

 International

 Virtual

 Observatory

Alliance

Access Control Interface

Version 0.1
GWS Internal Draft 2008 May 07

This version:
 ThisVersion-20080507
Latest version:
 http://www.ivoa.net/Documents/latest/latest-version-name
Previous version(s):
 None

Author(s):
 Matthew Graham

Abstract

The Access Control Interface is an interface for managing access rights
associated with a resource or set of resources. It specifies a set of methods for
defining collections of users, resources, and operations and
associating/dissociating them. It also specifies how access policies can be
associated with users, resource, and operations.

Status of This Document
This is an Internal Draft within the Grid and Web Services Working Group. The
first release of this document was 2008 May 07.

Conformance related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”, and
“OPTIONAL” (in upper or lower case) used in this document are to be interpreted
as described in IETF standard, RFC 2119 [RFC 2119].

The Virtual Observatory (VO) is a general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications. The International Virtual Observatory
(IVO) application is an application that takes advantage of IVOA standards and
infrastructure to provide some VO service.

Contents

1  Introduction 3 
1.1  Document roadmap 3 
1.2  Terms in the document 3 

2  Requirements 4 
2.1  General 4 
2.2  Service Output 4 
2.3  Flow and Behaviour 4 
2.4  Interface Details 4 

3  Interface definition 5 
3.1  Concepts 5 
3.2  Methods 5 

3.2.1  defineCollection 6 
3.2.2  getCollection 6 
3.2.3  getOperations 6 
3.2.4  getOperationDescription 7 
3.2.5  associate 7 
3.2.6  dissociate 7 
3.2.7  setPolicy(URI, token) 7 
3.2.8  getPolicy 8 

4  Examples 8 
4.1  Supported operations 8 
4.2  Defining collections 8 

4.3  Associating 9 
References 9 

1 Introduction

Controlling who has access to resources and what operations are permitted on
such resources is a common activity across the VO, e.g. editing resource records
in the registry, deleting data objects in VOSpace, accessing proprietary data
exposed through DAL services. Even though the actual resources and operations
themselves will vary widely and different systems will be employed to enforce
access rights, a common interface can be specified that sits on top of these
different implementations, providing all the attendant benefits of interoperability,
etc.

This document defines the Access Control Interface (ACI) for managing access
rights associated with a resource or set of resources and the operations
permitted on them in terms of identifying the methods that an instance of the
interface must implement. This document does not specify any particular set of
operations nor how any particular operation or set of operations would be
represented. It also does not specify how access rights are represented within
security credentials for the purposes of authorization.

1.1 Document roadmap
The rest of this document is structured as follows:

Section 2 describes the requirements for the ACI in terms of general, service
output, flow and behaviour and interface details.

Section 3 specifies the methods associated with the ACI.

Section 4 illustrates how the ACI would be used in practice.

1.2 Terms in the document
The ACI is an abstract interface definition that specifies a set of methods.

An ACI instance is a deployed implementation of the ACI.

A service is any piece of VO software that has resources and is accessible via
the Web. This can refer to a registry service, a DAL service (cone search, SIAP,
SSAP, etc.) or a generic web service, both SOAP-based and RESTful.

An ACI instance is associated with one or more services when it is managing
access rights to the resources that these services expose.

2 Requirements

The specification of the ACI has the following requirements.

2.1 General

• An ACI instance should be runnable as an interactive service that can be

associated with any or multiple services. It should not need to reside on the
same server as the service(s) with which it is associated.

• The interface should not reflect any dependency on any specific service

implementation technology, e.g. SOAP. Different ACI instances can be
defined for different implementation technologies.

• The interface should be compatible with IVOA authentication methods.

• The interface should not make any requirements for an ACI instance to have

to maintain state about any transaction it performs.

2.2 Service Output

• The interface will return the permissibility of a set of operations for an

identified resource or set of resources when requested.

• The interface will return the set of operations that an identified user or set of

users is allowed to perform when requested.

• The interface will return the end goal status of any action to change the

permissibility of a set of operations by an identified user or set of users on an
identified resource or set of resources.

2.3 Flow and Behaviour

TBW

2.4 Interface Details

• The interface will consist of a set of methods that allow the access rights of

resource records to be altered.

• The interface may allow a collection of resources to be defined. If the

associated service does not support this activity, the ACI instance may
maintain such state as is required to support this activity during a transaction.

In these cases, the ACI instance will not have to persist such state after the
transaction is complete.

• The interface may allow a set of users to be defined. If the associated service

does not support this activity, the ACI instance may maintain such state as is
required to support this activity during a transaction. In these cases, the ACi
instance will not have to persist such state after the transaction is complete.

• The interface should not disallow the use of a GUI with an ACI instance to

facilitate interaction with the management methods.

3 Interface definition

3.1 Concepts
The ACI defines a data model that consists of the following concepts:

• An entity can be a user, a resource or an operation.

• A token is a tag that is used to identify an entity. This can take the form of a

URI.

• A resource is identified by a globally unique identifier in the form of a URI.

This need not be resolvable.

• A user is identified by a token. This may take the form of the DN component

of a X.509 certificate or a URI but must be resolvable.

• An operation is identified by a token. This can take the form of a URI but

must be resolvable.

• There can exist an association between a resource, an operation and a user.

This means that the user can perform the operation on the resource. This
may be identified in some fashion.

• A set or collection of resources, users or operations is identified by a token.

This can take the form of a URI but must be resolvable.

• A human-readable policy can be associated with an operation. This provides

a description of what the operation capabilities and constraints are and how
they might be pertain to different classes of user. This will be identified with a
URI.

3.2 Methods
The ACI specifies the following methods:

3.2.1 defineCollection
Define a set of resources, user or operations.

3.2.1.1 Parameters
• collection: the token for the collection
• entities: a set of tokens for the component entities

This associates the specified collection token with the specified set of entitites:
resources, users or operations.

If no collection token is specified, the interface will return an autogenerated one.

The specified set must be homogeneous, i.e. it must only contain entities of the
same type: resources, users or operations.

If the method completes successfully and a token was specified then it will be
returned.

Once this method has completed successfully, the token can be used as a
reference to the specified set.

3.2.2 getCollection
Get a list of tokens of entities in a collection.

3.2.2.1 Parameters
• collection: the token for the collection

This will return the tokens of the entities that comprise the collection identified by
the specified token.

3.2.3 getOperations
Get a list of available operations.

3.2.3.1 Parameters
• token: the token for a collection or an entity
• resource: the identifier for a specific resource or set of resources

If no parameters are specified, this returns the full list of operations that the
interface supports.

If the token parameter refers to a resource then the list of operations supported
by the identified resource(s) is returned. If the token parameter refers to a set of
resources then the common set of operations will be returned, i.e. all operations
that can be performed on all the specified resources. If the token parameter
refers to a user then the operations permitted for that user are returned. Finally if
the token parameter refers to a set of users then the common set of operations

permitted for those users will be returned, i.e. all operations that they are allowed
to perform on all resources.

If both parameters are present, this returns the list of operations that are
permitted for the specified user(s) on the specified resource(s).

3.2.4 getOperationDescription
Get a description of the operation.

3.2.4.1 Parameters
• operation: the token for an operation

This returns a human-readable description of the operation identified by the
specified token.

3.2.5 associate
Associate a user, a resource and an operation.

3.2.5.1 Parameters
• user: the token for a user or set of users
• resource: the token for a resource or set of resources
• operation: the token for an operation or set of operations

This associates a user(s) with a resource(s) and an operation(s). It may return a
token identifying the association.

3.2.6 dissociate
Dissociate a user, a resource and an operation.

3.2.6.1 Parameters
• user: the token for a user or set of users
• resource: the token for a resource or set of resources
• operation: the token for an operation or set of operations

This dissociates a user(s) from a resource(s) and an operation(s).

3.2.7 setPolicy(URI, token)
Associate a policy with an operation.

3.2.7.1 Parameters
• policy: the identifier for the policy
• operation: the token for an operation or set of operations.

This associates the identified policy with specified operation or set of operations.

3.2.8 getPolicy
Get a list of policies associated with an operation.

3.2.8.1 Parameters
• operation: the token for an operation or set of operations

This returns the set of identifiers of policies associated with the specified
operation or set of operations.

4 Examples
These illustrate how the ACI could be used.

4.1 Supported operations
We want to see what operations are supported:

Request: getOperations()
Response: create, retrieve, update, delete

‘create’, ‘retrieve’, ‘update’, and ‘delete’ are just tokens identifying operations and
should not be taken to mean anything more. If we actually wanted to understand
what one of these actually meant then we would do:

Request: getOperationDescription(create)
Response: This operation will create a new resource

4.2 Defining collections
Next we want to group ‘create’, ‘retrieve’, and ‘update’ together as a set of
operations identified as ‘cruPerm’:

Request: defineCollection(cruPerm, [create, retrieve, update])
Response: cruPerm

We also want to group all operations together as a set:

Request: defineCollection(crudPerm, [create, retrieve, update, delete])
Response: crudPerm

Similarly we can create a set of users:

Request: defineCollection(myGroup, [user1, user2, user3])
Response: myGroup

and a collection of resources:

Request: defineCollection(someResource, ivo://resource2)

Response: someResource

4.3 Associating
Finally we can give user1 full permissions on a resource and the rest of myGroup
the ability to ‘create’, ‘retrieve’ and ‘update’ a resource (whatever that might
mean - these are just tokens for the operations) but not to ‘delete’ one.

Request: associate(myGroup, someResources, cruPerm)
Response: success

Request: associate(user1, someResources, crudPerm)
Response: success

References

