Application Working group

Discussion on standards
VOTable, HiPS & MOC

Pierre Fernique

—



VOTable

* First IVOA recommendation (2003)
- “THE” VO format used everywhere in VO

3 minor releases:

- 1.1(2004) — GROUP, FIELD/PARAMTref, utype

- 1.2 (2009)— xtype, COOSYS deprecated: alternate solution (by “STC in
VOTable” note 1.1)

- 1.3(2013) — BINARY2, new alternate COOSYS solution (new version of
“STC in VOTable” note 2.0)

The issue: Where are my coordinates ?

—



VOTable - The problem had been signaled !

State of the art / Provider side

» Since we deprecated COOSYS (2009), only IMCEE has been
achieved to describe coordinates according to the current standard

- Alarge part of the providers has prefered to keep COOSYS :

- either by avoiding to upgrade their VOTable,
- or by providing erroneous VO Table

- Other part of providers has just decided to remove coordinate
description

+ GAVQ implements the STC note 2.0 (the author of the note 2.0)

99»

Py A
EL w&—wm 2014




VOTable - Gaia had been explicitly cited

GAIlA Is observing...

The implicit ICRS/ep2000 default will be
no longer a solution

<GROUP utype="stc:CatalogEntryLocation"s

<PARAM arraysize= *" datatype= char” name="Coordrlavor"”
utype="stc:AstroCoordsystem. SpacerFrame.CoordrFlavor” value"SPHERICAL"

<PARAM arraysize="*" datatype="char" name="coord_naxes"
utype="stc:AstroCoordsystem. SpaceFrame. Coordr lavor. coord_naxes” value="3"/>

<PARAM arraysize="*" datatype="char” name="coordrRefFrame”
utype="stc:AstroCoordsystem. SpaceFrame. CoordrefFrame” value="ICRS"/>

<PARAM arraysize="*" datatype="char"” name="Epoch”
utype="stc:AstroCoords.Position3D.Epoch™ value="2010.0"/>

<PARAM arraysize="*" datatype="char"” name="yearpDef"”
utype="stc:AstroCoords.Position3D. Epoch. yearDef"”

<PARAM arraysize="%*" datatype="char” name="URI"
utype="stc:DatamModel.URI"” value="http://www.iyba.net/xml/sTC/stc-vl.30.xsd" />

<FIELDref ref="alpha” utype="stc:AstroCoords.Positipn3D.value3.Cl1l"/>

<FIELDref ref="delta" utype="stc:AstroCoords.Posifion3D.value3.Cc2"/>

<FIELDref ref="distance" utype="stc:AstroCoords.position3pn.value3.c3"/> \6‘
elocity3D.value3.Cl" /> ‘a

value="31"

<FIELDref ref="mualpha” utype="stc:AstroCoords,
<FIELDref ref="mudelta” utype=”5tC'A5trocnﬁrd .velocity3D.value3.c2"/>
<FIELDref ref="radialvelocity"” utype="stc:As)roCoords.velocity3Dn.value3.c3", 0

3

Epoch J2010
% WG — B anff October 2014

=< /GROUP=




VOTable - A solution had been adopted

Suggestion
(rragmatic approach)

Un-deprecate COOSYS lo clean up the situation immediately.

B A T

notably STC2).

Note : The 2 methods do not clash and could be used together
for a smooth transition.

ea““

L M BE ~ Banff October 2014

—‘t@




VOTable - But the situation is worst today

Suggestion
(pragmatic approach)

ol B fter, the VODML VOTabl
Move to VODML when it will be usable (DM effort achieved - y e a rS a e r’ t e a e
TC2).

T serialization is still in debate
< ez« COOSYS has not been really

readopted (reasons: just a mail
announcement, TAP packages ? VOTable
validators ?)

We have a serious problem !

—




VOTable - The Apps chair's proposal 1

- No chance to have a rapid solution from
VO-DML+STC2 coordinate DM serialization

- In the meantime, re-enforce the pragmatic solution
adopted in 2014:

- Write an short EN (endorsed note) for un-deprecating
COOSYS “officially”

- Adapt as fast as possible the TAP libs and VOTable
validators according to

- Convince providers to reuse COOSYS (notably Gaia
providers)




VOTable - The Apps chair's proposal 2

« VODML uses now dedicated <voDML>,<TYPE>,<ROLE>

=> there is no longer clash with the “STC in VOTable
note” syntax (utype based).

- Standardize the principle of “STC in VOTable” for
describing specifically coordinates:

- Adapt as fast as possible the TAP libs and VOTable validators
according to

- Convince providers to use this method (notably Gaia
providers)

- Write VOTable 1.4 according to (no longer reference to an

external note) .



VOTable - your point of views




HiPS - Hierarchical Progressive Survey

* First CDS demonstration (IVOA 2010)

* [VOA note (oct 2015) describing HiPS

« |[VOA decision to standardize HiPS (nov 2015)
* IVOA Working Draft (june 2016)

- Already a great success:

- 350+ HiPS, 12+ servers, 4 independent clients +
derived clients, python and java HiPS toolkit...

- The question: what's the next step ?

—



HiPS - App chair's proposal

+ The HiPS author list is large and represents a

good panel of data providers: cbs, JAXA, ESAC, MAST,
CADC, ALMA

- All controversial points have been fixed (author's
level, and external level)

» |t seems that we are ready for the next step (PR)

—



HiPS - your point of views




MOC - MultiOrder Coverage map

- [VOA recommendation since 2 years (june 2014)

+ Good success: more & more usages, libs, algos, and
tools

- It has been adopted by developers as a generic

tool for manipulating any kind of regions (even very
accurate regions, observation footprints, spatial index, ...)

« One serialization: FITS (= binary table of HEALPix index)

- Altlernate JSON and ASCII serialization syntaxes
just suggested

—



3 Help for implementing

3.1 ASCIIMOC

In general the FITS encoding described in section 2 should be used for exchange
of MOCs. However, if it is required to write a MOC as an ASCII string (for a web
form, for debugging, ...) it is suggested to use one of the following syntaxes:

3.1.1 JSON syntax

A JSON MOC may be written following this syntax:
{ “order”:[npix,npix,...], “order”:[npix, npix...], ... }.

Example of a JSON MOC

|["1“: [1,2,41, “2":[12,13,14,21,23,25]}

3.1.2 ASCII string syntax

An ASCII string MOC may be written following this syntax:

order/npix,npix,... order/npix,npix.

The usage of a range operator is allowed in the list of npix using the dash (*-") as
a separator: lownpix-hightnpix.

Warning: In this basic simple ASCII string format only the values may be not
sorted, and the MOC may be not well-formed.

Example of a ASCII string MOC
1/1,3,4 2/4,25,12-14,21

—




MOC - The question ?

Concretely: JSON MOC is more & more used

The question: Is it required now to normalize this
syntaxina MOC REC 1.1, or a EN (endorsed note) ?

* Pro
- Stop the risk of divergences (various JSON implementations)
* Con

- 2 serializations never help for interoperability

—



MOC - The App chair's point of view

 Presently there is no divergence

 The principle of “suggested alternative syntaxes”

in the REC works fine: 1 REC format, but keeping the
door open for specific alternatives if required.

- Anew REC or EN is always a heavy process

* For me, no reason to change the MOC REC 1.0

—



MOC - your point of views




	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

