documents/UWS/ - The specification

https://qit.astron.nl/astron-sdc/django-uws - The main repository

https://pypi.org/project/django-uws/ - Python package published on Pypi

https://qit.astron.nl/astron-sdc/escape-wp5/esap-worker - Example worker
implementation

https://qit.astron.nl/astron-sdc/esap-api-gateway - ESAP API using UWS
https://docs.celeryqg.dev/en/stable/ - Celery documentation

https://www.django-rest-framework.org/ - Django REST Framework

https://www.ivoa.net/documents/UWS/
https://git.astron.nl/astron-sdc/django-uws
https://pypi.org/project/django-uws/
https://git.astron.nl/astron-sdc/escape-wp5/esap-worker
https://git.astron.nl/astron-sdc/esap-api-gateway
https://docs.celeryq.dev/en/stable/
https://www.django-rest-framework.org/

