
Reasoning with RDF: Utypes

Norman Gray
VOTech/AstroGrid

University of Leicester, UK
(and University of Glasgow, UK)

IVOA Interop, Moscow, 2006 September 18–20

norman gray – VOTech

why do we standardise?

It’s so we can interoperate – it’s not an end in itself.

But standardisation is expensive, in time, effort and
documentation.

Thus if we can interoperate with minimal standardisation, that’s
a win.

norman gray – VOTech

standardisation has contradictory goals

A standard must be as small as possible, so that it’s possible to
agree on, and possible to read the documentation. But it must
also be as large as possible, so that it covers enough of what
people want to communicate.

Because if you go beyond the standard, you have nothing.
Going beyond the standard is very costly.

norman gray – VOTech

i’m not saying. . .

I am not saying any of:

Abandon DM effort

Don’t have central/IVOA standard

. . .

norman gray – VOTech

utypes

What are utypes? JCM has characterised them as a way of
(de-)serialising structured information into VOTables. This
conceives utypes as ‘pointers into data models’.

I claim I can show a way of using utypes that potentially
decreases the amount that needs to be standardised, and
simultaneously increases the amount of interoperability.

norman gray – VOTech

step 1: view the utype as a url
No need for syntactic change, just enhanced interpretation:

xmlns="http://www.ivoa.net/ut#"
utype="characterization.characterizationAxis"

or

xmlns:cha="http://www.ivoa.net/ut#"
utype="cha:characterization.characterizationAxis"

or

utype="http://www.ivoa.net/ut#characterization.characterizationAxis"

Cf, CURIEs:
http://www.w3.org/2001/sw/BestPractices/HTML/CURIE

norman gray – VOTech

http://www.w3.org/2001/sw/BestPractices/HTML/CURIE

step 2: define your own utypes

Create a web page http://example.org/utypes/1.0 with
... .

Implies utypes http://example.org/utypes/1.0#myCharAx

Immediate documentation win for humans, but surely we’ve
lost interoperabilty! No, because. . .

norman gray – VOTech

http://example.org/utypes/1.0

step 3: explain what these are formally

% curl --header accept:text/rdf+n3 \
http://example.org/utypes/1.0

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
<http://example.org/utypes/1.0#myCharAx> a rdfs:Class;

rdfs:subClassOf
<http://www.ivoa.net/ut#characterization.characterizationAxis>.

%

(ie, subtyping, in O-O terms)

norman gray – VOTech

what does this give you?

Permits complete labelling of object.

Allows you to promptly deduce, when you see this unknown
utype, that it’s a more specific version of something you
already know about.

Can be multiple levels, from your specific utype, through
community consenses, to ivoa standards.

[demo]: external reasoner aggregates assertions and serves
inferences

norman gray – VOTech

workable

Reasoning is simple=fast.

Utype definitions will be stable – they won’t change – so they
can be aggressively cached (inferences are one-off in
principle, but would include bugfixes and updates in practice).

This demo uses a generic reasoner. It would be very simple
to wrap this in a thin layer to produce a service which
specialises in resolving utypes:

http://localhost/resolver?q=http:

//example.org/utypes/1.0%23myCharAx

norman gray – VOTech

http://localhost/resolver?q=http://example.org/utypes/1.0%23myCharAx
http://localhost/resolver?q=http://example.org/utypes/1.0%23myCharAx

benefits (i)

It allows data producers to say exactly what a column (etc) is.
So if you happen to recognise that utype, you win
immediately.

But if you don’t recognise it, you can promptly find out what
it’s most like.

Versioning is very easy (eg,
characterization.characterizationAxis version 2 is a subclass
of characterization.characterizationAxis version 1). Plus
deprecation, replacement, and so on.

norman gray – VOTech

benefits (ii)

Greatly lowers the cost of going beyond the standard, and of
mutating the standard, making it feasible to define smaller, or
even prototype, standard sets of utypes.

Supports community-specified layers of utypes for special
cases and extensions

. . . without losing interoperability.

norman gray – VOTech

the characterization data model

In several places, the model document defers things to a
future version

. . . or documents ambiguities, such as spatial location
(pointing, or astrometric solution, or. . .)

. . . or overloads terms, describing patterns for describing
features.

All of these are necessary, but the costs can be lowered.

norman gray – VOTech

possibilities

Let the utype attribute take multiple utypes. Might avoid the
lookup, but ugly.

UCDs can potentially be seen, in this picture, as a very
generic utype

norman gray – VOTech

summary

Standardisation is pushed towards large standards and long
processes, because going beyond the standard is costly, and
because the standard must have broad coverage.

(i) So if extension and versioning of a data model can be made
easy and cheap, then it becomes feasible to make data models
smaller, and thus faster to develop, without frustrating
interoperability. Characterization is largely sorted out now, but
there’s still provenance, sources, . . . , still to go.

(ii) Serve a detailed view of the data without sacrificing interop.

norman gray – VOTech

	Why do we standardise?
	Standardisation has contradictory goals
	I'm not saying…
	Utypes
	Step 1: view the utype as a URL
	Step 2: define your own utypes
	Step 3: explain what these are formally
	What does this give you?
	Workable
	Benefits (i)
	Benefits (ii)
	The Characterization data model
	Possibilities
	Summary

