

Lyonetia repository
Initial goal: validate ADQL implementations ; only two: DACHS and ROE (almost no tests)

Goal of the ADQL validator: strictly check that the official standard ADQL grammar allows
features and use cases described in the ADQL standard.

Validator
Written in Java using VOLLT/ADQL-Lib

No non-standard extension enabled

Both ADQL 2.0 and 2.1 can be tested

Another implementation available in lyonetia: DACHS (standalone ADQL parser ; no service used)

Errata
This validation step helped us to bring one issue with ADQL grammar since 2.0.

Proposed erratum: Erratum 4: NULL as valid value expression

Please review it, and comment if needed

ADQL-2.1 grammar and validator already adapted

Unresolved tests

ivoa/1_select.xml#fe956f66-3c3e-410d-baa4-59305da8ddfc

Description:

Selecting columns with an incorrect name syntax (not starting with a

letter) and no double quotes.

Query:

Expected: Failure

Reason: since 2.0, according to the ADQL grammar, a regular column or function name cannot
start with a character different from [A-Za-z]

SELECT _weird_name FROM stars

af://n3
af://n10
https://github.com/gmantele/vollt
af://n21
https://wiki.ivoa.net/twiki/bin/view/IVOA/ADQL20Err4
af://n34
af://n35

Status: Moderate opposition from Markus who accepts such column name in DACHS. However,
Markus is OK to keep this test as it is. I personally want to keep it because it is a strict application
of the ADQL-2.x grammar ; the goal of the ADQL validator is to blindy follow the standard
grammar.

=> Meeting outcome: Keep this test. DACHS validator will ignore this test as it extended
ADQL to support column names prefixed with an underscore.

Summary of the discussion in GitHub:

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1400621607

DaCHS, as a little extension, actually accepts names starting with an underscore, and
with postgres, that's very convenient. While I'm all for exercising the name parser,
perhaps we can use a name broken in some other way, just because leading-
underscore names are such an obvious extension people may want to have? Perhaps
.somename? I give you that may exercise different rules.

Grégory - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1401693892

This time, I agree and I do not agree with you. I explain. I personally agree that in
DBMS (like Postgres) this is not an issue. So, in ADQL, I would personally allow column
names prefixed with an underscore.

However, since ADQL-2.0, a column name must start with an alphabetic letter,
according to the BNF. This is still the case in ADQL-2.1:

The same rule applies to a UDF name.

Whether or not I personally disagree with this, we should NOT allow our validator to
ignore some part of the ADQL standard. Otherwise, we could not call it a "validator".

So, two solutions here:

1. We now allow column names and UDF to start with an underscore. ADQL-2.1
should then be updated.

2. We don't change anything. So, we keep the ADQL BNF as it is currently and we
keep this validation query (ivoa/1_select.xml#fe956f66-3c3e-410d-baa4-
59305da8ddfc).

What do you think?

<column_name> ::= <identifier>

<identifier> ::= <regular_identifier> | <delimited_identifier>

<regular_identifier> ::=

 <simple_Latin_letter>...

 [{ <digit> | <simple_Latin_letter> |

<underscore> }...]

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1400621607
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1401693892

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1404983875

Absolutely. And I don't think we should change that, as that may make
implementation a lot harder on top of RDMSes that are less forgiving than postgres.

[...]

Well... we have some leeway as to what tests we run and what we don't test against.
For instance, DaCHS extends ADQL with TABLESAMPLE. We could include a test that
an implementation rejects something like

SELECT * from foo TABLESAMPLE(0.1)

which clearly is invalid ADQL 2.1 -- but we don't, as I'd argue we don't want to be in
people's ways when they prototype features for the next versions of ADQL.

Similarly, in this case we could say identifiers with leading underscores may be a
reasonable extension and we simply don't test whether or not an implementation
rejects identifiers with leading underscores.

By my criteria what to validate and what not to validate, https://blog.g-vo.org/require
ments-and-validators.html, I don't see a compelling argument why we should make
sure parsing fails in this case. But I certainly might be missing something.

[...]

If my reasoning above is about right, I'd say we can just drop the test and not exercise
the whole thing.

But then if you want to keep the test, I won't complain (and just think about an ignore
pattern in my test suite).

ivoa/1_select.xml#85e497ac-4403-4f84-8aa0-a3ee3da514cc

Description:

Selecting columns with another incorrect name syntax (starting with a

digit) and no double quotes.

Query:

Expected: Failure

Reason: since 2.0, according to the ADQL grammar, a regular column or function name cannot
start with a character different from [A-Za-z]

Status: some DBMS (e.g. Postgres, Oracle, but not MySQL and SQLite) interpret this as 2 AS
weird because the AS keyword is optional. Proposition of Markus: forget about this test. My

proposition: keep it ; it will save our users sanity by forcing all ADQL implementations to have the
same behavior whatever is the DBMS they use.

=> Meeting outcome: Remove this test. May be reviewed when moving to PEG grammar.

SELECT 2weird FROM stars

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1404983875
https://blog.g-vo.org/requirements-and-validators.html
af://n90

Summary of the discussion in GitHub:

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1400621607

Regrettably, that's valid SQL (and ADQL). What's there is an ugly short form of SELECT
2 AS weird FROM stars.

Grégory - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1401693892

Should it be really valid in ADQL? If it does, it could lead to unexpected behavior from
what expect our users. I agree that it is a good thing to follow as closely as possible
SQL, but should we strictly follow it when it is obviously not desired? I would
personally save our users sanity by strictly forbidding regular column names prefixed
by a digit. A regular ADQL user expects a column name prefixed by a digit, and since
this is forbidden in ADQL, he will get an error ; this is, according to me, better than
allowing an implicit column name alias.

This "issue" actually comes from the fact that the BNF does not specify how grammar
tokens should be identified and how space characters should be considered. This is
one of the reasons why we want to move to a PEG grammar. So the question is: do we
want to allow such dangerous syntax when we will have a PEG grammar? If yes, how
would you write that in PEG syntax? (I don't think it will be easy)

On the implementation side, I don't think I can easily change the parsing mechanism
of my parser to allow such ugly thing ; it could be possible, but the trick will be as ugly
as this syntax.

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1404983875

True -- it sure surprised me, and I had to hack quite a bit to make DaCHS' parser
accept abominations like these.

[...]

Ok... interesting. I was just staring a bit at section 5.2 of SQL92 trying to figure out
SQL's tokenisation rules, since so far I was pretty sure SQL engines are required to
parse 2foo as 2 AS foo (and frankly, I deplore that the AS is optional quite a bit as well).
Interestingly, this doesn't seem to have much factual basis.

And SQL92 in 5.2 says: Any may be followed by a . A shall be followed by a or a . If
the Format does not allow a to be followed by a , then that shall be followed by a .

And both and are -s. I think the cited language forbids two nondelimiting tokens next
to each other. Empirically, Postgres understands 2foo, but sqlite3 doesn't. That made
me try the SQL Fiddle. MySQL doesn't, Oracle does, SQLServer is currently broken
there.

So... yeah, let's consider it outlawed. People devious enough to write such a thing
deserve no better, and they won't have much fun when they directly talk to SQL
engines anyway.

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1405008346

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1400621607
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1401693892
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1404983875
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1405008346

Well, it turns out it's not quite as simple. Looking at my grammar (and I don't think
this will be much different for some other PEG grammar), it actually seems to be quite
involved to disallow 2foo and at the same time accept (2)foo.

The straighforward way to write the rules would be something like

 ::= (AS|)

 ::= []

but that outlaws the (2)foo, which I'd rather not. Having different rules depending on
whether ends with a is equally unattractive.

Perhaps I start liking 2foo after all. Or we require the AS, which would immediately
solve the whole problem (but would probably break many queries that are out there).

ivoa/0_whitespace#a66c56e6-f18d-11e8-96df-28d244962af0

Description:

Order by internal whitespace and stuck sort direction

Query:

Expected: Success

Status: Currently failing in the ADQL validator because of the missing space between 2 and
desc .

=> Meeting outcome: Remove this test. May be reviewed when moving to PEG grammar.

ivoa/0_whitespace.xml#d4c3a72c-4458-11e6-96e2-28b2bdcff70b,
#dbef92f4-4458-11e6-96e2-28b2bdcff70b, #1f5d27dc-450c-11e6-
8564-332de33a5c03

Queries:

Expected: Success

select * from bar order by foo asc, 2desc

-- d4c3a72c-4458-11e6-96e2-28b2bdcff70b

select x from t1 INNER JOIN (t2 JOIN t3)

-- dbef92f4-4458-11e6-96e2-28b2bdcff70b
select x from (t1 JOIN t4) FULL OUTER JOIN (t2 JOIN t3)

-- 1f5d27dc-450c-11e6-8564-332de33a5c03

select * from (select * from urks.a, b, (select * from c, monk.d) as q) as r
join (select * from x, y) as p

af://n143
af://n161

Status: All of them actually fail in a database because neither NATURAL nor a join condition is

provided. Consequently, we decided to change their expected result into Failure instead.
However, strictly speaking, they are allowed by both the ADQL-2.x and SQL-92 grammars, though
no existing DBMS would run them successfully. Then, we could adapt the ADQL grammar in
order to require a join condition or to use NATURAL , but as SQL-92 does allow this flexibility and

that all ADQL implementations would fail anyway, it has been considered simpler to not change
anything.

But maybe there should be a note in the ADQL prose stating that a non NATURAL JOIN must
always have a join condition.

=> Meeting outcome: Qualify JOIN s of this query: either add NATURAL , ON or USING

Summary of the discussion in GitHub:

Gregory - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406510269

Anyway, have you also checked the following queries in 0_whitespace.xml (which is

now a copy of your whitespace.xml):

d4c3a72c-4458-11e6-96e2-28b2bdcff70b

dbef92f4-4458-11e6-96e2-28b2bdcff70b

1f5d27dc-450c-11e6-8564-332de33a5c03

All failing because of a missing JOIN condition. It seems they pass in your case ; I
assume you have set an implicit NATURAL JOIN .

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406682153

Uh, ouch, you're right that these shouldn't pass, and I shouldn't
have dragged them from my unit tests (where they were used for
something completely different anyway). But unfortunately no, it's
not been wisdom (like default NATURAL). It's been a far too
permissive grammar, where I have taken a shortcut ages ago that I
shouldn't have taken.

Feel free to drop these, add join conditions, or do valid="False".

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406705533

Well... Now that I consult the ADQL grammar... Ok, so I wasn't overly permissive at all,
and although it looked like a shortcut at first I actually just implemented what the
grammar says:

<qualified_join> ::=

 <table_reference> [NATURAL] [<join_type>] JOIN

 <table_reference> [<join_specification>]

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406510269
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406682153
https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406705533

So, <join_specification> happens to be optional regardless of whether or not there is a
NATURAL in our grammar.

Since a non-NATURAL, non-specification JOIN will later fail in the backend database,
one might argue we shouldn't let it pass in ADQL either. This would mean we'd have
to write something like

<qualified_join> ::=

 <table_reference> <natural_join>

 | <table_reference> <non_natural_join>

<natural_join> ::= NATURAL [<join_type>] JOIN <table_reference>

<non_natural_join> ::= [<join_type>]

 JOIN <table_reference> <join_specification>

(disclaimer: not tested).

I'd be mildly in favour of that, enough that I'd implement it but not enough that I'd
push it into the spec myself.

Meanwhile, for the tests I think we ought to just put NATURAL in front of all the JOIN-s
(though it's questionable whether these should be in whitespace...). That way, we
don't have to invent column names and conditions on them.

Gregory - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406870575

I drop these from 0_whitespace.xml and I moved one to a new file 2_from.xml in
which I added several tests on the usage of FROM and all JOINs. It might not be
exhaustive yet.

[...]

It seems pretty ok to me. I'll fix that in the BNF next week too, and then I'll try to see if
the BNF will still be consistent.

[...]

I don't see what makes you hesitate. Actually, it really looks like a fix of the grammar
that everyone already applied in their implementation. So, actually, this should be
again, another Erratum to ADQL-2.0, isn't it?

[...]

You're right that when running so many queries in a real service, it is more convenient
to have a well defined set of tables and columns and use NATURAL JOINs as much as
possible. However, the goal of this ADQL validator is to just validate the official
grammar, and not how well existing parsers or ADQL services can deal with the
execution of the query. That's why, my validator is offline and does not check whether
table and column names exist on a database...there is no database. So, with or

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1406870575

without NATURAL, the validator should not complain about column and table name
not existing in a database. Taking that into account, I don't think I like to alter the
diversity of the test queries by forcing the usage of NATURAL JOINs everywhere. More
different simple and complex queries we have, better the tests will be.

 [NATURAL] [] JOIN

 []

Markus - https://github.com/ivoa/lyonetia/pull/16#issuecomment-1409894974

I hesitate because we're deviating from the SQL92 grammar here. It has, as ADQL 2.0
has:

 ::=

I don't have time to dig into the spec to where it says "have either NATURAL or a " -- or
to ascertain that it doesn't say that and then figure out under what circumstances a
single JOIN might be legal after all (perhaps as an alias for ","?).

But I am saying that if we deviate from SQL92, we should be sure we know what we're
doing, and I'm hesitating because this is not enough of a big deal for me to really start
thinking hard. But as I said, if someone else does the deep thinking, I think I'm fine
with the change per se.

A 2.0 Erratum I think would be overdoing it, though. I don't think there's operational
harm the way it is; bad queries just fail a bit later, that's all.

ivoa/O1_geometrical_functions#1655f288-4d02-11e6-
8c9d-819288b39233

Description:

STC-S

Query:

Expected: Success

Status: Currently failing in the ADQL validator because the Union and
Intersection operations are not recognized by its STC-s parser.

=> Meeting outcome: VOLLT/ADQL-Validator to adapt to support this.

select * from foo where 1=CONTAINS(

 REGION('Union ICRS (Position 1 2 Intersection (circle 1 2

3 box 1 2 3 4 circle 30 40 2))'),

 REGION('circle GALACTIC 1 2 3')

)

https://github.com/ivoa/lyonetia/pull/16#issuecomment-1409894974
af://n239

	Lyonetia repository
	Validator
	Errata
	Unresolved tests
	ivoa/1_select.xml#fe956f66-3c3e-410d-baa4-59305da8ddfc
	ivoa/1_select.xml#85e497ac-4403-4f84-8aa0-a3ee3da514cc
	ivoa/0_whitespace#a66c56e6-f18d-11e8-96df-28d244962af0
	ivoa/0_whitespace.xml#d4c3a72c-4458-11e6-96e2-28b2bdcff70b, #dbef92f4-4458-11e6-96e2-28b2bdcff70b, #1f5d27dc-450c-11e6-8564-332de33a5c03
	ivoa/O1_geometrical_functions#1655f288-4d02-11e6-8c9d-819288b39233

