
 International

 Virtual

 Observatory

Alliance

Universal Worker Service
Version 0.3
IVOA Internal Working Draft 2007 April 026

This version:
0.2-2006-05-11

Latest version:
not issued outside GWS-WG

Previous version(s):
Internal Working Draft v0.1, 2005-01-24

Internal Working Draft v0.2, 2006-05-11

Author(s):
Guy Rixon

Abstract
The Universal Worker Service pattern (UWS) defines how to manage
asynchronous execution of jobs on a service. Any application of the pattern
defines a family of related services with a common service contract. Four
possible applications are described.

Status of This Document
This is an internal working draft of the GWS-WG. The first release of this
document was on 2005-01-24 within the working group; it has not yet been
issued outside the working group.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or made obsolete
by other documents at any time. It is inappropriate to use IVOA Working Drafts
as reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
The need for the UWS pattern was inspired by AstroGrid’s Common Execution
Architecture and particularly by discussions with Paul Harrison and Noel
Winstanley. The ideas about statefulness are distilled from debates in the Global
Grid Forum in respect of the Open Grid Services Infrastructure that was the fore-
runner of Web Services Resource Framework. The REST binding came initially
from suggestions by Norman Gray.

Contents
1 Introduction..3
1.1 Synchronous, stateless services...4
1.2 Some IVO activities that outgrow synchronous, stateless services............4
1.3 Asynchronous and stateful services..5
1.4 Job description language, service contracts and universality.....................5

2 Universal Worker Service pattern..6
2.1 Objects within a UWS...6

2.1.1 Job list 6
2.1.2 Job 7
2.1.3 Execution Phase 7
2.1.4 Termination Time 7
2.1.5 Quote 8
2.1.6 Results List ... 8

2.2 Bindings..8
2.2.1 REST binding 8
2.2.2 SOAP binding ... 12

http://www.ivoa.net/Documents/

3 Applications of UWS..14
3.1 Image service with data staging..14
3.2 ADQL service with cursor..15
3.3 VOSpace with controlled lifetime..15
3.4 Parameterized applications...16

4 References..17

1 Introduction
The Universal Worker Service (UWS) pattern defines how to build asynchronous,
stateful, job-oriented services (the italicized terms are defined in sub-sections of
this introduction). It does so in a way that allows for wide-scale reuse of software
and support from software toolkits.
Section 2 of this document describes the pattern and lists the aspects that are
common to all its applications. Any such application would involve a service
contract that embodies the pattern and fixes the issues left undefined in the
pattern itself. The contract would include the XML schemata (XSD and WSDL)
for the application. It is intended that each such contract cover a family of related
applications, such that the implementations may be widely reused.
Section 3 outlines several possible applications of the pattern. These use-cases
may be expanded into full IVOA standards that are siblings of the current
document.

1.1 Synchronous, stateless services
Simple web services are synchronous and stateless. Synchronous means that
the client waits for each request to be fulfilled; if the client disconnects from the
service then the activity is abandoned. Stateless means that the service does not
remember results of a previous activity (or, at least, the client cannot ask the
service about them).
Synchronous, stateless services work well when two criteria apply.
The length of each activity is less than the “attention span” of the connection.

1. The results of each activity are compact enough to be easily passed back
to the client via the connection on which the request was made (and
possibly pushed back to the service as parameters of the next activity).

There are various limits to the attention span.
 HTTP assumes that the start of a reply quickly follows its request, even if

the body of the reply takes a long time to stream. If the service takes too
long to compute the results and to start the reply, then HTTP times out at
the request is lost.

 A client runs computer which will not stay on-line indefinitely.

 A network with finite reliability will eventually break communications during
an activity.

 A service is sometimes shut down for maintenance.

Synchronous, stateless services, in short, do not scale well.

1.2 Some IVO activities that outgrow synchronous, stateless
services

These cases are examples. They are not a complete list!
1. An ADQL [1] service gives access to a large object-catalogue. Most

queries run in less than a minute, but some legitimate queries involve a
full-table traverse and take hours or days. The service needs to run these
special cases in a low-priority queue.

2. An object-finding service runs the Sextractor application on a list of
images. Normally, the list is short and the request is quickly satisfied.
Occasionally, a list of 10,000 images is sent in the expectation that the
work will be finished over the weekend.

3. A cone-search [2] request on a rich catalogue raises 10,000,000 rows of
results, but the client is connected via a slow link and cannot read all the
results in a reasonable time. The client needs the service to send the
results into storage over a faster link. This could mean sending them to
VOSpace, or simply holding them temporarily until the user can retrieve
them on a fast link.

4. An ADQL service allows users to save query results into new tables such
that they can be the target of later queries. However, space is limited and
the results tables can only be kept for a short time. The client and service
negotiate the lifetime of the results tables.

5. A service performs image stacking on a list of fields. Each field can be
processed by a synchronous service but the list is long and the user wants
to retrieve the results of the early fields before the last fields are
processed.

1.3 Asynchronous and stateful services
Services can be made to scale better by making them asynchronous and
stateful. Asynchronous means that a client makes two or more separate requests
to the service in the course of one activity, and that the client and service may be
disconnected, possibly for days or more, in between those requests. Stateful
means that the service stores state information about the activity and the client
addresses requests to this state.
Web services that are asynchronous are almost always stateful. Most of special
extra arrangements for asynchronous activities are actually managing the state
of the activity.
There is an important class of stateful services where the state is peculiar to one
job or session and the job is “owned” by one user. These, for the purpose of this

document, are called job-oriented services. There are stateful services that are
not job-oriented (e.g. a service managing a shared, client-writeable DB table), but
UWS does not apply to these.
For the purpose of this discussion, let the term job refer to the work specified by
the JDL instructions and the term resource refer to the state of the job as
recorded by the service. Both have a finite duration. The lifetime of the resource
– i.e. the time from inception until the service forgets the state – is generally finite
and must be at least as long the duration of the job.

1.4 Job description language, service contracts and
universality

Consider the web-service operation that starts off a job. This operation must
express what is to be done in the activity: it must carry parameters in some form.
The parameters may be expressed as a list. E.g., a cone search service takes a
list of three parameters: RA, DEC, RADIUS. Alternatively, the parameters may be
arranged as an XML document (e.g. ADQL, CEA). The rules for setting and
arranging the parameters for a job are called the Job-Description Language
(JDL).
The combination of the UWS pattern, a JDL and details of the job state visible to
the client defines a service contract; for a SOAP service, this contract can be
captured in WSDL. Changing the JDL changes the contract. Thus, it is not
meaningful to “implement UWS” in isolation; any implementation standard must
specify the rest of the contract.
If the JDL is very general, a single service-contract can be reused for many kinds
of service. AstroGrid’s CEA exploits this: one JDL covers all services offering
parameterized applications and even ADQL services. In the limit, a sufficiently-
general JDL turns a specialized worker service into a universal worker service.

2 Universal Worker Service pattern

2.1 Objects within a UWS
A UWS consists logically in a set of objects that may be read and written to in
order to control jobs.
In a SOAP binding of UWS, these components are exposed as properties of the
object that lives at the endpoint registered for the service. In a REST binding, the
components are distinct web-resources each with its own URI.

The following sub-sections explain the semantics of the objects. The UML
diagram shows the relationships more succinctly.

2.1.1 Job list
The Job List is the outermost object: it contains all the other objects in the UWS.
The immediate children of the job list are Job objects (see next sub-section).
The job list may be read to find the extant jobs.
The job list may be updated to add a new job.
The job list itself does not allow jobs to be deleted. Instead, when a job is aborted
by an action on its job object, then the list updates itself accordingly.

2.1.2 Job
A Job object contains the state of one job. The state is a collection of other
objects. Each Job aggregates

● Exactly one Execution Phase.
● Exactly one Termination Time.
● Exactly one Quote.
● Exactly one Results List.

2.1.3 Execution Phase
The job is treated as a state machine with the Execution Phase naming the state.
The phases are

● PENDING: the job is accepted by the service but not yet committed for
execution by the client. In this state, the job quote can be read and
evaluated. This is the state into which a job enters when it is first created.

● QUEUED: the job is committed for execution by the client but the service
has not yet assigned it to a processor. No Results are produced in this
phase.

● EXECUTING: the job has been assigned to a processor. Results may be
produced at any time during this phase.

● COMPLETED: the execution of the job is over. The Results may be
collected.

● ERROR: the job failed to complete. No further work will be done nor
Results produced. Results may be unavailable or available but invalid;
either way the Results should not be trusted.

2.1.4 Termination Time
A Termination Time object defines the instant at which a Job will be destroyed.
Termination Time is an absolute point in time, not a duration.
“Destroying” a job implies three things:

● if the job is still executing, the execution is aborted;
● the results of the job are thrown away (allowing their storage to be

reclaimed);
● the service forgets that the job existed.

When a job is created, the service sets the initial termination time. The client may
write to a Termination Time to try to change the job's life expectancy. The service
may forbid changes, or may set limits on the allowed termination time.

2.1.5 Quote
A Quote object predicts when the job is likely to complete. The intention is that a
client creates the same job on several services, compares the quotes and then
accepts the best quote.
The client may write to a Quote to accept the quote and commit the parent job for
execution.
Quoting for a computational job is notoriously difficult. A UWS implementation
must always provide a quote object, in order that the two-phase committal of jobs
be uniform across all UWS, but it may supply a “don't know” answer for the
completion time.

2.1.6 Results List
The Results List object is a container for formal results of the job. Its children
may be any objects resulting from the computation that may be fetched from the
service when the job has completed.
Reading the Results List itself enumerates the available or expected result
objects.
The children of the Results List may be read but not updated or deleted. The
client may not add anything to the Results List.

2.2 Bindings

2.2.1 REST binding

2.2.1.1 Resources and URIs
In a REST (Representational State Transfer) binding of UWS, each of the objects
defined above is available as a web resource with its own URI. These URIs must
a hierarchy as follows:
/(jobs) the Job List
/(jobs)/(job-id) a Job
/(jobs)/(job-id)/phase the Phase of (job-id)
/(jobs)/(job-id)/termination the Termination Time of (job-id)
/(jobs)/(job-id)/quote the Quote for (job-id)
/(jobs)/(job-id)/results the Results List for (job-id)
The service implementor is free to choose the names given in parentheses
above; the other names are part of the UWS standard.
The URI for the Job List, in its absolute form is the root URI for the whole UWS.
This URI should be given as the access URL in the UWS' registration.

2.2.1.2 Representations of resources
For each of the resources, HTTP GET fetches a representation.
The representation of the Job List is a list of links to extant jobs. The list may be
empty if the UWS is idle.
The representation of a Job is a list of links to its Phase, Termination Time, Quote
and Results List.
The representation of a Results List is a list of links to the resources representing
the results. These resources may have any URI and any MIME type. A sensible
default for their URIs is to make them children of /(jobs)/(job-id)/results, but this is
not required. It may sometimes be easier for a service implementor to point to a
resource on some web server separate from that running the UWS. Therefore, a
client must always parse the Results List to find the results. Where a protocol
applying UWS specifies standard results it must do so by naming those results;
the names then appear in the Results List in addition to the URIs. Not all results
need to be named; sometimes the meaning of the result is obvious from the
context and the name is ommitted.
HTTP allows multiple representations of a resource distinguished by their MIME
types and selected by the HTTP headers of a GET request. UWS exploits this to
support both web browsers and rich clients in the same tree of resources.
A UWS should return HTML or XHTML to clients that accept these types. These
clients are assumed to be web browsers and the UWS is generating its own user
interface.

For a client that accepts only application/xml, a UWS must return XML
representations of the resources. The schemata for these XML documents are
TBD and will be added to this specification later; they will be the same for all
UWS installations. These clients are assumed to be part of remote applications
that drive UWS without showing the details to their users.
The XML schemata for the lists of links, and for the Phase, Termination Time and
Quote documents, are TBD but are part of this specification. They do not vary
between UWS installations.

2.2.1.3 State changing requests
Certain of the UWS' resources accept HTTP POST and DELETE messages to
change the state of the service.
Deleting a Job resource destroys that job, with the meaning noted in the
definition of the Job object, above. No other resource of the UWS may be deleted
by the client. The response to this request must have code 303 “See other” and
the Location header of the response must point to the Job List.
Posting a request to the Job also destroys the job, the response being as for a
deletion. This action supports web browsers which cannot send DELETE
requests.
Posting a request to the Job List creates a new job (unless the service rejects the
request). The response when a job is accepted must have code 303 “See other”
and the Location header of the response must point to the created job.
Posting a request to the Quote inside a Job accepts the quote and commits the
resource for execution.
Putting a replacement document to a Termination Time resource requests that
the termination time be changed. The same effect may be got by posting a
request to the Termination Time. In this case, the body of the posted request is
of type application/x-wwww-form-urlencoded and contains the parameter
named TIME whose value is the new termination time in ISO8601 format;
i.e. this request is what an HTML form sends.

2.2.1.4 Message pattern
The REST binding results in the message pattern shown in figure 2.

Client JobList

Job

Quote

TerminationTime

Phase

ResultList

Result

POST

GET

POST

PUT

GET

GET

GET
DELETE

X

X X X X X

Creating the job

Negotiating the lifetime

Job is committed for execution

Polling

Get results and tidy up

Figure 2: typical message-pattern for REST binding of UWS.

2.2.2 SOAP binding

2.2.2.1 Resources and URIs
For a SOAP-bound UWS there is only one web resource and therefore one URI.
This resource corresponds roughly to the Job List object of the UWS and all the
other objects are accessed via methods on the Job List.
The single URI of a SOAP-bound UWS must be registered as its access URL.
Since the SOAP binding has only a single URI it needs a different way to indicate
the job to which a request applies. Job-specific requests and reponses must
carry a SOAP header containing a WS-Addressing structure. In this structure, the
ResourceIdentifier element names the resource; it is an opaque string to the
client and is meaningful only to the service. The identifier for a given job is stated
in the response to the request that creates it; that request is one that does not
need a WS-Addressing header.
The exact use of WS-Addressing will be stated in the WSDL for the SOAP
binding which is TDB.

2.2.2.2 Representations of objects
The SOAP binding allows the client to retrieve representations of some of the
UWS objects. Unlike the REST binding, it does not allow all the objects to be
represented. Further, the SOAP binding only provides XML representations; it
does not support HTML in any way.
Representations may be got from the following methods.

● getJobs()
● getTerminationTime()
● getQuote()
● getPhase()
● getResults()

Note that there is no representation of a Job as a whole. The method
getResults() packs all the results in one XML document and returns that
document. The details of the available results are defined by applications of the
UWS pattern.

2.2.2.3 State-changing operations
The following methods of a UWS change its state; most of them change the state
of one particular job.

● createJob()
● setTerminationTime()
● acceptQuote()
● destroy()

The acceptQuote() method commits a job for execution. The destroy() method
destroys the target job.
The exact content posted to create a job is defined by applications of the UWS
pattern.

2.2.2.4 Message pattern
The SOAP binding has the message pattern shown in figure 3.
Note that the number of objects is much lower than in the REST binding and the
number of messages lower by one. However, the complexity of each message is
significantly greater. The overall complexity of the pattern is roughly the same in
each binding.

Client UWS

createJob

getQuote

acceptQuote

setTerminationTime

getPhase

getResults

destroy

Negotiating the lifetime

Get results and tidy up

3 Applications of UWS
The UWS pattern leaves undefined two essential parts of the service contract:
the content that must be posted to create a job; and the pattern of results made
available by a completed job. An application of UWS completes a service
contract by defining these matters.
There follow some use cases applying the UWS pattern. The descriptions are
neither formal nor complete. The intention is to show a range of ways that the
pattern can be applied without burdening the reader with the level of detail
needed for a standard implementation.
These applications are carried over from v0.2 of this specification and hence they
use the SOAP binding. It is intended to change the examples to REST binding in
a later draft of this standard.
Any of these cases could be worked up into a full IVOA standard by formalizing
the description, adding detail (schemata, WSDL) and generally making the
specification more exact and complete. I suggest that each case so treated be
broken out into a separate specification-document.

3.1 Image service with data staging
NB: this model of data staging is different to that currently in discussion in DAL-
WG
Consider a service that computes images from archive data. The computation
takes significant time, so the service is asynchronous. The service keeps the
computed images in its own storage until the user downloads them; this is
essentially the model of SIAP [9].
The asynchronous image-service is a logical extension of a synchronous SIA
service. Therefore it uses the REST binding of UWS.
The parameters for posting a new job are as for SIAP 1.0:

● POS, the position on the sky to be searched;
● SIZE, the size of the search box;
● FORMAT: the type of images to be computed.

Particular implementations are free to add extra parameters.

These parameters are posted in a document of type application/x-www-form-
urlencoded: i.e. they can be sent from an HTML form.
The images generated by the job are accessible as unnamed results. Each
image has its own URI and can be downloaded over HTTP at any time
until the termination time of the job. The URIs for the images may be
discovered from the Results List in the normal UWS way.

SIAP 1.0 produces, for each query, a table of metadata describing the
images. The asynchronous image-service produces a table to the same
schema as a named result, called “table”.
Image results are added to the results list, and to the “table” result, as they
are generated. Hence, a client that polls the service can discover,
download and use some of the images before the job is finished. If the
client is satisfied with these early images, the client can cancel the rest of the job
by destroying the job. However, destroying the job deletes the cached images so
the client has to download them first.

3.2 ADQL service with cursor
ADQL [1] can serve as a JDL. Consider an ADQL service that supports long-
running queries as asynchronous operations. In general, the results of the query
may be a large set of data. They may be too large to download comfortably. We
might like to cache these results on the service and to operate a cursor, drawing
down from the resource a few rows of the table at a time.
The parameters of a job are as follows:

● ADQL: the query text
● FORMAT: the format for the results

These parameters are posted in a document of type application/x-www-form-
urlencoded: i.e. they can be sent from an HTML form.
A successful query generates the following, named results.

● table: the whole result set as one file resource.
● header: the metadata for the output table.
● cursor: a selection of rows of output.

The cursor result is parameterized by the query parameters FIRST and LAST in
the query string of its URI: these parameters state the index of the first and last
row to be returned; e.g.

http://whatever.org/adlqService/results/cursor?FIRST=1&LAST=100

If the parameters are missing, the service decides which rows to emit.

3.3 VOSpace with controlled lifetime
The VOSpace [10] standard describes how a distributed network of storage can
be built up from individual VOSpace services. It is intended that much of this
storage be short-term scratch space, that some be available for a longer period,
and that only a tiny part be permanent. Most VOSpaces have finite lifetimes.
VOSpace itself does not address how the lifetime of a particular space is
determined, controlled, enforced or communicated to a user. This could lead to
confusion, and may involve the operators of a space in much work when seeking
to reclaim storage. The UWS pattern can make the lifetime of the space explicit.

Consider a VOSpace service that creates spaces on demand for authorized
users. “Creating a space” means that the service creates VOSpace container-
node (a kind of virtual directory), assigns a VOSpace identifier for it, records
internally that the container belongs to the requesting user (such that only that
user can create, modify or delete data-nodes and container nodes within the
initial container) and sets a finite lifetime for the container.
This is a job-oriented service. The job is the created space and the JDL specifies
how much storage and the desired lifetime. The management can be done with
the UWS pattern, but with one special addition: the job itself – i.e. the space – is
exposed to the client.
VOSpace 1 is a SOAP protocol. Therefore, the lifetime controls for the space
uses the SOAP binding of UWS.
A space (job) is created by a posted SOAP-request defining the terms of the
requested lease. The details of this request are better captured by an XML
document, with schema, than by an RPC: the document is more capable of later
expansion and specialization. For easier interoperation, the service should used
the “wrapped” style of document/literal SOAP; i.e., the request document is
wrapped in an XML element named for the request operation (“lease”, say, but
the name is not critical) and that element is in turn wrapped in the SOAP
envelope.
Since the job is to create the VOSpace, it completes quickly. It has one, named
result, “space”, whose value is the VOSpace identifier of the created space. The
termination time of the job is the instant at which the VOSpace will be revoked
and its contents destroyed. The client can negotiate for lease extensions in the
normal, UWS way. In particular, if the user is finished with the storage before the
lease expires, he can explicitly give it back.
The URI for the space result is the vos:// identifier for the space itself. This is an
exceptional use of UWS where the result of the job is not something that can be
downloaded. To find out the identifier, the client calls getResults() and receives a
SOAP envelope containing one XML element, e.g.

<xsd:anyUri>vos://astrogrid.org!VOSpace-2/foo/bar</xsd:anyUri>

3.4 Parameterized applications
There is a class of applications on which a job may be defined by a list of simple
parameters. “Simple” here means unstructured: a scalar value such as a number,
a string of text or a Boolean value. If the parameters are allowed to name files, so
that structured data are passed indirectly, then the class of applications is very
large indeed: almost any non-interactive application can be driven in this way.
Turning each application of choice into a service (with or without UWS
semantics) would be onerous. However, if the application’s interface is entirely
characterized, through the JDL, in terms of typed input and output parameters,
then one service contract will work for all the applications and a single
implementation of the contract can be reused for all cases.

AstroGrid’s Common Execution Architecture (CEA) [11] works in this way. It has
just one service contract for all applications (including ADQL services; the ADQL
query is passed in the list of parameters). It has four implementations, one for
each of the possible interfaces between the service and a kind of job (jobs can
be implemented with Java classes, command-line applications, HTTP-get
services or JDBC databases). CEA also specifies stateful, asynchronous
services and makes use of VOSpace.
Consider a CEA reworked to use the UWS pattern for consistency with other
(future) IVOA standards. Call it CEA v2 to distinguish it from CEA v1 as currently
maintained by AstroGrid. For this example, consider the particular kind of CEA
service that runs applications supplied as executable binaries.
A binary application-server has a library of applications co-located with its service
and defined in the service configuration set by the service provider. It does not
accept code from the client for local execution.
The JDL in CEA v2 is similar to that in CEA v1 [11]. It is a formal, XML vocabulary
for expressing choice of application and parameter lists [12]. Parameters may be
inputs or outputs of the job.
To start a job, a document in this JDL is posted to the UWS. The document is
sent in its native MIME-type, application/xml, so this is not an interface that can
be driven directly from an HTML form.
The results of the job depend on the choice of application. They are all named
results and the names and types are defined in the definition of the application.
That application-definition is registered, so the client knows before running the
job what results to expect.
CEA input-parameters may be indirect: i.e. they may refer to data in on-line
storage. In this case, the JDL document contains the URIs for those data objects
Alternatively, the parameters may be direct, in which case the JDL contains the
actual value of the parameters.
Similarly, CEA results may be made indirect. In this case, the results are named
as parameters in the JDL where the values are the URIs to which the results are
delivered. The application server can then stream the results to the specified
destination as they become available and need not cache them locally. If a job
result is indirect, then the server can choose whether or not to keep a local copy.
If it chooses not to cache locally, then the result URI in the UWS is set to the
external location named in the URI.

4 References
[1] M. Ohishi, A. Szalay (eds.), IVOA Astronomical Data query Language,
http://www.ivoa.net/Documents/latest/ADQL.html
[2] US NVO project, NVO compliance: Simple Cone Search, http://us-
vo.org/pubs/files/conesearch.html
[3] D. Box, F. Curbera (eds.), Web Services Addressing (WS-Addressing),
http://www.w3.org/Submission/ws-addressing/

http://www.w3.org/Submission/ws-addressing/
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://www.ivoa.net/Documents/latest/ADQL.html

[4] T. Banks (ed.), Web Service Resource Framework (WSRF) – Primer,
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
[5] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin (eds.), Web
Services Resource 1.2 (WS-Resource), http://docs.oasis-open.org/wsrf/wsrf-
ws_resource-1.2-spec-os.pdf
[6] S. Graham,, J. Treadwell (eds.), Web Services Resource Properties 1.2 (WS-
ResourceProperties), http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-
spec-os.pdf
[7] L. Srinivasan, T. Banks (eds.), Web Services Resource Lifetime 1.2 (WS-
ResourceLifetime), http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-
os.pdf
[8] S. Graham, D. Hull, B. Murray, Web Services Base Notification 1.3, http://docs.oasis-
open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
[9] D. Tody, R. Plante, Simple Image Access Specification,
http://www.ivoa.net/Documents/latest/SIA.html
[10] Grid and Web Services Working Group of IVOA, work in progress,
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
[11] P. Harrison, Proposal for a Common Execution Architecture,
http://www.ivoa.net/Documents/latest/CEA.html
[12] P. Harrison, XML schema for namespace
http://www.astrogrid.org/schema/CommonExecutionArchitectureBase/v1,
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/Com
monExecutionArchitectureBase.xsd

http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/Documents/latest/SIA.html
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf

	1Introduction
	1.1Synchronous, stateless services
	1.2Some IVO activities that outgrow synchronous, stateless services
	1.3Asynchronous and stateful services
	1.4Job description language, service contracts and universality

	2Universal Worker Service pattern
	2.1Objects within a UWS
	2.1.1Job list
	2.1.2Job
	2.1.3Execution Phase
	2.1.4Termination Time
	2.1.5Quote
	2.1.6Results List

	2.2Bindings
	2.2.1REST binding
	2.2.1.1Resources and URIs
	2.2.1.2Representations of resources
	2.2.1.3State changing requests
	2.2.1.4Message pattern

	2.2.2SOAP binding
	2.2.2.1Resources and URIs
	2.2.2.2Representations of objects
	2.2.2.3State-changing operations
	2.2.2.4Message pattern

	3Applications of UWS
	3.1Image service with data staging
	3.2ADQL service with cursor
	3.3VOSpace with controlled lifetime
	3.4Parameterized applications

	4References

