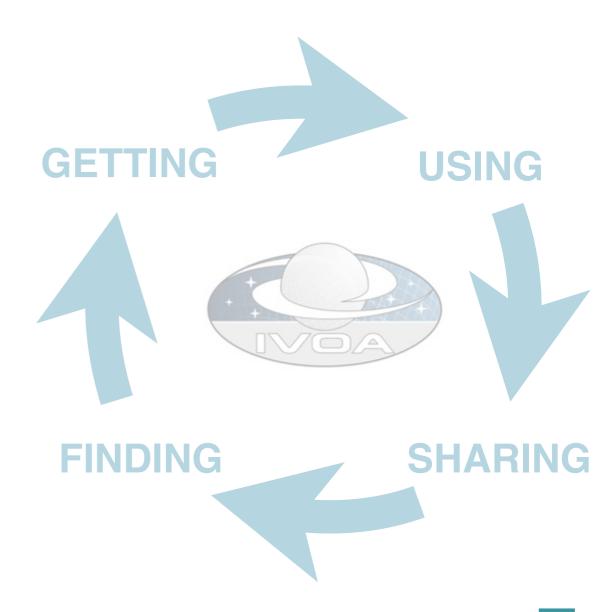


Intro to the IVOA

Interop meeting 17-20 October 2022

Ada Nebot & the Committee on Science Priorities

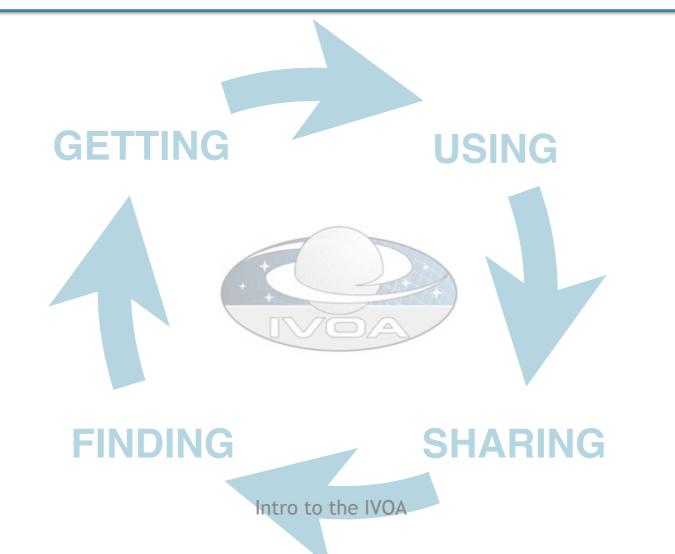
Interoperability


- Few definitions:
 - Interoperability:
 - "The ability of computer systems or software to exchange and make use of information."
 - "The ability of different systems, devices, applications or products to connect and communicate in a coordinated way, without effort from the end user"
 - The Virtual Observatory: "Framework for astronomical datasets, tools, services to work together in a seamless way"

The VO and the IVOA: what?

"A multi-wavelength digital sky that can be searched, visualised and analysed in new and innovative ways" P. Fabianno

What is the International Virtual Observatory Alliance?


- A science driven organisation that builds the technical standards
- A place for discussing and sharing VO ideas and technology to enable science
- Promoting and publicising the VO

The VO and the IVOA: why?

Clear benefits

- Growth in the scientific return of data
- Capability to discover and fuse multiple data sets
- Application of the VO in planning new observations and observing strategies

□ The VO and the IVOA: who?

Who is the IVOA?

- 5 Committees: Exec, Tech Coordination, Standards & processes, Media, Science priorities
- 6 Working Groups (WG): Applications, data access, models, grid & web services, registry, semantics
- 8 Interest Groups (IG): Time-domain, radio, solar system, theory, operations, data curation, knowledge & discovery, education

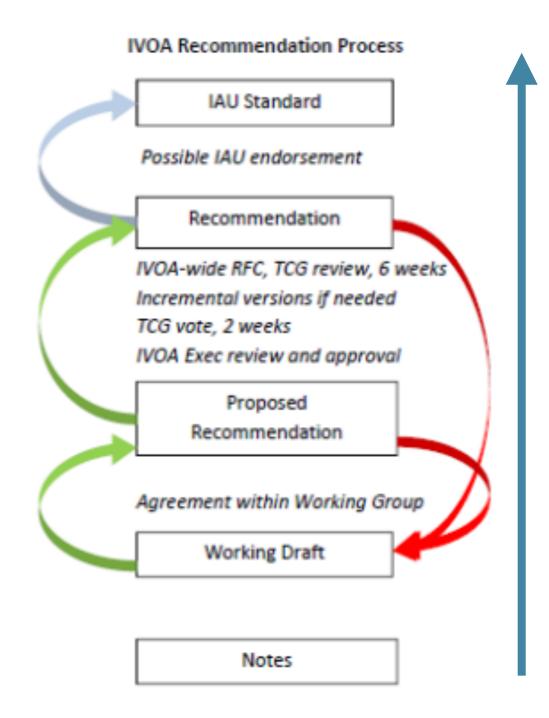
Want to get involved?

- Meetings: 2 interoperability meetings per year
- Don't know where to start? Email any chair/vice-chair of a IG/WG, CSP

http://ivoa.net/

□ The VO and the IVOA: where?

Existing global framework: populated by major data providers (space and ground based) that is heavily used by the community (e.g. Gaia data access is fully VO)


□ The VO and the IVOA: how?

Through the development and adoption of common standards scientifically driven, as an international community effort where astronomers, software engineers and documentalists are involved

IVOA development process of standards

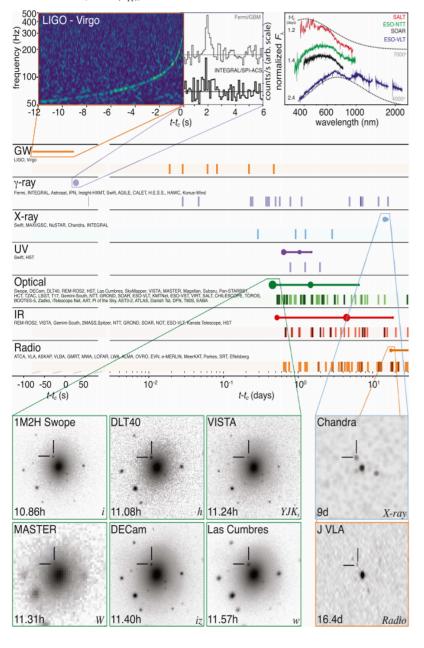
- Build IVOA standards to match users needs:
 - Find and report the community needs
 - Find and report gaps in the existing standards
 - Propose new ways to fill the gaps
 - Implement & validate
 - Standardise when consensus is reached

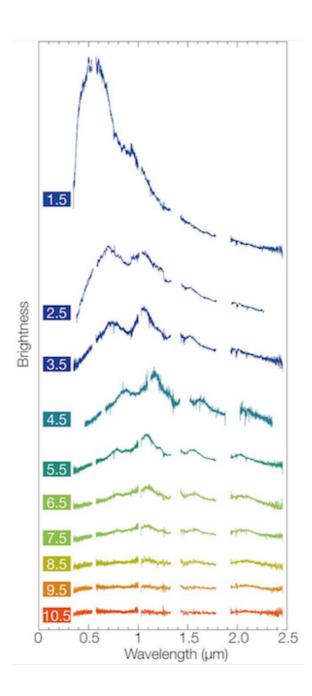
https://www.ivoa.net/documents/DocStd/index.html

□ OK, but where do I start?

A good starting point to newcomers to the IVOA: the architecture document

https://www.ivoa.net/documents/IVOAArchitecture/20211101/index.html


Things to keep in mind:


- The IVOA will not answer your scientific questions nor will it ask the questions for you
- The IVOA provides you with common formats and common ways of describing and accessing the data which when adopted will ease your work

Let's see it with an example

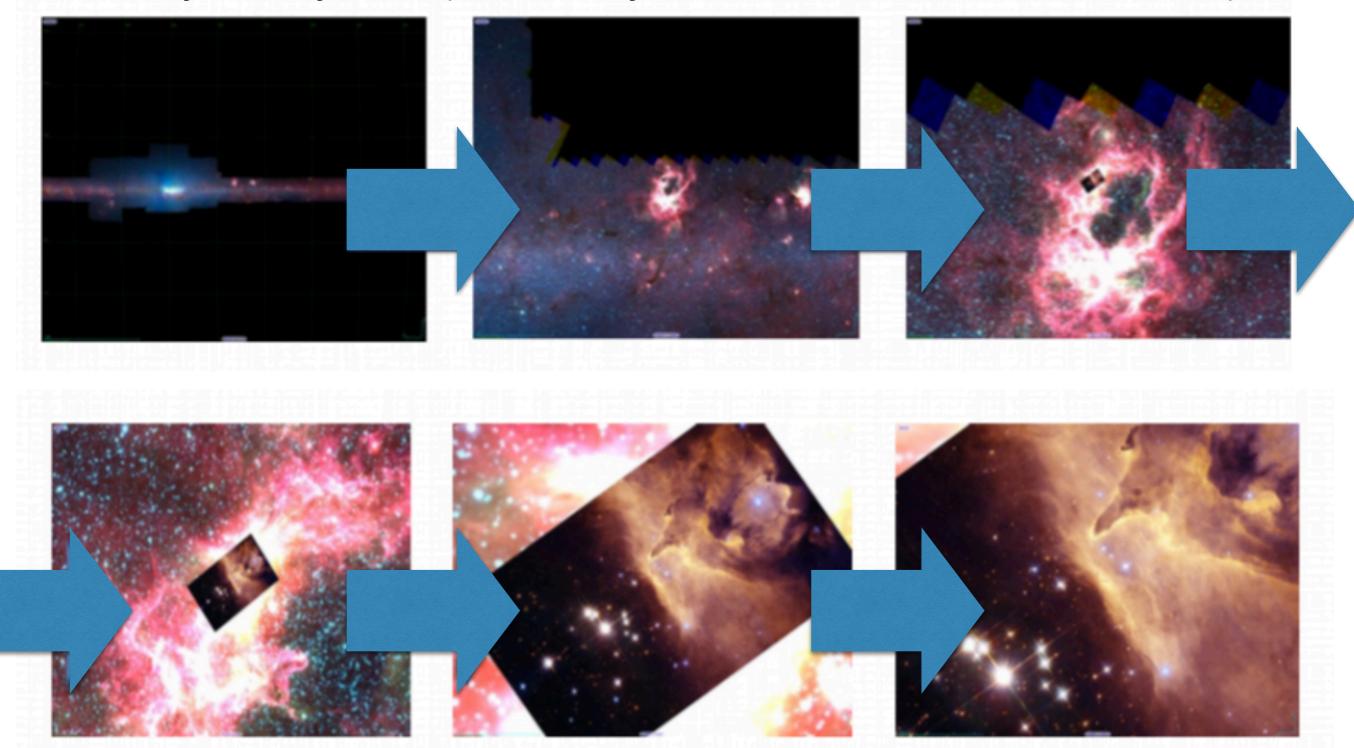
VO in the multi-messenger landscape

- Multi-wavelength / messenger approach is needed - different data types
- Follow-up observations and reaction time for that can be crucial - alerts
- Analysis, Visualisation & navigation through the data
- Coordination & transmission of information

The IVOA should match user's needs

Some selected standards

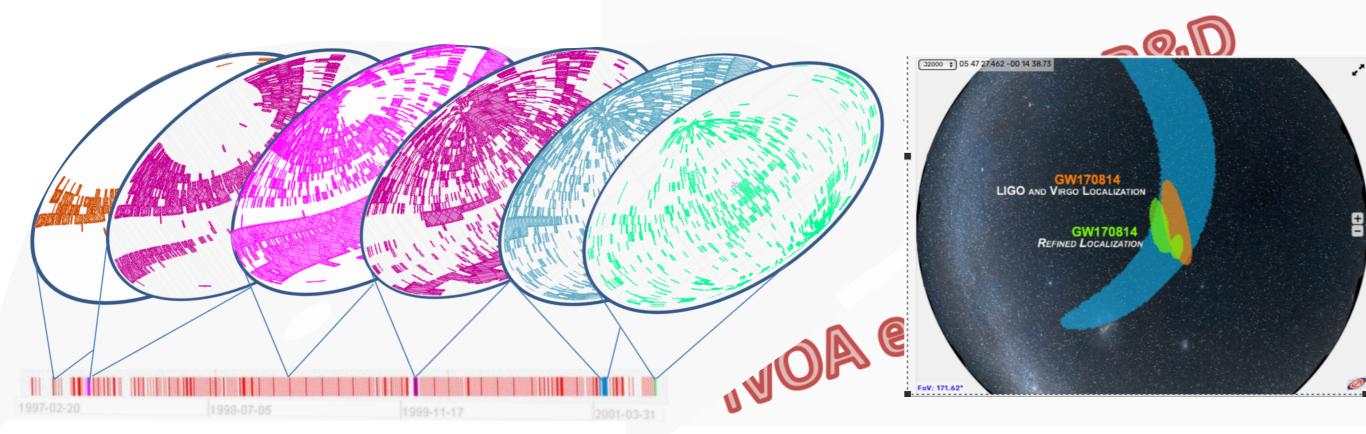
- 1. **VOTable** the format for tabular data for allowing interoperability (coosys, timesys, ucd, utype, VOunits, datalink).
- 2. HiPS more than a format for images tailored for large data volumes
- 3. Search for data:
 - Cone search spatial + temporal search
 - MOC spatial and temporal indexing for large data volumes and more complex areas in the sky
 - TAP + ADQL Table Access Protocol & astronomical data query language
 - ObsCore & ObsTAP description of observations
- 4. Planning of observations:
 - ObjVisSAP visibility of object to plan observations
 - ObsLocTAP facilitate coordination of observations
 - Facilities / observatory list (under dev.)
- 5. Alerts: VOEvents
- 6. ... many more! SLAP, SIAP, SSA, Provenance, SAMP... each tailored to specific use cases


VOTable: format for tabular data

Standardisation of coordinate system annotation (time and space), UCD, utypes, VOUnits, datalink

- COOSYS ("ICRS", "eq_FK5",...)
- TIMESYS (scale: TT, TAI, ..., refposition: barycenter,... timeorigin: JD, MJD,...)
- Unified Content Descriptor (UCD): controlled vocabulary for describing astronomical data quantities - related to the nature of the values
- UTypes: relationship between the columns and the data model components
- **VOUnits:** units expressed as a simplified text label (e.g. m.s**-2 instead of m s⁻²)
- Datalink: links to other associated data

☐ HiPS: Hierarchical image Progressive Survey


 A hierarchical scheme for the description, storage and access of sky survey data (the more you zoom-in the more the details)

□ Search: kno

- Cone search extension to add
- MOC: Search by temporal+sp complicated areas

- The STMOC = Space 1
- Merge together both order to have simultaneously space and time coverage

TAP & ADQL

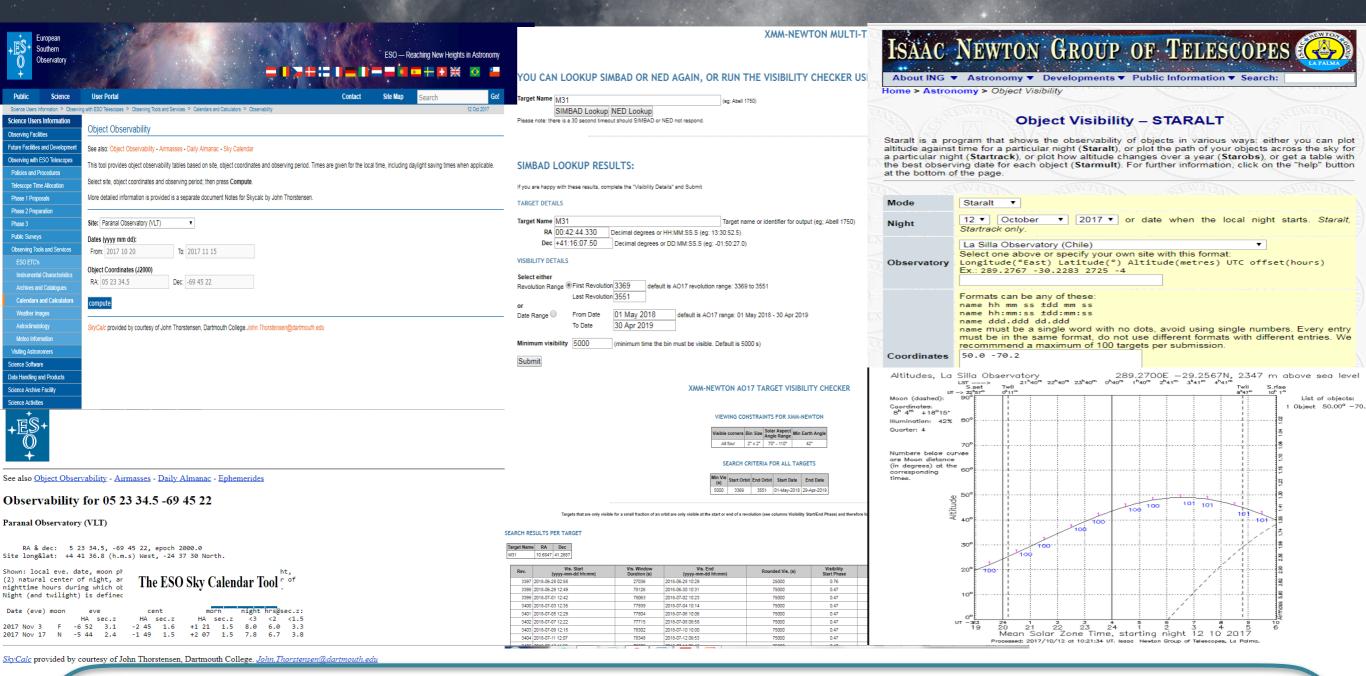
- Table Access Protocol (TAP) defines a service protocol for accessing general table data, including astronomical catalogs as well as general database tables. Access is provided for both database and table metadata as well as for actual table data.
- Astronomical Data Query Language (ADQL) Based on Structured Query Language (SQL) with special restrictions and extensions in order to support generic and astronomy specific operations

```
SELECT DISTANCE(
POINT('ICRS', 266.41683, -29.00781),
POINT('ICRS', ra, dec)) AS dist, *
FROM gaiaedr3.gaia_source
WHERE 1=CONTAINS(
POINT('ICRS', 266.41683, -29.00781),
CIRCLE('ICRS', ra, dec, 0.08333333))
ORDER BY dist ASC
```

ObsCore & ObsTAP

 Goal: "to give data providers a set of metadata attributes that they can easily map to their database system in order to support queries of the sort listed below."

- Science cases:
 - Support multi-wavelength as well as positional and temporal searches.
 - Support any type of science data product (image, cube, spectrum, time series, instrumental data, etc.).
 - Directly support the sorts of file content typically found in archives (FITS, VOTable, compressed files, instrumental data, etc.).


ObsCore & ObsTAP are Key IVOA standards for searching, finding and combining all sorts of data and allow for interoperability

□ ObsCore & ObsTAP

- Map the METADATA of your project data into ObsCore Keywords
- Set a TAP Service
- Register it! —> "The yellow pages of the IVOA"

Search, find, and combine the data coming from multiple missions

Visibility of an object

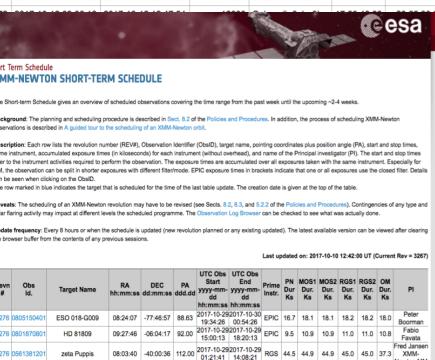


Different services have different inputs / outputs

Facilitate the work by having some level of standardised input / output

Object Visibility Simple Access Protocol, Aitor Ibarra, Richard Saxton, Jesús Salgado et al. 2020 http://www.ivoa.net/documents/ObjVisSAP/index.html

Coordination of observations



Schedule for revolution 1872

(this list is also available in csy-format, click here to download)

Rev	Start time (UTC)	End time (UTC)	Exp. time (s)	Target	Ra (J2000)	Dec (J2000)	Pattern	PI	Propo
1872	2017-10-10 13:29:15	2017-10-10 17:10:51	12600	Gal. Bulge region	17:45:36.00	-28:56:00.0	HEX	Erik Kuulkers	14200
1872	2017-10-10 17:13:34	2017-10-11 07:55:55	50000	Galactic Center	17:52:11.21	-25:21:49.7	5x5 Seq	Joern Wilms	14200
1872	2017-10-11 08:16:46	2017-10-11 11:58:32	12600	Galaxy (I=0, b=0)	17:42:23.76	-29:38:02.4	HEX	Rashid Sunyaev	14200
1872	2017-10-11 12:26:36	2017-10-11 12:56:36	1800	Galaxy (I=0, b=-30)	20:02:16.80	-41:20:31.2	HEX	Rashid Sunyaev	14200
1872	2017-10-11 13:27:21	2017-10-11 14:29:17	3600	Galaxy (I=0, b=-30)	19:59:40.80	-41:05:16.8	HEX	Rashid Sunyaev	14200
1872	2017-10-11 15:00:12	2017-10-11 17:38:07	9000	Galaxy (I=0, b=-30)	19:59:40.80	-41:05:16.8	HEX	Rashid Sunyaev	14200
1872	2017-10-11 18:41:00	2017-10-12 08:01:56	45000	GRS 1915+105	19:15:11.79	+10:56:45.7	5x5 Seq	Jerome Rodriguez	14200
1070	2017 10 10 00 00 10	00171010101751	10000				HEX	Rashid Sunyaev	14200
						esa ,	HEX	Rashid Sunyaev	14200

KeV	Start time (UTC)	End time (UTC)	Exp. time (s)	larget	Ra (J2000)	Dec (J2000)	Pattern	М	Propo
1872	2017-10-10 13:29:15	2017-10-10 17:10:51	12600	Gal. Bulge region	17:45:36.00	-28:56:00.0	HEX	Erik Kuulkers	14200
1872	2017-10-10 17:13:34	2017-10-11 07:55:55	50000	Galactic Center	17:52:11.21	-25:21:49.7	5x5 Seq	Joern Wilms	14200
1872	2017-10-11 08:16:46	2017-10-11 11:58:32	12600	Galaxy (I=0, b=0)	17:42:23.76	-29:38:02.4	HEX	Rashid Sunyaev	14200
1872	2017-10-11 12:26:36	2017-10-11 12:56:36	1800	Galaxy (I=0, b=-30)	20:02:16.80	-41:20:31.2	HEX	Rashid Sunyaev	14200
1872	2017-10-11 13:27:21	2017-10-11 14:29:17	3600	Galaxy (I=0, b=-30)	19:59:40.80	-41:05:16.8	HEX	Rashid Sunyaev	14200
1872	2017-10-11 15:00:12	2017-10-11 17:38:07	9000	Galaxy (I=0, b=-30)	19:59:40.80	-41:05:16.8	HEX	Rashid Sunyaev	14200
1872	2017-10-11 18:41:00	2017-10-12 08:01:56	45000	GRS 1915+105	19:15:11.79	+10:56:45.7	5x5 Seq	Jerome Rodriguez	14200
1070	2017 10 10 20 20 10	0017101010175	10000			000	HEX	Rashid Sunyaev	14200
						esa ,	HEX	Rashid Sunyaev	14200
				200					

												or SMS: 172 96:00:00:00 (0:00:00)		Pag	ge 1
SOC HOME OPERATIONS TEAM LOGIN SO	EIENCE TEAM LOGIN TO	TEAM LOGIN	LINKS	•		Scheduling Unit Begin UT End UT	SU Id	Principal Investigat	Exp # Targe	Science t Instrum		Apertures	Spectral Elements	Exposure Time(sec)	OB AL	EX	
Observing schedules						2017.288 23:00:00 23:35:07						F28X50LP	MIRVIS	1300.00			
						2017.288 23:14:45 06:30:55 2017.288 23:14:45 06:30:55	1476735	Sing	35-001 WASP- 35-002 WASP-	69 COS/NUV	ACQ/SE ACQ/PE	PSA	G230L G230L	12.00	35 02	01	
						2017.288 23:14:45 06:30:55 2017.288 23:14:45 06:30:55	1476735	Sing	35-003 WASP- 35-004 WASP-		/ ACQ/PE / TIME-T		G230L G130M	12.00			
This is the confirmed schedule of NuSTAR observations. This autonomously unless interrupted by a new schedule, Target of						2017.288 23:14:45 06:30:55	1476735	Sing	35-005 WASP-	69 COS/FUV	7 TIME-T	PSA	G130M	2706.00	35 07	01	
various time ranges depending on the exposure time goal of					III Cover	2017.288 23:14:45 06:30:55 2017.288 23:14:45 06:30:55			35-006 WASP- 35-007 WASP-		7 TIME-T 7 TIME-T		G130M G130M	2706.00			
The times reported here are the start and end of the on-targ					ount Earth	2017.288 23:14:45 06:30:55	1476735	Sing	35-008 WASP-	69 COS/FUV	7 TIME-T	PSA	G130M	2706.00	35 OD	01	
occultation and the SAA passage time where detector backgr						2017.289 00:00:00 00:28:32 2017.289 00:00:00 00:28:32			JF-001 DARK JF-002 DARK			F28X50LP F28X50LP	MIRVIS MIRVIS	1100.00			
next target. Please examine the NuSTAR As-Flown Timeline (AFT) for the log of past observat	ons.				2017.289 00:00:00 00:28:32	14819JF	Riley	JF-003 DARK	STIS/CO	CD ACCUM	F28X50LP	MIRVIS	60.00	JF 01	03	
Table Header Explanations						2017.289 00:00:00 00:46:10 2017.289 00:00:00 00:46:10		Bourque Bourque	3B-001 DARK- 3B-001 DARK-		/I ACCUM		F373N F373N	900.00			
obs_start obs_end sequenceID	Name	J2000 RA	J2000 Dec	Evn	Notes	2017.289 00:39:46 01:08:18	14819JG	Riley	JG-001 DARK	STIS/CO	ED ACCUM	F28X50LP	MIRVIS	1100.00	JG 01	01	
2017;281:19:05:02 2017;283:00:30:00 90201021006		262.671620	-21.491957			2017.289 00:39:46 01:08:18 2017.289 00:39:46 01:08:18			JG-002 DARK JG-003 DARK			F28X50LP F28X50LP	MIRVIS MIRVIS	60.00			
2017:283:01:11:23 2017:283:00:30:30 90201021000	JL .		-6.38520	3.4		2017.289 00:46:10 01:32:20			3C-001 DARK-		7I ACCUM		F467M	900.00			
2017:283:02:40:32 2017:283:04:20:00 90311212001		195.21879	-6.41062	3.4		2017.289 00:46:10 01:32:20 2017.289 01:27:12 01:56:24			3C-001 DARK- 9U-001 BIAS		ZI ACCUM		F467M MIRVIS	900.00			
2017:283:04:20:32 2017:283:05:50:00 90311212001		195.28046	-6.43604	3.4	ToO	2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		D ACCUM	F28X50LP F28X50LP	MIRVIS MIRVIS	0.00			
2017.203.04.20.32 2017.203.03.30.00 30311213001	301_17202_AR2003_F0313	199.20040	0.43004		Extragalactic	2017.289 01:27:12 01:56:24 2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		D ACCUM		MIRVIS	0.00			
2017:283:06:55:11 2017:284:09:20:00 60376001002	2MASXJ19301380p3410495	292.557500	34.180500			2017.289 01:27:12 01:56:24 2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		D ACCUM		MIRVIS MIRVIS	0.00			
					Survey	2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		CD ACCUM		MIRVIS	0.00	9U 01	07	
2017:284:09:45:09 2017:284:20:35:00 60360008002			20 2007674		Extragalactic	2017.289 01:27:12 01:56:24 2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		CD ACCUM	F28X50LP F28X50LP	MIRVIS MIRVIS	0.00			
2017:284:09:45:09 2017:284:20:35:00 60360008002	50553152132021p39120609	230.3874232	39.200/6/1	22.0	Legacy Survey	2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		D ACCUM		MIRVIS	0.00			
2017:284:21:10:03 2017:285:21:00:00 90301320002	NGC 6440	267.218083	-20.358944	49.5		2017.289 01:27:12 01:56:24 2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-001 BIAS		D ACCUM		MIRVIS MIRVIS	0.00			
					(2/4)	2017.289 01:27:12 01:56:24			9U-001 BIAS		D ACCUM		MIRVIS	0.00			
2017:285:21:20:06 2017:286:08:20:00 30302020004	GRS 1915p105	288.79813	10.94578	21.9	coordinated	2017.289 01:27:12 01:56:24 2017.289 01:27:12 01:56:24			9U-001 BIAS 9U-002 BIAS		D ACCUM		MIRVIS MIRVIS	0.00			
	0.10_15159105	200117025	20151010		with XMM and VLT	2017.289 01:27:12 01:56:24	148219U	Riley	9U-002 BIAS			F28X50LP	MIRVIS	0.00	9U 01	0G	
2017:286:08:35:06 2017:286:19:30:00 60160701002	2MACV11856012861538050	284 00210000	15 63200000	33 3		2017.289 01:27:12 01:56:24 2017.289 01:40:00 02:09:22			9U-002 BIAS		D ACCUM	F28X50LP	MIRVIS F502N	0.00			
2017.200.00.33.00 2017.200.13.30.00 00100701002	21111300120012001330033	204.00210000	13.03200000	_	Extragalactic								F660N				
2017:286:20:05:11 2017:287:15:05:00 60376007002	UGC06728	176.316800	79.681500			2017.289 01:40:00 02:09:22	14518F0	Golimowski	F0-002 DARK	ACS/WFC	ACCUM	WFC	F502N F660N	1000.50	F0 01	02	
					Survey	2017.289 02:09:22 02:38:56	14518F1	Golimowski	F1-001 DARK	ACS/WFC	ACCUM	WFC	F502N	0.50	F1 01	01	
2017:287:15:50:11 2017:288:03:20:00 60368001002		43.80083		22.0		2017.289 02:09:22 02:38:56	1451071	Colimouski	E1-002 DARK	ACC/UP/	ACCUM	WEC	F660N F502N	1000.50	F1 01	0.2	
2017:288:04:05:09 2017:288:23:00:00 60301004002	ESO_103m35	279.58458	-65.4275	50.3		2017.209 02109122 02130130	1451011	GOTTHOWSKI	ri-our bark	ACS/WIC	ACCOM	HPC	F660N	1000.30	11 01	02	
2017:288:23:30:08 2017:290:05:45:00 30301026002	AX_J1841d0m0536	280.25179	-5.59625	59.7	phase constrained												
2017:290:06:00:04 2017:290:17:00:00 60160670002	2E1739d1m1210	265.47600000	-12.19700000	23.5		09-Oct-2017 18:48:29	Dwo1	ininary UC	n Observing	Mimoline Be	nort fo	or SMS: 172	00034			Dog	ge 2
2017:290:17:15:01 2017:291:04:20:00 30363001002	N	266.98333	-26.56361	-			2017.288	:22:10:00 (15-OCT-2017 2	2:10:00), End	i: 2017.2	96:00:00:00 (23-OCT-2017 0	0:00:00)		Pag	je 2
,	91.2922			Jane													
Long Range Observatory Schedule Downlo						I											
This is the latest NuSTAR long-term schedule. Observations h		etopialo talcino ir	to account Cun	Moor	required	Scheduling Unit		Principal		Science			Spectral	Exposure			
this is the latest NuSTAR long-term schedule. Observations recognitions and other constraints. So the date is the Mon				, Moon	i, required	Begin UT End UT		Investigat	Exp # Targe	t Instrum	ne Mode		Elements	Time(sec)			
E.g. An observation with a date 2017-12-18 in this table				2017	7-12-18	2017.289 02:38:56 03:08:18				ACS/WFC	ACCUM		F502N	0.00			
0000Z and 2017-12-25 0000Z.												F660N					
Currently the schedule is driven by the large number of obse	nuations coordinated with other o	hearvatories and	the need to con	anlete	the NuSTAR	2017.289 02:38:56 03:08:18	14518F2	Golimowski	FZ-002 DARK	ACS/WFC	ACCUM	WEC	F502N F660N	1000.50	F2 01	02	
Suest Observer programs. The exposure goal for targets allo						2017.289 03:10:31 03:40:05	14518F3	Golimowski	F3-001 DARK	ACS/WFC	ACCUM	WFC	F502N	0.50	F3 01	01	
ime in that week (average is 330 ks per week) but many ob						2017.289 03:10:31 03:40:05	14518F3	Golimowski	F3-002 DARK	ACS/WFO	ACCUM	WFC	F660N F502N	1000.50	F3 01	02	
Targets of opportunity and any instrument or spacecraft ano	malies may also cause the observ	ing times of targe	ets to shift. This	long-t	term	2017 200 02-46-00 04-40-25	1403550	Tooluses.	#2 001 Pro=	omac (see	2 MINE -	PARKETER	F660N	1300.00	#2 C:	0.1	
schedule is our present estimate of the future order of observ				9		2017.289 03:46:00 04:48:35 2017.289 03:49:34 05:01:49						F28X50LP UVIS1-M512-S	MIRVIS F645N	1300.00			
						2017.289 03:49:34 05:01:49							F814W	2.00	39 01	0.2	

What object has been (or will be) observed when and in which wavelength?

Observation Locator Table Access Protocol, Aitor Ibarra, Jesús Salgado et al. 2021

http://www.ivoa.net/documents/ObsLocTAP/VOA

VOEvent: Sky Event Reporting Metadata

- "Defines the content and meaning of a standard information packet for representing, transmitting, publishing and archiving information about a transient celestial event, with the implication that timely follow-up is of interest"
 - Who: Identification of scientifically responsible Author
 - What: Event Characterization modeled by the Author
 - WhereWhen: Space-Time Coordinates of the event
 - How: Instrument Configuration
 - Why: Initial Scientific Assessment
 - Citations: Follow-up Observations
 - Description: Human Oriented Content
 - Reference: External Content

Register your services

 Describe what data and computational facilities are available where, and once identified, how to use them.

The yellow pages

Want to access data in the VO?

- Different ways to access the data in the VO: eg via Aladin, Topcat, python
- Lots of tutorials available

https://wiki.ivoa.net/twiki/bin/view/IVOA/EduResourcesTutorials#Graduate_level

Discovery of Brown Dwarfs mining the 2MASS and SDSS databases

Discovery of Brown Dwarfs mining the 2MASS and SDSS databases

Discovery of Brown Dwarfs mining the 2MASS and SDSS databases

Discovery of Brown Dwarfs mining the 2MASS and SDSS databases

This tutorial uses the advanced VO functionalities of Aladin (interactive sky atlas) to find brown dwarfs in the 2MASS and SDSS surveys. The user learns about the filtering, cross-matching and visualization functions, the implementation of scripts in Aladin and many more Aladin features to identify brown dwarfs in these surveys. This tutorial has been last updated for the first ESCAPE "Science with interoperable data school", previous versions of this tutorial repeated the same discovery steps with TOPCAT and STILTS. For this tutorial you will need a parameter and script file.

NASA-NAVO Workshops Notebooks

Q Search the docs ...

The Story: Suppose that you are preparing to write a proposal on NGC1365, aiming to investigate the intriguing black hole spin this galaxy with Chandra grating observations (see: Monster Blackhole Spin Revealed)

Want to publish data in the VO?

https://wiki.ivoa.net/twiki/bin/view/IVOA/PublishingInTheVO

Several ways to publish you data into the VO (depending on needs):

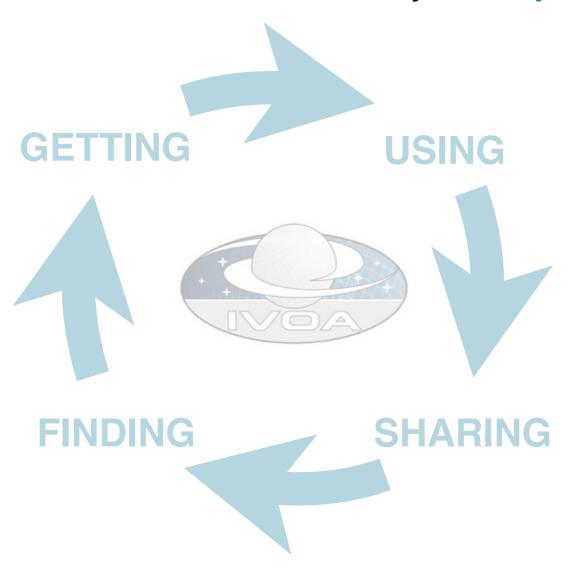
- Very little technical expertise —> Contact your national VO projects
- Find your VO services in applications —> Publish in a VO Registry
- Some technical expertise —> existing VO Publishing toolkits.
- Technical expertise & prefer to build VO interfaces to your data:
 - There are useful VO software tools and libraries.
 - Determine what type of data you want to publish (images, catalogues, spectra, ...)?
 - Have a look at the IVOA Architecture document to find out which IVOA standards that you might need to use

□ What else?

- Many more standards!
- Want to know more? Don't know what an acronym means?
- Have a look at the architecture document!
- https://www.ivoa.net/documents/IVOAArchitecture/20211101/index.html

Summary of each standard

4.1 SSO


The Single-Sign-On (SSO) (Taffoni and Schaaf et al., 2017) profile describes authentication mechanisms. Approved client-server authentication mechanisms are described for the IVOA single-sign-on profile: No Authentication; HTTP Basic Authentication; TLS with passwords; TLS with client certificates; Cookies; Open Authentication; Security Assertion Markup Language; OpenID. Normative rules are given for the implementation of these mechanisms, mainly by reference to pre-existing standards.

A table with acronyms

Acronym	Expansion
ADQL	Astronomical Data Query Language - standard
API	Application programming Interface
CDP	Credential Delegation Protocol - standard
CharDM	Characterisation Data Model - standard
ConeSearch	Cone Search - simple positional search service standard

Summary

The IVOA standards are built to enable access, discovery and ultimately interoperability

Meeting **FAIR** principles by design

Findable

Accesible

Interoperable

Reusable

The IVOA needs the community to participate!

Some useful links

- https://www.ivoa.net
- Docs : https://www.ivoa.net/documents/
- GitHub : https://github.com/ivoa
- Mailing list: https://www.ivoa.net/members/index.html
- Architecture: https://www.ivoa.net/documents/IVOAArchitecture/20211101/index.html
- Slack: https://join.slack.com/t/ivoa/shared_invite/zt-1gsa589t2-cgadBVp7BWzuq7VFg8qlog