VOSpace and VOStore Design

Reagan W. Moore
San Diego Supercomputer Center
moore@sdsc.edu

Abstract'

Data grid technology provides the ability to
manage shared collections that are distributed
across multiple storage systems. Based on the
principles behind data grids, the design of
standard storage repository access
mechanisms (VOStore) and standard
information management infrastructure for
organizing shared collections (VOSpace) are
examined, with the intent of specifying the
minimal requirements needed for a functional
System.

1. Introduction.

The Astronomy community is developing
standard services for accessing image archives
and object catalogs. The standard services
provide simple interfaces to retrieve
information about stars and galaxies (Cone
Search) and information about images (Simple
Image Access Protocol). Two new services
are being developed:

* VOStore — a simple access mechanism to
retrieve images

* VOSpace — a minimal information
management system to organize shared
collections.

The development of the new services is
being driven by the desire to support access to
images that individuals have acquired, not just
the large all-sky surveys. The latter typically

! This work was supported in part by the NSF SCI0438741
Cyberinfrastructure project and the NSF National Virtual Observatory.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the National Science
Foundation or the U.S. government.

provide portals for accessing their image

archives, as well as catalogs for discovering

object of interest.

A major challenge is differentiating between
the capabilities that should be supported within
VOStore versus the capabilities that would be
supported by VOSpace. One way to
differentiate capabilities is to note that
personal access to personally owned images
requires less information. The owner of the
images has the knowledge required to interpret
the naming conventions of the files,
understand where the files are stored, and has
the permissions required to access the data.
The owner is able to run a utility like GridFTP
to directly interact with the storage system and
retrieve a file. A VOStore interface to
personally owned data can be as simple as
GridFTP.

When data is published, such that others can
discover and retrieve relevant images, a more
sophisticated interface (VOSpace) is needed
that provides:

* Descriptive metadata to support discovery
(this can be FITS header information that
is loaded into a metadata catalog).

* Logical name space to provide a common
naming convention across the images in
the shared collection and across the remote
storage systems where the images reside.

* Ability to organize the logical name space
into sub-collections to simplify browsing
and discovery of related images or files.

e Support for queries on the descriptive
metadata

* Support for access controls to ensure data
and metadata are not maliciously altered

* Remote procedures that can be used to
extract metadata, or create image cutouts,
or support transformations of the format.

* Support for replicas to improve
availability, minimize risk of data loss,
improve performance.

* Support for federation with other shared
collections to enable the creation of global
digital holdings

e Support for state information such as
owner, version, audit trail, locks, backups,
sticky bits for setting access controls from
a parent collection, soft links to other
images in the shared collection, deletion
flags, synchronization flags for replicas,
checksums, verification time stamps,
creation time stamps, update time stamps.

The VOSpace interface also can be
designed to manage latencies that are inherent
in distributed environments, through the
provision of bulk operations for metadata and
data movement. Typical bulk operations
aggregate data before transmission and use
parallel I/O streams to minimize the transfer
time. Finally, the VOSpace interface should
support graceful interactions with network
devices such as firewalls, load levelers, and
virtual private networks. The network
protocols used to implement bulk operations
have to differentiate between client-initiated
services and remote server-initiated services.

The latter enable use of parallel I/O streams

from behind firewalls.

2. VOStore:

The VOStore service can be implemented as
a software server that is installed as
application-level software at the storage
repository. The VOStore server responds to
commands from an access client or another
VOStore server. A preferred design is for
VOStore servers to support peer-to-peer
communication. The VOStore server can be
installed under the same Unix account as the
owner of the files that are being accessed.

A simple VOStore interface would support:

e “Put” of files onto the storage system. The
source of the files may be another VOStore
server or a remote client.

* “Get” of files from the storage system.
The files may be delivered to another
VOStore server or to a remote client.

* Deletion of files from the storage system

* List of files on the storage system.

* Access to Unix state information such as
owner, file name, and creation date.

The advantages of this VOStore server
specification is that it can be implemented on
top of existing Unix file systems without
having to manage a separate metadata catalog.
All read accesses are assumed to be to data
that are publicly accessible. All write accesses
are assumed to be through the account of the
person who owns the data.

3. VOSpace:

The VOSpace service implements a
metadata catalog to manage the logical name
spaces, the shared collection state information,
and the descriptive metadata that are generated
when files are published. The VOSpace
service corresponds to a shared collection that
may be distributed across multiple VOStores.
The files that are members of the shared
collection are owned by an account associated
with the VOSpace service.

This appears to impose an authentication
barrier. How do files migrate from privately
owned data in file systems to shared
collections that are owned by a VOSpace
account? Data grids manage this
transformation through the concepts of
registration and shadow links. A shadow link
is a pointer to a file that resides on a remote
VOStore instance. For operations to be
performed upon the remote file, access
permission must be given to the VOSpace
account. Registration corresponds to the
recursive loading of pointers into a VOSpace
metadata catalog for the files that exist within
a directory.

An example of this approach to migrating
data from a private context into a shared
collection was the replication of the DPOSS
sky survey into a Storage Resource Broker
(SRB) data grid. The DPOSS sky survey
images resided at Caltech on the HPSS
archival storage system. An account was
established on the HPSS system for the SRB
server. Access permission was then given to
the SRB server account for all of the image in
the DPOSS survey. A SRB server was
installed on the HPSS system. Note that the
metadata catalog into which the files were
being registered resided at SDSC. No
metadata catalog was installed at Caltech.

The SRB registration command was issued
from a client running at SDSC, redirected by a
SRB server at SDSC to the SRB server
running at Caltech (peer-to-peer server
architecture), and executed on the HPSS
system. The entire DPOSS collection was
registered into the SRB collection in 10
minutes. The time would have been shorter,
but HPSS provided information for only one
file at a time.

Once the files were registered into the SRB
collection, then they could be replicated onto
resources managed by the SRB over an
arbitrarily long period of time.

The ability to register filesinto a VOSpace
collections requires no additional capabilities
in the VOStore interface.

4. VOSpace implementation

The Storage Resource Broker data grid
provides a proof of concept that it is possible
to build a viable VOSpace system. The SRB
system consists of peer-to-peer servers that are
installed at each storage repository where the
shared data reside, and a metadata catalog that
resides anywhere on the network linking the
servers. The SRB server implements the
VOStore interface functionality using standard
Posix I/O functions. Actually, the set of
operations include not only single file “get”

and “put”, but also a wide variety of bulk
operations that deal with firewalls.

The metadata catalog manages both state
information for the shared collection (replica
locations, versions, checksums, owner, access
controls, time stamps, etc.) and descriptive
information. The SRB also supports the ability
to write to remote storage systems through the
GridFTP interface, and the ability to write files
under a user account ID. Note that writing
data under a user account ID means that the
data cannot be shared until access permissions
are established for the SRB shared collection
account ID.

The design principles on which the SRB is
based are:

* Latency management. The number of
messages and the amount of data sent
over wide area networks are minimized.

e Trust virtualization. Authentication,
authorization, and audit trails are
managed independently of the remote
storage system.

e Data virtualization. The properties of
the shared collection, including the
name spaces used to describe the shared
files are managed independently of the
remote storage system.

* Collection management. The shared
collection can be organized and
managed as a collection hierarchy. The
descriptive metadata can be extended
dynamically, schema extension supports
user-specified table structures for
metadata, import and export of XML
files is supported, and a template
language for automated extraction of
metadata is supported.

* Federation management. Multiple
independent SRB data grids can cross-
register name spaces, enabling the
creation of hierarchies of shared
collections. Each data grid retains
control of their data, while enabling
access from a user in a remote data grid
under appropriate access controls. All

authentication information remains with
the original home data grid of each user.
This is similar to the Shibboleth model
for authentication, but does not require
redirection through http proxies.

For each of these functional arecas, the SRB
supports the associated logical name space, an
extensive set of operations, and the associated
state information that is generated by each
operation. A representative set of capabilities
is listed in Table 1 for the SRB.

Logical naming

Standard operations

State information

Latency Logical resource names |Load leveling Quotas on storage and usage of storage
Management Fault tolerant replication Replication state
Compound resources _|File staging Names for file system cache
Sticky bits to inherit access controls of parent
Automated access control setting collection
Client and server initiated parallel I/O on access [Creation time, update time
Client and server initiated bulk file registration
Client and server initiated remote procedures Location in SRB of remote procedures
Client and server initiated bulk metadata load
Bulk delete - trash can Deletion flag
Automated checksum verification on load
Third party transfer
Store files in a logical container
Trust Logical user names Add or delete user User:Group:Zone

Virtualization

GSI authentication

Certificate authority location

Challenge-response authentication

Encrypted user password

Issue ticket-based authentication

Time to live and number of allowed accesses

User roles

List user roles

Curate, audit, annotate, read, write, group
administration, superuser, public

Set access control by role for user

Access controls on users

Group names

Set access control by role for group

Access controls on groups

Set access control on metadata for user

Access controls on metadata

Set access control on resource for user

Access controls on resources

Turn on audit trails

Audit trails

Enable client-based encryption

Encryption key

Resolve error number

System log of all accesses

Data

Virtualization

Logical entity names

Define SRB physical file name structure

SRB physical file pathname structure

Load a file into SRB collection (Sput)

Physical location where SRB stores file

Unload a file from a SRB collection (Sget)

Shadow links

Register existence of external file

Location of external file

Register existence of external directory

Location of external directory

Logical container
names

Create container

Physical file in which data is aggregated

Create checksum

Checksum

Verify checksum

Synchronize replicas

Dirty bit for writes

Synchronize remote files with SRB files

Synchronize SRB files with remote files

Synchronize SRB files between two SRB
collections

Posix I/O - partial read and write

Replica location

Delete file

Recursive directory registration

Register a file as a replica of existing file

Owner, size

Create version

\Version number

Create backup

Backup time

Lock a file

Lock status

Register SQL command

Issue a registered SQL command

Create and issue a Datascope query

Register URL

Collection |Descriptive metadata

Extensible metadata

Descriptive metadata for SRB file

Managment |Collection hierarchy

Create/delete subcollection

Parent collection identity

Create collection metadata

Descriptive metadata for SRB collection

Extensible schema

Table structure of metadata

Create soft link between two logical files

Soft link

Import of XML files

Export of XML and HTML files

Remote template-based metadata extraction

Location in SRB of templates

Synchronize slave catalog with master catalog

Location of slave catalog

Queries on descriptive and state information

Distinguished zone

Federation [names

Access zone authority to register zone name

Zone name and port number

Management|Zone authority name

User authentication by home zone

Cross-registration of resources between zones

Synchronization of user nhames between zones

Synchronization of file names between zones

Synchronization of metadata between zones

Table 1. Storage Resource Broker logical name spaces, global data manipulation operations, and
global state information for the functional areas of latency management, trust virtualization, data
virtualization, collection management, and federation management.

A simple VOSpace implementation would .
provide a subset of the SRB capabilities by .
eliminating support for: .

* Bulk operations .
* Containers .

File locks

URL, SQL registration
Datascope query access
Extensible schema
Slave metadata catalogs

¢ Ticket based authentication

* Separate access controls on metadata
and resources

* Encryption

* Versions

[]

Backups

The other features are already in use in
astronomy data grids such as NOAO and in the
Teragrid replication of sky survey image
archives.

