UWS in action: The CANFAR VM
lifecycle web service

Experiences in using the Universal Worker
Service as an interface to VM clouds

Brian Major
Canadian Astronomy Data Centre



CANFAR

Canadian Advanced Network for
Astronomical Research

“CANFAR aims to provide to its users easy access
to very large resources for both storage and
processing, using a cloud based framework.
CANFAR allows astronomers to run processing
jobs on a set of computing clusters, and to store
data at a set of data centres.”



More on CANFAR...

ADASS, Wednesday Oct 2, 14:30
Sebastien Fabbro

Services for data intensive astronomy.
Science use and experience from
CANFAR



UWS, Briefly

e UWS = Universal Worker Service Pattern
 |VOA standard version 1.0

 Framework allowing for the asynchronous
execution of jobs.

* For CADGC, it’s a java jar file that a web service
imports (available at OpenCADC
http://code.google.com/p/opencadc/)

-> Create jobs with parameters
-> Run the jobs
-> Poll to see job results



Jobs in UWS

Typically, a job is a piece of software designed
for a specific purpose. For example, execute a

TAP query.
UWS will run your job and provide mechanisms
for:

- Setting job execution phase (it’s state)
- Storing the results of the job

In the case of the VMOD web service, a job
maps to the lifecycle of a virtual machine...



CANFAR Web Services

VM
Processing

Resources

Interactive
(VMOD)

VOSpace

uws Storage

Resources




VMOD: VMs On-Demand

* VMOD is a virtual machine lifecycle
management web service

* RESTful service that allows operations like:
e Start a virtual machine
 Stop a virtual machine
* Give me details about a virtual machine
* List my virtual machines



Why use UWS in VMOD?

* Needed some sort of persistence layer to
capture state, results of current and historical

virtual machines.

« UWS job execution phases match the lifecycle
stages of a VM quite well (next slide).

* Asynchronous aspects of UWS a good match
for VMs because most operations, such as
booting a VM, take some time.



Execution Phases -> VM State

PENDING N/A
QUEUED VM is Booting Usually takes 2 minutes
EXECUTING VM is Running For entire time VM is up
and running
COMPLETED VM has been gracefully Since VM do not
shutdown by user. ‘complete’, this means
users shutdown
ABORTED VM has been shutdown by Maximum lifetime reached,
system. for example

ERROR VM Failed to boot



Virtual Machines

VMOD
Web
Service

HTTP Requests




Job 123

Ram=3 GB
Step 1: Create the Job CPU=1 Core

Staging = 50 GB

Phase = PENDING

Virtual Machines

VMOD
Web
Service

POST NEW JOB



Job 123

Ram=3 GB
Step 2: Start the Job CPU=1 Core

Staging = 50 GB

Phase = QUEUED

Virtual Machines

VMOD
Web
Service

phase=RUN

VM Booting




Step 3: VM Booted

VMOD
Web
Service

VM Running

Job 123
Ram=3 GB
CPU=1 Core
Staging = 50 GB

Phase = EXECUTING
Result = /details?ip=1.2.3.4

Virtual Machines




Step 4: Stop the VM CPU=1 Core

Phase=SHUTDOWN

Job 123
Ram=3 GB

Staging = 50 GB

Phase = COMPLETED
Result = /details?ip=1.2.3.4

Virtual Machines

VMOD
Web
Service



Examples...



Problem 1: Extended ‘EXECUTING’
phase

In VMOD, the job remains in EXECUTING for
entire time VM is running (1 week maximum)

This presents some unique UWS problems:

1. User initiated shutdown: Only ABORT
available in UWS—a misleading term for the
service API.

2. State synchronization: How to update Job
phase when system shuts down VM.



Our Solutions...

- ABORTED phase is only used for system
initiated shutdowns (e.g. max time exceeded)

- For user initiated shutdown, we made a
UWS Vocabulary extension: New SHUTDOWN

phase command, which takes the job from
EXECUTING to COMPLETED

- If job phase is EXECUTING, ask system if VM

still running. If yes, no changes. If no, set job
phase to ABORTED



VM Resource requirements

PENDING
Provided as Job parameters

User Posts ‘RUN’

QUEUED VM is Booting

VM Failed EXECUTING VM is Running
to Boot

User Posts ‘SHUTDOWN’

ABORTED COMPLETED
System

Terminated VM User

Terminated VM



Problem 2: Storing VM Boot
Information

After VM boot, users need information about
the VM, such as IP Address

Normally, in UWS, results are stored in a file
then referenced in the job. However, the VM
information small, so using external
persistence is overkill.

UWS results only allow for URIs (references)
So...



Solution (ugly)

Save the VM info as query strings in the URI.
Example:
/vmod/details?ipAddress=192.168.0.12

Where /details is a service that echos the query
parameters as an XML doc:

<details>
<ipAddress>192.168.0.12</ipAddress>
</details>



UWS Result Flexibility?

For use cases such as this, where results are
small, it would be nice to save data directly in
the Job as an arbitrary object.

This would save clients from making an extra call
to the result store (in this case, our simple
echoing service.)



Summary

« UWS a good design fit for VM lifecycle
management; and, probably, for any service
that run jobs for an arbitrary length of time

* Was nice to have the flexibility of extending
the Execution Phase state machine

* |[n addition to allowing results to be data
references, would like the option for results to
be stored as actual data (next minor UWS

version?)



