

Sonia Zorba
IA2 – OATs – INAF

APOGEO: an automatic management
system for astronomical portals

IVOA Interoperability Workshop – Trieste, 21-23 October 2016

APOGEO – IA2

APOGEO

Automatic POrtal GEneratOr

IA2 – Italian Centre for Astronomical Archives

www.ia2.inaf.it

Hosts several web interfaces to astronomical archives:
TNG, LBT, Asiago, …

APOGEO

Set up a TAP_SCHEMA

Configure / customize portal

Build .war and deploy

APOGEO Configuration

Preliminary step: set up a TAP_SCHEMA

APOGEO Configuration

Select portal tables and specify JOIN conditions

APOGEO Configuration

Design the UI

APOGEO Configuration

Each component is mapped to a database column

APOGEO Build

.war package built via Maven Invoker API

Portal – Queries

Currently: direct SQL query on MySQL

Planned: ADQL query on TAP

Portal – Querying TAP

Main problem: we need pagination,
with total results count

Portal – Querying TAP

In MySQL, 2 queries:

SELECT SQL_CALC_FOUND_ROWS *
FROM TNG
LIMIT 40,20

SELECT FOUND_ROWS()

Portal – Querying TAP

In TAP, define an UDF in service capabilities, but
● not a real UDF
● hides 2 queries
● result in VOTable metadata

SELECT SQL_CALC_FOUND_ROWS() TOP 10 *
FROM TNG
OFFSET 20

Portal – UWS

Portals use the UWS standard (OpenCADC
libraries) for 2 asynchronous tasks:
● Creation of big VOTables
● Creation of tar files from user selection

Portal – UWS

When UWS job is ended portal shows a notification

Portal – UWS

Tar and VOTables are split if
they are too big, but we should
allow deletion of single files.

We can’t partially delete a job.

UWS specification:

“The children of the Results List may be read but not
updated or deleted. The client cannot add anything to the
Results List.”

Solution: user space managed by a different service

...in the future a VOSpace!

SAMP

Portals can send VOTables and fit files via SAMP
Web Profile, using the samp.js library.

SAMP – FITS Files

Main problem: private data.
● Best approach: HTTPS + Authentication
● Current approach: temporary public URLs,

stored in the user session

SAMP – FITS example

POST /samp/file/KALA0087.FTS.gz

Response: tmsfq9nfp99

SAMP Message:
● samp.mtype: image.load.fits

● samp.params:

– url: http://<portal­host>/samp/file/tmsfq9nfp99

FileKey (random string)
Map the path of the file

Temporary URL

SAMP – VOTables

Main problem: VOTables could be big and need to
be stored into files.

Current approach:
● random string is generated at login
● same url for all calls during an user session

SAMP Message:
● samp.mtype: table.load.votable

● samp.params:

– url: http://<portal­host>/samp/VOTable/6vk9jk16o37

SAMP – VOTables

The endpoint /samp/VOTable/<samp­session­key>
returns a VOTable built from the current displayed rows
on the portal.

● Current rows are objects in memory → VOTable
generation is very fast.

● No needs for creating temporary files: VOTable is
written directly in the response output stream

Thanks to

● CDS Name Resolver and UCD web services
http://cds.u-strasbg.fr/cgi-bin/Sesame
http://cds.u-strasbg.fr/UCD/tools.htx

● OpenCADC
https://github.com/opencadc

● STIL
http://www.star.bris.ac.uk/~mbt/stil/

● Sampjs
http://astrojs.github.io/sampjs/

● UCD Validator
https://github.com/gmantele/ucdvalidator

Thanks for your attention!

APOGEO team:
Sonia Zorba, Andrea Bignamini, Francesco Cepparo,
Cristina Knapic, Marco Molinaro, Riccardo Smareglia

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24

