
Data Model for Mapping
Version 0.51

IVOA DM WG Internal Draft

2004-04-10

Working Group: http://www.ivoa.net/twiki/bin/view/IVOA/IvoaDataModel
Probable Editors:

David Berry, Jonathan McDowell, Patrick Dowler, Brian Thomas
Authors:

IVOA Data Model Working Group

Abstract

This document defines the Mapping data model.

Status of this document

This is a Working Group Internal Draft only. It is inappropriate to reference
this document.

Acknowledgments

Members of the IVOA Data Model Working Group, including representatives
of the US NVO, Astrogrid, Starlink, the Canadian VO, and the AVO have
contributed to the present draft.

1

Contents

1 Introduction and Scope 3

2 The Mapping class 3

2.1 Composite Mappings . 5
2.2 Aggregate Mappings . 6
2.3 Atomic Mappings . 6
2.4 Packaged Mappings . 7
2.5 Extensions . 8
2.6 Predefined list of Atomic and Packaged Mappings 8
2.7 Packaged mappings and FITS-WCS 10

3 XML Serialization 12

3.1 Simple mappings . 12
3.2 XML Serialization of FITS Celestial WCS 13
3.3 XML serialization of a compound mapping 14

2

1 Introduction and Scope

Here is a draft of a possible approach to Mapping. David Berry was the
first to propose a detailed approach to Mapping, based on Starlink’s AST.
The present document was drafted by Jonathan McDowell, with a slightly
different take, and does not yet represent a consensus with the other editors.

This document supplements the Quantity data model definition by spec-
ifying details of the Mapping interface model defined in that document.
Transformations may be needed to describe the relationships between

different world coordinate systems and/or data value systems associated with
a resource. For instance, the data values in a sub-mm data set may be
described in different systems such as flux, effective antenna temperature, etc.
Pixel positions in a CCD image can be described in terms of pixel coordinates,
focal plane, coordinates, sky coordinates, etc. It would be advantageous
for each data set to include descriptions both of the dimensionally distinct
systems in which the values and positions in the data set can be represented,
and also of the transformations between these different systems.
The scheme described below allows for the transformation of both scalar

and vector values. It is based on the experience gained over the past 8 years or
so with the Starlink AST library (see http://axp0.ast.man.ac.uk/ dsb/ast/ast.html).

2 The Mapping class

For the purposes of this document, a transformation is a machine-readable
recipe for converting a vector representing a single position within some (un-
specified) input coordinate system into a corresponding vector in another
unspecified output coordinate system. The base class is referred to as a
Mapping and represents a pair of transformations: one being the forward
transformation (from input to output coordinate system) and the other be-
ing the inverse transformation (from output to input coordinate system). A
Mapping must define at least one of these transformations - optionally one
transformation may be undefined.
Note, an important distinction is made in this document between a Map-

ping, and the coordinate systems which describe the inputs and outputs of
the Mapping. A Mapping is simply a recipe which describes a sequence of
mathematical operations to be applied to a supplied N-dimensional vector,
in order to create a corresponding output vector. A Mapping does not in-
clude any description of the input and output coordinate systems and does
not make any assumptions about their nature. For instance, the recipe rep-
resented by a particular Mapping may be ‘multiply all elements of the input
vector by 3.5 and subtract 6 from the second element’ of the input or output
vectors.
However, a Mapping is only of any use when it is used to transform po-

sitions from some known coordinate system into another. So there must be
some way of specifying the properties and nature of these coordinate sys-
tems, such as ‘effective antenna temperature in units of Kelvins’ or ‘galactic

3

longitude and latitude in units of degrees’. Such descriptions are handled by
the Frame class which is described in the Quantity Data Model document.
An important consequence of formally dissociating a Mapping from its

input and output coordinate systems is that it is then possible to treat Map-
pings as ‘black boxes’ without any reference to what the inputs and outputs
represent. Thus complex recipes can be formed by combining simple atomic
steps.
The Mapping class encapsulates the properties which are common to all

Mappings, but does not itself define any transformations. For this reason,
it is an abstract class which cannot be instantiated. A wide range of sub-
classes of Mapping can be defined, each of which implements specific forms
of transformation. It is these sub-classes which are instantiated.
In addition to the input and output values, any given mapping may take

as input a set of parameters. Such parameterized mappings are common -
for instance, a cosmological mapping might take the values of H0, Ω0 and Λ
as parameters.
The interface to the general Mapping class gives access to a list of Param-

eters - possibly with Parameter a derived class from BasicQuantity. Having
generic parameters, free of specific semantics, helps in applications which
explore parameter space systematically (such as fitting algorithms). The im-
plementation of the parameters and their serialization may be defined specif-
ically for each type of mapping (recall that Mapping is abstract, so there is
no generic implementation or serialization).
The properties of a Mapping are as follows:
Name Type Description
StandardName string Name of the mapping used for text output,

e.g. ”Matrix multiply”
Nin integer The length of the input vector (i.e. the

number of axes in the input coordinate sys-
tem).

Nout integer The length of the output vector (i.e. the
number of axes in the output coordinate
system).

inverted boolean True if the forward and inverse transform
methods are swapped at invocation

Notes:

1. The StandardName is provided as a label for the mapping type; in
user-output application we often want a more human-readable name
than just the class type.

2. The Nin and Nout properties need not be equal. For instance, a Map-
ping which converts from spherical (longitude,latitude) to Cartesian
(x,y,z) coordinates on a unit sphere will have 2 inputs but 3 outputs.

3. The Inverted property is used to modify the behaviour of the Map-
ping by inverting its normal forward direction. For each Mapping, the

4

‘forward’ and ‘inverse’ mappings are predefined (and specified in docu-
mentation). For instance, the ExpMap mapping by default calculates
exp(x) as the forward transform and ln(x) as the inverse transform. By
using the Invert method to toggle the Inverted attribute, we create a
Mapping which uses ln(x) as the forward transform and exp(x) as the
inverse transform.

The principal methods of a Mapping are:

Name Purpose
fwdTransform(in: List): List Use a Mapping to transform a set of input posi-

tions into corresponding output positions
invTransform(in: List): List Apply the inverse transform; use the Mapping

to transform a set of output positions into cor-
responding input positions.

hasFwdTransform(): bool The forward transform exists
hasInvTransform(): bool The inverse transform exists
getStandardName(): string Return name of mapping
getParams(): List Return parameters of mapping
simplify(): Mapping Create a new Mapping which is a simpler form of

a given Mapping
invert(): void Invert a Mapping in place by toggling its Inverted

property
fwdDerivative(in: List, inno: int, outno: int): List Optional method, returns the rate

of change of output with respect to input at given
input

invDerivative(in: List, inno: int, outno: int): List Optional method; returns rate of
change of input with respect to output at given
output.

plus constructor and property accessor methods. We include definitions
of derivative methods - giving the gradient of the mapping - as these can be
useful.
In addition, we anticipate that methods will need to be added to propa-

gate errors and uncertainties through the mapping. These would be similar
to the fwdTransform and invTransform methods but would accept a list of
accuracy values in addition to the supplied positions, and return a list of
transformed accuracies in addition to the transformed positions.

2.1 Composite Mappings

An important sub-class of Mapping is a CompositeMap (or SeriesMap). A
CompositeMap is a compound Mapping which allows two component Map-
pings (of any class) to be composed together in series (function composition)
to form a more complex Mapping:

M(A → B) =M1(A → C) ∗ M2(C → B)

The methods and constructors associated with CompositeMap are

5

Name Purpose
CompositeMap(m1: Mapping,
m2:Mapping): CompositeMap

Constructor for composition

decompose(): List Return list of individual mappings
My colleagues prefer the terms SeriesMap and ParallelMap to Compos-

iteMap and AggregateMap respectively.

Thus to compose mappings M1 and M2 as above, we would do

M = composeMappings(M1, M2)

Since a CompositeMap is itself a Mapping, it can be used as a component
in forming further CompositeMaps. Mappings of arbitrary complexity may
be built from simple individual Mappings in this way. It is easy to create
overly-complex CompositeMaps, that is, CompositeMaps in which the effect
of some of the Mappings cancel out. A simple example would be a Compos-
iteMap which combined a (potentially complex) Mapping in series with its
own inverse. The total effect of this CompositeMap would be equivalent to
a unit Mapping. Whilst legal, this is bad practice for several reasons: the
CompositeMap will take longer to evaluate, it will introduce greater round-
ing errors, and will require a larger description. For this reason, the Simplify
method of the Mapping class is important: it creates a new Mapping from a
supplied Mapping by removing any redundant steps in the supplied Mapping.

2.2 Aggregate Mappings

An AggregateMap (or ParallelMap) is a compound Mapping which combines
two or more Mappings in parallel:

M((A1, A2, A3)→ (B1, B2, B3)) = (M1(A1 → B1),M2(A2 → B2,M3(A3 → B3))

Here one Mapping transforms some subset of the input coordinates for
each position and the second and third Mappings simultaneously transform
the remaining input coordinates; this supports a common case where an N-
dimensional coordinate system is transformed using separable mappings on
each axis.
The methods associated with AggregateMap are

Name Purpose
new Mapping(maplist: List): Mapping Create aggregate map
getMappingMembers(): List Return list of individual mappings in aggregate

so that in the example above M = Mapping(List(M1,M2)) and M.getMappingMembers()
would return a list consisting of M1 and M2.

2.3 Atomic Mappings

Appendix A lists a large collection of concrete sub-classes of the Mapping
class, each of which implements a specified simple mathematical operation
or function, e.g.

x+ y, x − y, x ∗ y, x/y, xy, sin(x),max(x, y)

6

Some of these atomic Mappings require extra properties - the parame-
ters discussed earlier - to hold parameter values used in the mathematical
operation.

2.4 Packaged Mappings

It is possible to represent many complicated transformations by combining
the atomic Mappings listed in Appendix A into nested CompositeMaps and
AggregateMaps. However, the evaluation of such transformations (e.g. us-
ing the transform method) could be made more efficient by having dedicated
Mapping classes to represent commonly used specialised transformations. An
example is matrix multiplication. A possible approach to providing a Map-
ping to do matrix multiplication would be to combine multiple AddMaps,
MultMaps and PermMaps into a CompositeMap which would do the re-
quired matrix multiplication. Another approach would be to define a whole
new sub-class of Mapping, a MatrixMap, which encapsulates the values of
the matrix elements directly. The Transform method of the MatrixMap class
would do the matrix multiplication directly, using the matrix elements stored
in the MatrixMap. By comparison, the Transform method of the equivalent
CompositeMap would invoke the Transform methods of its component Map-
pings recursively until the underlying atomic Mappings were reached. This
interpretive process is bound to be slower than the direct approach imple-
mented by the Matrixmap class.
So it would be advantageous to define a collection of packaged Mappings

for commonly required complex operations, but at the same time leaving
open the possibility of building up complex Mappings from atomic Mappings
in order to cover more esoteric cases which are not common enough to jus-
tify their own dedicated Mapping class. Other examples of useful packaged
Mappings would be various forms of spherical projections, conversion to and
from different celestial, spectral or temporal coordinate systems, pin-cushion
distortion, spherical to Cartesian conversion, etc. Of course, these packaged
Mappings could themselves be combined together within a CompositeMap
to form even more complex Mappings.
Some obvious packaged mappings we require are the Polynomial, and

its very common special case, the degree 1 polynomial or linear mapping
(LinearMap).
For any complicated mapping, one can implement it as an atomic map-

ping, or as a single packaged mapping combining many atomic mappings. As
a general principle of software development, breaking things down into man-
ageable chunks is a good idea - we recommend defining extremely complex
mappings as packages of PackagedMappings of intermediate complexity.
As a policy question, we must decide whether different defined mappings

can have overlapping functionality (what Brian Thomas calls the ‘wild west
approach’) or whether the IVOA will organize the mappings in strictly ex-
clusive sets (so that the ”exp(x)” and ”raise to power” mappings do not exist
independently since they are special cases of the same math.)

7

2.5 Extensions

Many transformations in astrophysics cannot be constructed simply by com-
posing atomic mappings; they require a full programming language to ex-
press. For example, cosmological transformations in the new standard pic-
ture, such as mapping flux to rest frame luminosity with redshift as a pa-
rameter, require the evaluation of elliptic integrals. We must provide ways to
model and serialize user-defined mappings which can point to external code
or services to perform the transformations. This is beyond the scope of the
current draft.

2.6 Predefined list of Atomic and Packaged Mappings

In this section we present lists of concrete sub-classes of the Mapping class
which implement various useful cases. Nin and Nout are the number of input
and output values for the Mapping. * means that any positive number may
be used. A Nout value of Nin means that Nout must be equal to Nin (in
this case, each output will usually be a function of the corresponding input).
The ‘function’ is the function carried out by the forward transform.
The first table gives packaged mappings covering useful cases which often

arise in astronomical data, and the second table gives atomic mappings which
implement basic mathematical operations.
The detailed definition of these packaged mappings is deferred to a later

document. The special case of FITS WCS mappings is covered in a later
section.

Name Nin Nout Function Parameters
linear-map 1 1 y = y0 + d(x − x0) x0, y0, d
linear-map 1 1 y = ax+ b (alternate constructor)
Polynomial 1 1 y =

∑
anx

n an

MatrixMult n n Matrix multiplication n * n
ProjMap 2 2 Individual FITS-WCS spherical

projections
SphRotate 2 2 Rotation on the sphere
SkyMap 2 2 Convert between ICRS, galactic etc
SpecMap Spectral coordinate conversions
GrismMap From FITS-WCS paper 3
TimeMap Conversions between UTC, TT etc

Table 1: Packaged Mappings

Note that we can have alternate constructors, for convenience, that im-
plement the same internal composition of atomic mappings. For instance,
the linear-map example above has parameters x0 and y0 which are degener-
ate in the equivalent polynomial representation, but which are often a useful
representation.

8

Name Nin Nout Function Parameters
unit-mapping * * Identity (unit) map -
PermMap * * Re-arrange input values into a dif-

ferent order, optionally adding or
removing inputs or outputs.

List: Description of the axis
rearrangement

LutMap * * Calculate output values from a
look-up table.

List: The look-up table val-
ues

AddMap * 1 Adds all input values together
SubMap 2 1 Input 2 minus input 1
MultMap * 1 Multiply all input values together
DivMap 2 1 Input 2 divided by input 1
PowMap 2 1 Input 2 is raised to the power of in-

put 1
ShiftMap * nin Add a given value onto each input

value
double: The shift for each
input

ZoomMap * nin Multiply each input by a specified
value

double: The scale for each
input

RecipMap * nin Take the reciprocal of each input
SqrMap * nin Square each input
SqrtMap * nin Square root of each input
RaiseMap * nin Raise each input to a given power double: The power for each

input
CosMap * nin Cosine of each input
SinMap * nin Sine of each input
TanMap * nin Tangent of each input
LogMap * nin Natural logarithm of each input
ExpMap * nin Exponential of each input
MaxMap * 1 Maximum of all inputs
MinMap * 1 Minimum of all inputs
TestMap 3 1 Output is equal to input 2 if input

1 is non-zero. Otherwise output is
equal to input 2.

GtMap 2 1 Output is 1 if (input 1 ¿ input 2)
and zero otherwise.

LtMap 2 1 Output is 1 if (input 1 ¡ input 2)
and zero otherwise.

EqMap * 1 Output is 1 if all inputs are equal
and zero otherwise.

double: tolerance for equal-
ity

OrMap * Output is 1 if any of the inputs are
non-zero.

AndMap * Output is 1 if all of the inputs are
non-zero.

Table 2: Atomic Mappings

9

2.7 Packaged mappings and FITS-WCS

The highest priority practical example of a Mapping to be supported in the
VO is the FITS celestial WCS mapping.
The general FITS-WCS family of mappings has N inputs and M outputs,

with N often, but far from always, equal to 2, and M forced to be equal to
N by the addition of degenerate axes when needed.
The parameters to the base N-dimensional FITS-WCS mapping are:

Name No. values Type Meaning
CTYPE 1 string Name of mapping type (usually last 4 chars of CTYPEn)
CUNIT N string Units of CRVAL and CDELT
CRPIX N double Reference input coordinates
CRVAL N double Reference output coordinates
CDELT N double Reference scale, output units per input unit
PC N * N double Rotation matrix
NPV 1 integer Number of projection parameters
PV NPV double Projection parameters
NPS 1 integer Number of string parameters
PS NPS string String parameters
CRDER N double Random error on mapping
CSYER N double Random error on mapping

Each value of CTYPE has associated values of NPV and NPS, the num-
ber of projection parameters, both of which are usually zero. The PC ma-
trix is sometimes represented by an angle (CROTA). Note that FITS-WCS
also specifies CUNIT values and a WCSNAME value which are contained in
our Frame rather than in Mapping, as are the individual coordinate names
from the first 4 characters of CTYPE. The CRDER and CSYER parameters
were added to FITS-WCS in the 2002 paper (Greisen and Calabretta A&A
395,1061) and have not been widely used (if at all). They provide a single
characteristic error for the mapping independent of coordinate values.
The most common form of FITS-WCS mapping is one in which the first

two dimensions are a celestial FITS-WCS (CelWCS) and the remaining di-
mensions are linear mappings with no cross terms, so that the PC matrix is
diagonal except for those first two dimensions. In our terminology, the FITS-
WCS paradigm is an aggregate mapping in which no attempt is made to
express the separability of the different axes. The clearest way to implement
FITS-WCS may be to always convert it to an aggregation of linear-maps,
spectral conversion mappings, and CelWCS when possible.
The CelWCS mapping has the following special parameters in addition

to the ones listed above:

Name No. values Type Meaning
LONPOLE 1 double Longitude of pole
LATPOLE 1 double Latitude of pole

In addition, several parameters are not required for Mapping but may
need to be present in the Frame or CoordSystem:

10

• EQUINOX, which is only required if the coord names are RA and DEC
or ELON and ELAT.

• RADESYS, a string giving the reference system, which is only required
if the coord names are RA and DEC or ELON and ELAT.

• MJD-OBS, only required for geocentric apparent coordinates.

The functional definition of the FITS-WCS mapping is given in Greisen
and Calabretta (2002) and Calabretta and Greisen (2002, A&A 395, 1077).
We note that spectral FITS-WCS conventions have recently been pro-

posed as FITS-WCS Paper 3; they are not covered in the current draft of
this document. The complication introduced by Paper 3 is that the first four
letters of CTYPEn may signify a further linear transformation in addition
to the non-linear transformation supported by the last four letters, and the
interpretation of the parameters now involves further calculation involving
CUNIT.
As already implemented in Starlink’s AST, the FITS-WCS celestial map-

ping can be instantiated as a composition of mappings:

1. Linear map origin shift, as described by CRPIX

2. Scale and Matrix multiply (CDELT and CD)

3. Spherical projection map (CTYPE)

4. Spherical rotation (CRVAL, LONPOLE, LATPOLE)

I propose that the FITS-WCS celestial mapping represent a predefined
Compound mapping, recognized as such. This means that when software
deserializes the FITS-WCS mapping, it can instantiate it as a composition
of the individual mappings enumerated above.

11

3 XML Serialization

3.1 Simple mappings

The general Mapping class is serialized with a <mapping> tag. Within the
mapping, the specific mapping type is given.

• The trivial identity map is serialized by <unit-mapping/>.

• linear-map is serialized by <linear-map> with attributes ref, value,
and step:

<mapping>

<linear-map ref=1.0 value=1483212.3 step=600.0/>

</mapping>

• Polynomial is serialized with an ”nparams” attribute equal to the de-
gree plus 1, and with ”param” elements giving the values of the pa-
rameters. Example:

<mapping>

<m:polynomial nparams="3">

<m:param>131281.4</m:param>

<m:param>-.00013</m:param>

<m:param>4.823</m:param>

</m:polynomial>

</mapping>

• The atomic mappings are serialized by the name of the mapping, with
an nparams attribute, enclosing param elements, as for polynomial:

<mapping>

<m:sqrtMap/>

</mapping>

<mapping>

<m:shiftMap nparams=1>

<m:param>-42.10</m:param>

</m:shiftMap>

</mapping>

(for the atomic mappings, we may instead want to consider using at-
tributes for the parameters and defining each one).

12

3.2 XML Serialization of FITS Celestial WCS

We serialize the CelWCS as <wcsmap> with an attribute type and the ele-
ments <refvals>, <refpos>, <scales> corresponding to CRVAL, CRPIX,
CDELT and each containing two values. The PC matrix may be serialized as
<wcspc> with 4 values, or (if non-skew) as a single angular value <rotation>
expressed in degrees.
Example:

<mapping>

<fitscelwcs type="TAN">

<refvals>131.2181 -31.1284</refvals>

<refpos>512.1 512.1</refpos>

<scales>-0.0016 0.0016</scales>

<rotation>48.3121</rotation>

</fitscelwcs>

</mapping>

An alternate proposal is to use the literal FITS keys:

<mapping>

<fitscelwcs>

<CTYPE>"RA---TAN" "DEC--TAN"</CTYPE>

<CRVAL>131.2181 -31.1284</CRVAL>

<CRPIX>512.1 512.1</CRPIX>

<CDELT>-0.0016 0.0016</CDELT>

<CD>0.66507 -0.74678 0.74678 0.66507</CD>

</fitscelwcs>

</mapping>

(Note that we might have a FITSCelWCS mapping on an axis quantity
which involves the 3rd and 4th axes of a 5-dimensional FITS image. Having
XML tags like <CRVAL4> which would depend on these axis numbers seems
like a bad idea.)
A more complicated example:

<mapping>

<fitscelwcs type="SIN" npv=2>

<refvals>131.2181 -31.1284</refvals>

<refpos>512.1 512.1</refpos>

<scales>-0.0016 0.0016</scales>

<wcspc>0.8660 0.5000 -0.5000 0.8660</wcspc>

<lonpole>210.0</lonpole>

<latpole>-90.0</latpole>

<pv>0.12 -0.11</pv>

</fitscelwcs>

</mapping>

13

3.3 XML serialization of a compound mapping

Consider a mapping between pixel coordinates X,Y,Z and world coordinates
RA, Dec, Velocity, in which the Z-to-velocity mapping is a composite of a
polynomial (wavelength calibration) and a rescaling.
We express aggregation (parallel combination) with mappings following

one after another and composition (series combination) with the <compose>
tag. The interpretation is that the aggregation members are in order of the
axes, and the compositions are performed in the order of input to output.

<mapping>

<wcsmap type="TAN">

<refvals>131.2181 -31.1284</refvals>

<refpos>512.1 512.1</refpos>

<scales>-0.0016 0.0016</scales>

<rotation>48.3121</rotation>

</wcsmap>

<compose>

<polynomial nparams=2>

<param>4000.2</param><param>1.5</param>

</polynomial>

<linear-map ref=4861.0 val=0.0 step=61.7/>

</compose>

</mapping>

14

