
TAP Protocol Analysis

1

 International

 Virtual

 Observatory

Alliance

Table Access Protocol Design Analysis

Version 0.1
IVOA Note 2007 September 20

This version:
 ThisVersion-YYYYMMDD
Latest version:
 http://www.ivoa.net/Documents/latest/latest-version-name
Previous version(s):

Author(s):
 D.Tody, ohers TBD

Abstract

This document presents a proposal for a basic Table Access Protocol (TAP)
interface, noting motivations, describing interface elements which are thought to
be understood, and identifying issues which are as yet unresolved. This
attempts to build upon the work done by the ESAC group within the VOQL-TEG
in early 2007, while conforming to the basic service profile and common service
elements developed by the IVOA DAL, DM, Registry, and GWS working groups,
and incorporating experience gained by the NVO and CADC with the SkyNode
prototype and various related data center protocols.

TAP Protocol Analysis

2

Status of This Document
This is an IVOA Note. The first release of this document was 2007 September 20.

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability with the Virtual Observatory. It should not be referenced or
otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents

1 Introduction 3
2 Interface Summary 4
3 Service Operations 4
3.1 AdqlQuery 4

3.1.1 AdqlQuery Parameters 5
3.1.2 UTYPE and UCD in Queries 5
3.1.3 Multi-Position Queries 6
3.1.4 Data Staging 7
3.1.5 Asynchronous Queries 7

3.2 SimpleQuery 8
3.2.1 Motivation 8
3.2.2 SimpleQuery Parameters 9
3.2.3 Field Names 10
3.2.4 Metadata Queries 11
3.2.5 Simple Cone Search 12
3.2.6 Minimal TAP Service 12

3.3 GetCapabilties 13
3.4 GetAvailability 13

4 Basic Service Elements 13
Appendix A: Database and Table Metadata 14
References 18

TAP Protocol Analysis

3

1 Introduction
This document presents a proposed draft interface for the IVOA Table Access
Protocol (TAP), describing those interface elements which we feel are fairly well
understood while identifying issues which need further study. This is intended
only as a draft to expose the issues and provoke discussion. The draft interface
proposed here is based upon that developed in the spring of 2007 by ESAC and
the VOQL-TEG, as well as work done within the DAL working group in the same
time period, and reflects the experience of the NVO project with the earlier
SkyNode prototype and various related data center query interfaces.

The following goals are addressed in the draft TAP interface presented here:

• The primary focus of TAP is to provide a standard interface for ADQL
(SQL)-based queries, including providing support for large queries and
distributed queries, and multi-table operations.

• At the same time TAP should define a minimal implementation which

makes it as easy as possible for a small data provider to publish and
individually query a few tables; ideally this will ultimately replace the
legacy Cone Search interface. This minimal implementation need not
require ADQL support, although a SQL DBMS might still be used at the
back end.

• Both data access and metadata access are essential for any data access

interface, and should be provided natively within the interface.

• Scalability is required, in particular, support for multi-position queries,
where a table containing potentially thousands of source positions is input
as part of the query (in effect this provides the first stage of a distributed
cross match capability).

• Ultimately, integral support for asynchronous execution, data staging (e.g.,

via VOSpace), and SSO authentication are required, based upon IVOA
GWS standards in this area, although the simplest version of the interface
may not require any of these.

• For reasons of consistency and to enable code re-use, the basic form of

the TAP interface should be consistent where possible with the other
IVOA DAL interfaces.

• Registry integration is required to register service capabilities and possibly

some information about the tables available via a TAP service, in order to
support data and service discovery at the registry level.

TAP Protocol Analysis

4

2 Interface Summary
The basic TAP service interface described here is composed of multiple
independent service operations. HTTP is adopted as the basis for the service
protocol, using both GET and POST for service operations where appropriate,
consistent with REST semantics (other protocols such as SOAP could optionally
be supported as well). Data is returned in a variety of output formats including
VOTable, CSV/TSV, and native XML (support for other formats such as HTML,
FITS binary table, etc., is also possible but is not addressed here). A restricted
subset of the SQL information schema, with the addition of VO specific
extensions (UTYPE, UCD, etc.) is proposed for describing database and table
metadata.

3 Service Operations
The following set of TAP service operations are suggested:

• AdqlQuery ADQL-based queries, full functionality
• SimpleQuery Simple parameter-based queries, metadata queries
• GetCapabilities Return metadata describing the service
• GetAvailability Monitor runtime service function and health

It appears that everything we want to do, including both synchronous and
asynchronous ADQL queries, very large queries, multi-position queries, data
staging, simple cone search type queries, general metadata queries, registry
integration and service capability querying, service monitoring, etc., can be done
with these few operations. This service interface is also thought to be adequate
to support development of a higherl level large scale distributed cross match
portal or application which relies upon TAP services for access to remote data.

There is some discussion of whether we need a "Simple" (non-ADQL) query,
since in principle ADQL can provide everything required. Everyone agrees that
the main focus of TAP should be to support ADQL-based queries. However,
requiring ADQL, REGION, UTYPE-based queries, etc. just to do a cone search,
or a simple query of a single data or metadata table, essentially requires a full-up
ADQL implementation to do anything at all, and would violate our requirement
that a minimal TAP service be defined which is easy for a small data provider to
implement. For these reasons we feel that a SimpleQuery operation (described
below) is still warranted.

3.1 AdqlQuery
The AdqlQuery operation provides a capability for ADQL (SQL)-based queries.
Most of the complexity of the AdqlQuery operation involves the specification and
processing of the ADQL expression itself; the service interface itself is fairly
straightforward. The AdqlQuery operation has the following characteristics:

TAP Protocol Analysis

5

• Provides a capability for general ADQL-based queries, including large
queries, multi-position queries, multi-table joins, etc.

• Both GET and POST versions are defined. The GET version permits only

synchronous execution, and URL-encodes the ADQL query string,
allowing arbitrary SQL syntax to be used. Both versions share the same
parameters and semantics, although the GET version is a subset of what
is permitted with the POST version.

• Use of the POST version is required for asynchronous queries, for multi-

position queries which require upload of a source table, or for queries
which are too large to compose as a GET.

3.1.1 AdqlQuery Parameters
The following parameters are defined for the AdqlQuery operation::

QUERY The query string (ADQL; URL-encoded)
FORMAT Output data format (VOTable, CSV, XML, etc.)
<staging Params> Only used in POST version; for VOSpace
<async Params> Only used in POST version; for driving UWS
MAXREC Maximum records in the output table
RUNID Pass-through; used for logging

(others TBD)

The query string specifies all table-related aspects of the query hence no
additional parameters are required to specify the query. Only ADQL queries are
address here; if other SQL dialects or native SQL are supported by a service, this
could be added as an optional capability with the dialect specified by an
additional parameter (the use of native host SQL features within the ADQL query
might however be a better approach).

FORMAT specifies the output format as for other DAL interfaces, with VOTable
being the default output format.

MAXREC, provided primarily for synchronous queries, can be used to increase
the maximum number of output records permitted in a query to prevent overflow.
Overflow is indicated in the output table with the QUERY_STATUS INFO
element, as for other DAL interfaces. MAXREC is unrelated to the SQL TOP
construct.

3.1.2 UTYPE and UCD in Queries
We suggest that, rather than provide a separate query operation for UTYPE or
UCD-based queries, these be handled instead in the process of field name
resolution within a query. Although how it is handled is up to the internal

TAP Protocol Analysis

6

processing of a query, all field references in queries normally resolve to individual
table fields. By default table fields are secified by name, using the field or
column name given in the table metadata. If a field name in a query includes a
UTYPE reference to a field of a data model, this is resolved by the service (if it
supports the associated data model) into a literal table field, and processing
proceeds normally. UCD can be handled the same way, and can be considered
(for the purposes of table name resolution), as a special case of UTYPE. This is
discussed further in section 3.2.3 below.

The proposed UFI syntax could also be used to specify table fields in terms of
data model UTYPEs. While this could be a useful feature for automated
resolution of UTYPEs, strictly speaking it is not required as the client could query
the table metadata and resolve the data model reference to a literal table field on
the client side. UTYPE and literal field name references could be mixed within
the same ADQL expression.

3.1.3 Multi-Position Queries
Multi-position queries are required for scalability, as querying repeatedly by
individual spatial positions is too slow when thousands of positions are involved
(this is true for other interfaces such as SIA and SSA as well). The case of
querying by spatial position requires special treatment as it is multidimensional
and conventional SQL table indexes cannot easily be used. The use of custom
indexing algorithms based upon HTM and other techniques greatly speeds up
positional queries. The combination of custom spatial indexing algorithms plus
the ability to process multiple spatial positions in a single query allows multi-
position queries involving thousands of positions to be handled efficiently.

There are two main approaches for large multi-position queries: upload the
source table as part of the query, or reference a previously uploaded or
otherwise generated source table in the query.

To upload a source table directly as part of a query one would use the POST
version of AdqlQuery, with a POST encoding of Multipart/form-data, which
permits a mix of string parameters (as for GET) and file uploads to be packaged
in the same request. Hence we can have request parameters as for the GET
version of AdqlQuery, and at the same time upload a VOTable (or any other file,
including binary files) containing any number of positions plus possibly other
table fields to be passed through to the query output. Multi-position queries of
this form are fully parallelizable and could be arbitrarily large (many thousands of
positions).

While there are various ways that source data could be input for a multi-position
query, we suggest that the standard format be VOTable, as this is already the
format for the output of queries, as well as for storage of intermediate tables in a
series of queries. In this case each source position is tagged with a source or

TAP Protocol Analysis

7

position ID. The query output may contain multiple records per input source; the
records would be tagged with the source ID, allowing all data to be returned in a
single table.

The HTTP Multipart/form-data mechanism allows submission of POST
queries from any Web browser form, much as we already do for GET queries. In
this case the VOTable of source positions could either be generated in advance,
or on the fly by the Web form. User input would normally not be in the form of a
VOTable, and would need to be converted for input to TAP.

This mechanism is also capable of uploading any auxiliary files which are
referenced in a query. The REGION function in ADQL would reference the
uploaded position table as a named table. VOSpace tables would be referenced
with the same mechanism.

Execution of a multi-position query may be either synchronous or asynchronous,
although POST must be used in both cases. Large multi-position queries may
require asynchronous execution. Staging of the output is required only for the
asynchronous version.

3.1.4 Data Staging
By data staging we mean staging data local to a TAP service for input to a query,
or storage of any output data resulting from the query. Data staging is required
for asynchronous queries (to define where the service should store the data) and
is optional otherwise. Data would normally be staged to a VOSpace co-located
with the service, or (for output) to a remote VOSpace, however other forms of
data storage are also possible. In particular, output data staged local to a service
could use some internal mechanism (such as a DBMS or file system) which is
transparent to the client application. This means that asynchronous execution
does not necessarily require VOSpace support.

Although the details are not yet clear, probably a similar mechanism can be used
in queries to refer to all forms of data storage: staged user tables, normal archive
data tables, or tables which are uploaded directly in a query request. For
example, REGION might refer equivalently to data stored in any of these ways.

The details of data staging, including the parameters used to control staging in
the AdqlQuery operation, are TBD. This is an advanced capability which does
not have to be provided initially in TAP, although we would like to prototype this
as soon as a basic TAP interface has been specified.

3.1.5 Asynchronous Queries
Use of the POST form of AdqlQuery would be required to initiate asynchronous
queries. The details, including the parameters used to initiate asynchronous

TAP Protocol Analysis

8

execution, are TBD (as for the data staging capability). To a first approximation
one would merely submit the query, including any staging instructions, and
request that it execute asynchronously. The service would either return a job ID
which could be used via the UWS mechanism to monitor job execution, or an
error of some sort if there is a problem with the request. As with data staging,
this does not have to be implemented in the initial version of TAP, but should be
prototyped (along with data staging and SSO authentication) once the basic TAP
interface has been specified.

3.2 SimpleQuery
The SimpleQuery operation provides a simple table data query mechanism and
is also the primary mechanism provided in TAP for database and table metadata
queries. The SimpleQuery operation has the following characteristics:

• The same interface is used to query both table data and metadata. In

other words, data-oriented metadata is represented as tables. Service
metadata is handled separately via a different mechanism (3.3).

• Only a single table (or view) can be queried at a time.

• Only a GET version is provided; input is via parameters, hence query

parsing is not required.

• Only synchronous execution is permitted.

• Output may be returned in any supported output format.

Some of these limitations are not strictly necessary, .e.g., a POST form could
also be permitted with support for multi-position queries and optional data
staging; this would not complicate things much, particularly if the service also
supports AdqlQuery. However, since our objective here is to define a simple
query mechanism we will not consider such optional advanced capabilties further.

3.2.1 Motivation
The primary motivation for SimpleQuery is to provide a table access method
which is both simple to implement, and easy to use by client applications for
simple queries which do not require ADQL. Experience with real-world queries at
our data centers shows that most (> 90%) of actual table data queries seen are
simple queries selecting all or a few fields from a single table, with a minimal
WHERE clause. In addition we would like to provide a simple mechanism to
query database and table metadata which does not require ADQL.

Although some would argue that VO only requires full-function interfaces and that
defining minimal implementations is not important, we feel that it is still important

TAP Protocol Analysis

9

to keep the needs of small data providers in mind. A small survey team for
example, will want to publish data to the VO during the operational phase of the
survey. Although the data may ultimately end up at a large data center (which
can afford to implement complex, full-function services), during survey operations
it is best if the survey team directly curates their data and makes new data
accessible as soon as it is available from the survey pipeline.

Small data providers with limited resources and only a few tables to publish are
more likely to implement a correct, robust TAP interface if it defines a simple
interface; a full-up ADQL version is much more likely to either be incomplete or
buggy, or not be implemented at all. A simple parameter-based, filter-type table
query interface is much simpler to implement for non-SQL based systems; even
for SQL-based systems it will be easier to parse and translate than ADQL-based
input.

We may be able to ease this situation eventually by providing ready to use
service frameworks, however we do not have these yet, and support will always
be limited due to the number of target platforms out there.

3.2.2 SimpleQuery Parameters
The following parameters are defined for the SimpleQuery operation:

SELECT Table fields to be returned (default all)
FROM The table (or view) to be accessed
WHERE A filter to be applied to the table (default none)
POS,SIZE Find data only in this spatial region
FORMAT Output data format
MAXREC Maximum records out
RUNID Pass-through for logging

(other params TBD)

The SELECT FROM WHERE parameters have an obvious motivation from SQL
and will map directly upon an SQL back-end, but can be easily used with a non-
SQL DBMS as well. The simplest possible query specifies only the FROM
parameter, naming a single table or view to be queried. This may be all that is
required for small data tables or for metadata tables. SELECT is a simple
comma-delimited list of the table fields to be output; UTYPE/UCD field name
resolution could be optionally performed upon these fields.

The POS, SIZE fields define a spatial region used to constrain the query. A
query which specifies only FROM plus a spatial region is a simple cone search
query. Both POS, SIZE and WHERE can be used in the same query. (TIME and
BAND could also be provided, but we are concerned that these are not
sufficiently well defined or useful for general tables hence have omitted them).

TAP Protocol Analysis

10

Various alternatives to POS, SIZE are possible, e.g., RA, DEC, SR, or use of a
UTYPE or UCD to reference the spatial position. POS, SIZE is suggested
because it is dimensionless and allows various coordinate systems to be
specified, and because it is compatible with the other DAL interfaces allowing
common code and semantics to be exploited. A UTYPE reference would also
work, but only for the spatial position and not for the region size, which would still
require a parameter. Use of parameters for all of the region-specific information
seems simpler and more consistent.

The only parameter here of any complexity is the WHERE parameter. We want
to keept this as simple as possible, as if any significant parsing is required we
may as well use ADQL instead. A simple syntax would be to use a comma-
delimited range list, where each field name is followed by a value which is either
a fixed value (equality) or an open or close range list (range of valid values). For
example,

FROM=foo&WHERE=objectType,galaxy,flux,5/&FORMAT=csv

would return all fields from table “foo” where the object type is “galaxy” and the
value of the “flux” attribute is greater than or equal to 5, in CSV format. In this
proposal only the AND relationship would be permitted in the WHERE clause.

Other schemes for WHERE are possible and should be explored, but something
similar to this approach would work for many simple queries.

3.2.3 Field Names
As mentioned already in connection with AdqlQuery, we suggest that the choice
of literal field names or UTYPEs be made individually for each field, using some
predefined syntax (such as prepending a name space qualifier) to distinguish
between the two. A possible field name syntax might be

FieldName = “<literal-name> | <name-space> ‘:’ <UTYPE>”

where “<literal>” is the literal field name as used in the table, and UTYPE is the
UTYPE specifier for a field of the data model indicated by “<name-space>”. For
the purposes of field name resolution, UCDs could be considered a special case
of a data model, with its own name space “ucd”. All forms of field name would be
resolved to literal field names prior to evaluating the query.

For example, the field TargetName from the SSA data model could be referred
to by UTYPE as “ssa:Target.Name” or by UCD as “ucd:meta.id;src”. Any
of these references would resolve to the literal table field name TargetName
(whether this syntax might conflict with SQL syntax for field names is TBD but no
doubt some solution can be found if this is the case).

TAP Protocol Analysis

11

3.2.4 Metadata Queries
We suggest that database, table, and query engine metadata be based upon (but
not equivalent to) the information schema standard defined by SQL92. In this
approach, standard views are defined to describe the database, its contents, and
some aspects of the query engine, and the standard database query mechanism
is used to query such metadata just as one would query actual data tables.

While the SQL information schema has some issues, we need something like
this, it is a standard, and the concept of using the standard DBMS query
mechanisms to query database metadata is an elegant approach. We cannot
use the SQL information schema directly as, while it is implemented by most
DBMS products (MySQL, PostgreSQL, SQL Server, etc.), it is not implemented
by all, and each typically implements only a subset while adding its own custom
metadata. This is essentially what we need to do for TAP as well, i.e., define a
minimum subset of the information schema which a TAP service should provide,
and extend this with additional custom metadata such as UTYPE, UCD, UNIT,
etc. as required for our applications.

Aside from making use of an existing standard which is implemented in most
SQL implementations, this approach has the advantage that the entire data path
from the client application to the back-end DBMS can be the same for both data
and metadata queries, allowing all related code, query facilities, output data
formats, etc., to be used for both. In addition, the approach is easily extensible; if
we want to describe some new aspect of the database, table, query engine, etc.,
we can add this by changing only the information schema without any changes to
the service interface. The information schema is important not only to describe
the database and the tables and views it contains, but to provide the information
required for query optimization. This includes details such as the primary and
foreign keys defined for each table (important for joins), any user defined
functions, optional SQL/ADQL features, and so forth.

While ADQL could be useful for querying the information schema as an
advanced optional capability, we are reluctant to require something as complex
as ADQL for simple table metadata queries; the SimpleQuery operation is all that
is needed in most cases.

A more complete view of the draft information schema recommended for TAP is
provided in Appendix A. The most important elements of this are SCHEMA.tables
and SCHEMA.columns, which list the database tables and describe their
columns, respectively. Simple examples of queries against these tables are the
following:

FROM=SCHEMA.tables
FROM=SCHEMA.columns&WHERE=tableName,foo
FROM=SCHEMA.columns&WHERE=tableName,foo&FORMAT=xml

TAP Protocol Analysis

12

The first merely lists the tables (or views) which the TAP service provides access
to. The second lists the columns defined by table “foo”, in the default output
format (VOTable). The third example does the same, except that the output
format is native XML, which we could make compliant with whatever schema the
Registry requires. This could be done for example, by implementing the registry
view of a table as an actual View table in the database, allowing the registry to
have its own custom view of the metadata for a table.

3.2.5 Simple Cone Search
In the proposal descrbed here, the TAP version of simple cone search reduces to
a SimpleQuery using POS,SIZE:

REQUEST=SimpleQuery&FROM=foo&POS=180.0,12.5&SIZE=0.2

Additional constraints may be added, for example, if table “foo” has a field called
“flux”, we could add WHERE=flux,5/ to find only sources for which Flux is
greater than or equal to 5.0. A FORMAT could be added to specify the desired
output format. UCDs should be returned consistent with the UCD 1.1
specification or greater.

Note that the table to be queried is specified by name (this was missing in the
legacy cone search interface). A SELECT clause could optionally be added to
list the fields to be returned. POS defaults to ICRS, but other coordinate systems
could be specified if supported by the service, e.g., to specify galactic
coordinates, or to work with solar or planetary data.

If the TAP service supports AdqlQuery and REGION this could also be used to
perform a cone search, with the option of more sophisticated expressions for the
WHERE clause. In most cases this would still reduce to a simple GET query. By
including a source table in the query a multi-position “cone search” could be
performed.

3.2.6 Minimal TAP Service
The minimal TAP service supports SimpleQuery, including metadata queries
over at least SCHEMA.tables and SCHEMA.columns. No data models need be
supported other than that implied by POS, SIZE (i.e., no UTYPEs). The “ucd:”
UTYPE could easily be supported even by a minimal service however. At least
VOTable output format should be provided. An advanced service supports
AdqlQuery as well. It is not clear whether or not getCapabilities and
getAvailability should be required for a minimal service – probably they should
since they should be simple to provide once defined.

TAP Protocol Analysis

13

3.3 GetCapabilties
The getCapabilities operation returns the Capabilities element of a registry
VOResource descriptor, formatted as an XML document. A client application
may call getCapabilities directly to query the capabilities of a TAP service
instance. A special case of this is the registry itself, which calls the
getCapabilities operation to download the service Capability element which is
cached or updated in the registry description of the service.

An open question is how much information to include in the service Capability
element. The main guideline is that this should be sufficient to describe the
capabilities of the service in sufficient detail to permit service discovery. For
example, does the service support the AdqlQuery operation, or any coordinate
systems other than ICRS? Details on specific ADQL features should be given in
the service Capabilities if they are needed for service discovery, but the main
mechanism for describing ADQL or local SQL features, table columns, etc., is the
information schema.

The details of the getCapabilities operation are TBD and are part of the emerging
VOSI standard (GWS).

3.4 GetAvailability
The getAvailability operation is used to monitor service function, i.e., to determine
if a service goes down. The details of the getAvailability operation are TBD and
are part of the emerging VOSI standard (GWS).

4 Basic Service Elements
The basic form of a TAP service conforms to the standard service profile and
HTTP semantics defined for the second generation DAL services and introduced
with SSA V1.0 (see section 8, Basic Service Elements, of the SSA specification
[1]). For example, REQUEST is used to specify the service operation to be
invoked, and VERSION may be specified to enable runtime version checking or
to select the version of an interface to be used, if the service supports multiple
versions of a protocol. TAP protocol errors are returned as VOTable-formatted
XML, using a QUERY_STATUS INFO element to return the query status and
identify the error condition should error or overflow occur. Low level errors may
result in an HTTP level error response. Range list syntax is used to specify list-
valued parameters or ranges. Ultimately most of the mechanism used for
asyncronous execution (based upon UWS), and data staging with VOSpace, will
probably be common to all the DAL services as well, although this functionality
has yet to be specified.

TAP Protocol Analysis

14

Appendix A: Database and Table Metadata
The following represents a first attempt (mainly by Pat Dowler) to identify a useful
and widely available subset of the SQL information schema. Selected VO-
specific metadata such as UTYPE, UCD, and UNIT has been added. This is
very rough at this point and should not be considered as a serious proposal, but
should illustrate the nature of what such a schema would provide.

// Available databases (schemata)
information_schema.schemata
(
 catalog_name // physical database
 schema_name // logical view of database
 schema_owner // owner of schema or logical view
 sql_path
)

// Tables or views defined for a database
information_schema.tables
(
 table_catalog // physical database
 table_schema // logical view of database
 table_name // owner of schema or logical view
 table_type // base table, view, etc.
 table_description // added for VO – purpose of table
)

// Describes all columns in all tables
information_schema.columns
(
 table_catalog
 table_schema
 table_name
 column_name
 ordinal_position
 column_default
 is_nullable
 data_type
 utype // added for VO
 ucd // added for VO
 unit // added for VO
 character_maximum_length
 character_octet_length
 numeric_precision
 numeric_precision_radix
 numeric_scale
 datetime_precision
 domain_catalog
 domain_schema
 domain_name
 udt_catalog?
 udt_schema? P
 udt_name? P

TAP Protocol Analysis

15

 dtd_identifier
)

// JOIN declaration? two rows with same constraint_* values, eg:
// catalog1.schema1.table1.col1 = catalog2.schema2.table2.col2

information_schema.key_column_usage
(
 constraint_catalog
 constraint_schema
 constraint_name
 table_catalog
 table_schema
 table_name
 column_name
 ordinal_position
)

// UDF declaration
information_schema.routines
(
 specific_catalog
 specific_schema
 specific_name
 routine_catalog
 routine_schema
 routine_name
 routine_type

 // describes return type:
 udt_catalog
 udt_schema
 udt_name
 data_type
 character_maximum_length
 character_octet_length
 numeric_precision
 numeric_precision_radix
 numeric_scale
 datetime_precision
 // end of return type description

 dtd_identifier
 routine_body
 routine_definition
 external_name
 external_language
 parameter_style
 is_deterministic
 sql_data_access
 sql_path
 created
 last_altered
)

// UDF argument declaration
information_schema.parameters (M: n/a)

TAP Protocol Analysis

16

(
 specific_catalog
 specific_schema
 specific_name
 ordinal_position
 parameter_mode
 parameter_name
 is_result
 as_locator
 data_type
 character_maximum_length
 character_octet_length
 numeric_precision
 numeric_precision_radix
 numeric_scale
 datetime_precision
 udt_catalog | user_defines_type_catalog
 udt_schema | user_defines_type_schema
 udt_name | user_defines_type_name
 dtd_identifier?
)

// Declaration of support for features/options?
information_schema.sql_features
(
 feature_id
 feature_name
 sub_feature_id
 sub_feature_name
 is_supported
 is_verified_by
 comments
)

For comparison, a graphical view of the SQL information schema as defined for
the MySQL database is illustrated in Figure 1.

TAP Protocol Analysis

17

Figure 1. This illustrates the information schema as defined by the MySQL
database. This represents only a subset of the full SQL92 information schema,
and much of the metadata should is custom metadata specific to MySQL. These
customizations are typical of SQL information schema in the real world so it is a
realistic example!

TAP Protocol Analysis

18

References

[1] D.Tody, M.Dolensky, et.al, Simple Spectral Access Protocol ,
http://www.ivoa.net/Documents/latest/SSA.html
[2] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html
[3] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines
and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html

