Diffuse Source Matching

Using MOC & JSON format Marco Molinaro

INAF – OATs / INAF – IA2

IVOA Northern Fall Interoperability Meeting 2016 Stazione Marittima, Trieste, Italy Apps Session Saturday 22/10/2016

IVOA Interop – Oct. 2016, Trieste – Molinaro – MOC match & JSON

Outline

- Compact sources & Diffuse structures
- Positional matching requirement
- MOC FITS&JSON solution

IVOA Interop – Oct. 2016, Trieste – Molinaro – MOC match & JSON

Resources in Catalogue

Catalogue	# records
MSX (21 µm)	432 K
WISE (22 μm)	29 M
MIPSGAL (24 μm)	2.3 M
Hi-Gal (70 µm)	158 K
Hi-Gal (160 µm)	580 K
Hi-Gal (250 μm)	468 K
Hi-Gal (350 µm)	252 K
Hi-Gal (500 μm)	130 K
ATLASGAL (870 µm)	11 K
BGPS (1100 μm)	8.6 K
Band-merged	1.9 M
SED models	20 M

- VIALACTEA Knowledge Base hosts various datasets
- Among them catalogues
 - Compact sources
 - Diffuse objects
- Figures are not too big

Catalogue	# records
Filaments	30 K
F - branches	132 K
F - nodes	191 K
Bubbles	5 K

IVOA Interop – Oct. 2016, Trieste – Molinaro – MOC match & JSON

Access & Match requirements

- Standard access granted through a TAP service
 - not yet in registry
 - consumed by project-developed visual tool
- Overlap of compact vs. diffuse sources and vice-versa required
 - Complex morphology in place
- ...and a pre-existing constraints:
 - MySQL
 - No arrays
 - How do I serialize a polygon in it?
 - Difficult to handle geometry
 - Galactic coordinates
 - Usually VO protocols speak ICRS

MOC in place

<value> 773.712 <image> X: 520.418 Y: 531.551 <galactic> GLON: 81.387 GLAT: 0.76813 <fk5> RA: 309.268 DEC: 42.2334 <ecliptic> RA: 331.114 DEC: 57.6401

Filaments and bubbles tessellation examples

IVOA Interop - Oct. 2016, Trieste - Molinaro - MOC match & JSON

MOCs in use

- Formats
 - FITS
 - For full catalogues
 - JSON
 - For each diffuse object
 - Stored as MySQL
 MEDIUMTEXT
 - NPIX
 - For each catalogue entry
 - For diffuse helper tables
 - "prefiltering"

- Order
 - 19
 - Full catalogues

- 17

- Bubbles
- 16
 - Filaments
- 9
 - Helper table prefilter
- Prototype solution
 - Multi-order needed to better fit the bandmerged sources

Usage

- Search interface the simplest possible
 - 4 parameters
 - Search for: what you'd like to retrieve
 - Starting from
 - Objects identifier & type (2 params)
 - Region (polygon of vertexes)
 - Mutually exclusive
- ...thus something like
 - {server-endpoint}/search=bubble&id=1&type=compact
 - {server-endpoint}/search=compact®ion=a_polygon
 - a_polygon: array of {l,b}

Summary

- MOCs are useful
 - For coverage estimation/visualization
 - For allowing quick overlap when backend has no support for it
- Different serializations help a lot
 - But don't make this a "pro" point in standardizing whatever hack you may think about

Thank you for your attention!

