
 1

This is the revised version that I promised at the Interoperability Workshop. I have
substantially changed the content and scope of this document in ways that go well beyond the
issues discussed directly in the UCD working group meeting. These changes are reflected
primarily in section 5. I have included some commentary on the text within the document.
This text is generally given in red and would be eliminated even in the unlikely event that this
proposal were accepted without change. The commentary material includes discussion of
differences between this proposal and the previous one. There is a summary of this after
section 4.

Metadata Content within VO Resources
Version 1.9.9b

IVOA Working Draft
2003-10-21
Previous versions: 1.9.9 (2003-10-02)
Authors:
Sébastien Derriere <derriere@newb6.u-strasbg.fr>
Norman Gray <norman@astro.gla.ac.uk>
Bob Mann <rgm@roe.ac.uk>
Andrea Preite Martinez <andrea@rm.iasf.cnr.it>
Jonathan McDowell <jcm@cfa.harvard.edu>
Thomas McGlynn <<Thomas.A.McGlynn@nasa.gov>
François Ochsenbein <francois@vizir.u-strasbg.fr>
Pedro Osuna <Pedro.Osuna@esa.int>
Guy Rixon <gtr@ast.cam.ac.uk>
Roy Williams <roy@cacr.caltech.edu>

1. Abstract
This document defines and describes the standard method for incorporating metadata content
descriptors within Virtual Observatory entities. In includes both the definition of these
Uniform Content Descriptors (UCDs) and specific recommendations for how these quantities
should be used within tabular information. While use in tabular datasets is highlighted,
UCDs may be used in other contexts.

 2

2. Status of this document
This is an IVOA Proposed Recommendation for review by IVOA members and other
interested parties. It is a draft document and may be updated, replaced, or superseded by other
documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials
or to cite them as other than "work in progress." A list of current IVOA Recommendations
and other technical documents can be found at http://www.ivoa.net/Documents/.

This document proposes a revision to an accepted UCD vocabulary. This revision is not
compatible with the existing vocabulary. Acceptance of this document as a recommendation
implies changes to existing software and other informal agreements including the Cone
Search and Simple Image Access Protocols since these use UCDs incompatible with the
proposed standard.

3. Acknowledgments
This document is based on the W3C documentation standards, but has been adapted for the
IVOA.

4. Uniform Content Descriptors: A Controlled Vocabulary
for Astronomy
The Unified Content Descriptor (UCD) is a formal vocabulary for astronomical metadata that
is controlled by the International Virtual Observatory Alliance (IVOA). Each UCD describes
a concept, a kind of thing that may be of interest to astronomers or useful to VO resources.
UCD concepts are analogous to classes in object oriented programming. In particular the
UCD describes the type of the thing, the content it refers to defines one or more instances of
the given concept. E.g., Galactic latitude is a concept, the latitude of the Galactic center
which has the numerical value of 0, is an instance of this concept. The UCD concept
vocabulary is restricted in order to avoid proliferation of terms and synonyms, and controlled
in order to reduce ambiguity as far as possible.

UCDs play a central role in resource discovery and processing in the Virtual Observatory.
Services may publish the UCDs that describe their outputs. Looking at these UCDs human
users or machine agents can find sources of the information they are looking for. When a VO
service needs to process a element of data obtained from a remote site, the UCDs guide the
processing. Existing and proposed VO protocols use UCDs as the mechanism to convey to
users where critical information resides. UCDs and trees of UCDs may be used to express
the relationships among data critical to building effective data models.

UCDs are simply a string with a structure defined below. The format of the string balances a
number of competing goals:

1. UCDs should be short.
2. They should suggest the concept being labeled.
3. Only a single UCD should be appropriate for a given concept.
4. UCDs should be complete, describing all concepts of interest.

 3

5. The vocabulary used within UCDs should be as small as possible.
6. The structure of UCDs should reflect the relationships of the concepts they label.

Related concepts should have related UCDs.
7. Quantities with the same UCD should be comparable. This ‘comparability’ may

requiring rescaling or adjustment of the values or attributes of the instances being
compared. Comparability of UCDs is discussed in section 4.5, including the
meaning of comparability for UCDs that describe complex entities.

A UCD description of a quantity does not define the units or name of the quantity, but rather
'what sort of quantity is this?'; for example phys.temperature is a semantic class description
of temperature, without implying a particular unit.
It would be possible to describe astronomical data quantities in a natural language such as
English or Hungarian or Uzbek; however, it would be very difficult to expect a machine to
'understand' in any sense. At the opposite extreme, there is an attempt within the IVOA to
describe astronomical data in terms of a hierarchical data model, so that there is a place for
everything, and everything is in its place. The UCD vocabulary falls between these extremes,
and is (we hope) understandable to both human and computer.

I have deleted the original section 3.1 since I don’t believe it adds anything to this
specification. If we plan a UCD 3, those goals might better be defined in a conclusion or
appendix.

4,1 UCD Syntax
A UCD is a string which contains textual tokens that we shall call words, which are separated
by semicolons. A word may be composed of several atoms, separated by period characters.
The order of these atoms induces a hierarchy. E.g., the set of words pos, pos.eq and pos.eq.ra
reflect increasingly precise concepts. Standard words used in the UCD, which are validated
by the IVOA, can start with the ivoa: namespace, but this namespace is optional.
The character set that may be used in a UCD is the upper and lower-case alphabet, digits, and
hyphen. The colon, semicolon, and period are special characters as discussed above.

• The UCD syntax is case-insensitive – all uppercase characters should be converted to
lowercase before parsing.

• There should be no whitespace within a UCD.

Each UCD consists of a sequence of words where the first word is a base concept and
following words are properties. Properties comprise two types: modifiers and attributes.
Zero or more modifiers words immediately follow the base concept, and these are followed
by one or more attribute words. Modifiers are UCD adjectives, constraining the meaning of
the base concept. Attributes define an aspect of the concept. For many simple concepts the
only attribute may be the ‘value’. E.g., consider a column that simple contains a set of flux
measurements. The underlying concept is phot.flux and the UCD is phot.flux;value. As a
convenience to the user in the case where the UCD is a simple two-word form, concept;value
the value property may be omitted. E.g., we may use phot.flux as an abbreviation for
phot.flux;value. However in phot.flux;em.radio;value the value attribute is mandatory.

 4

The vocabulary of words used to define UCDs consists of three elements: base concepts,
modifying properties and attribute properties. Words belong to only one of these classes but
the component atoms that comprise words may appear in any of the three vocabularies.
Subsequent sections of this document describe each of these three elements in turn.
Refined or special concepts are built in steps from a simple UCD.

phot.flux A flux in some undefined band (short for
phot.flux;value)

phot.flux;em.optical;value A flux measurement in the optical band.
phot.flux;em optical;meas.error . The error in the flux. This illustrates a different

attribute of the flux concept. The UCD
phot.flux;em.optical;meas.error is also a concept
in its own right and thus may be modified.

phot.flux;em.optical;meas.error;stat.max Only attributes may be appended to complete
UCDs. This one indicates a column or more
likely a parameter that is the maximum error in
the flux.

A well-formed UCD comprises a base property, 0 or more modifying properties, and one or
attribute properties. If more than one modifier is included then modifiers should be given in
alphabetical order. The constraint on the order of modifiers helps to ensure that UCDs are
unique. E.g., consider the UCD for a calculated optical flux:
 phot.flux;em.optical;intent.calculated;value
This represents the same concept as
 phot.flux;intent.calculated;em.optical;value
By specifying the order of modifiers users are able to match UCDs by simple string
comparisons. A key issue to remember is that modifiers do not modify each other, but the
base concept.
On the other hand the order of attributes is very significant and unconstrained by the syntax.
The error in the maximum is a very different thing than the maximum of the error.

The type of a given word in the UCD vocabulary can be inferred from the initial atom.
Words beginning with em, frame or intent are modifiers. The initial atom stat or filter signals
an attribute. The single atom words value, vector, local, instance and multiplet are special
attributes. All other words are base concepts.

The need for well-formed UCDs (or some equivalent) is needed in the old proposal as well.
If we have more than one modifier, then the modifier property (or concept, I’m not sure
which is appropriate in the old proposal) then there doesn’t seem to be any natural way to
specify the order of the attributes. Since the old proposal allows a fairly arbitrary set of
related concepts and properties in the UCD assessing the ‘equality’ of two UCDs would be
extremely difficult.

 5

However the requirement that the UCD end in an attribute property is required by this new
scheme to ensure that regular expression matches of the type that Aladin currently does can
be done with good reliability.

4.1.2 Namespaces.
The use of namespaces, indicated by the presence of a colon in the word is possible, but
should be avoided as far as possible. The namespace is defined by the string before the colon
and the word follows. The words in the non-standard namespace must be distinct from all
words currently in the IVOA namespace.
While developers may need local namespace, they should be used only temporarily, for
words that are not yet included into the UCD validated by the IVOA. New words should be
added using the procedures discussed in section XX.

4.1.3 Examples of Legal Syntax
The following examples have legal UCD syntax:

1 pos.eq.ra;value

2 pos.eq.ra;meas.error

3 ivoa:meta.id;value

4 meta.id;value

5 Meta.ID;Value

6 x1:experimental.quantity;x2:new.modifier;stat.error

In this list, 3 ,4 and 5 are all equivalent becuase ivoa: is the default namespace and UCDs
are case insensitive. Note that the namespace applies separately to each word in the UCD.
Thus example 6 has words from two non-standard namespaces and one from the standard
namespace.
4.1.4 Examples of Illegal Syntax
The following UCDs are invalid. The table indicates the reason.

1 pos.eq.ra; value Embedded space

2 pos.eq.ra;;meas.error Null word

3 pos..eq.ra;meas.error Null atom

4 phot.flux;x1:meas.error Namespace reuses existing word

5 Meas.Error No base concept

6 Math.ratio;Phot.flux;Time.exposure

 Base concepts used after first word

 Grouping constructs (section 5) would

 be used to associate columns.

7 Phot.flux;em.polarized Does not terminate in an attribute

8 Phot.flux;intent.calculated;em.xray;meas.error

 Modifiers not in alphabetical order.

9 Flux;meas.error;em.optical;stat.max

 Modifier appears after an attribute

 6

4.1.5 Backus-Naur Form
<alpha> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

 |A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<char> ::= <alpha>|<digit>|-

<period> ::== .

<semicolon> ::== ;

<colon> ::== :

<word-component> ::= <alpha>|<digit>|<word-component><char>

<namespace-ref> ::= <word-component>

<word> ::= <word-component>|<word> <period> <word-component>

<nword> ::= <namespace-ref> <colon> <word> | <word>

<BaseConcept> ::= <nword>

<Modifiers> ::=

 <nword>;<Modifiers>

<Attrbutes> ::= <nword>

 <nword>;<Attributes>

<UCD> ::= <BaseConcept> # Special case for defaulting value

 <BaseConcept>;<Modifiers><Attributes>

A UCD is always case-insensitive

4.2 UCD Vocabulary
This and following subsections describe the three kinds of word used within UCDs. Words
belong to only one of the three types. For each section the initial atom of appropriate trees
and a few example words are given. While additional trees will doubtless be developed, re-
use of the existing hierarchies is encouraged.
4.2.1 Base Concepts.
This section discusses base concepts one of which starts each UCD. .

arith

quantities related to arithmetic and mathematics, including count, difference, ratio.
See the discussion in the attribute filter. Use of the arith tree should be restricted to
cases when there is no existing UCD that describes the kind of row created. E.g., for
a table of X-ray sources with a counts and exposure column, the proper column for
the ratio of these two columns is almost certainly in the phot.flux tree rather than
arith.ratio.

concept

This single word is used as the origin of the concept tree. While it is rarely needed to
be used in UCDs it can be used to affirmatively declare that the table writer doesn’t
know or does not wish to publish any semantic information about this entity. This has
much the same effect as not including the UCD attribute, but if one is looking for
columns with undefined UCDs it may be easier to search for the particular string
UCD=concept than to find the locations where UCD is omitted. It can also be used
in UCD templates where it might be replaced by a base concept from any tree, or in
situations where no single tree is appropriate.

human
quantities related to people and institutions: names, addresses, phone
numbers,nationalities.

 7

meta quantities related to metadata, such as IVO style identifiers, flags, notes, URL

instr quantities related to an instrument; typical sub-levels are telescope, observatory, etc.

obs observation methods such as detector, filter, plate, spectrograph, exposure time, etc.

phot

All photometric measurements, organized according to the wavelength; includes
polarization.
I’m a little confused by phrase ‘according to wavelength’ that I’ve retained above.
Is the em breakdown which used to be included inside the phot stuff now moved
entirely to the em hierarchy. I’m assuming that we use phot.flux;em.optical.u rather
than phot.flux.optical, If so we need to change the above.

phys
Generic physical quantities, such as length, velocity, mass, and including atomic &
molecular concepts and properties, temperature, pressure, gravity, etc...

pos

Position in the sky, reference frames; including equatorial, galactic etc coordinates;
geocentric, heliocentric etc; and precession and nutation. Also includes position on
the surface of the Earth.

soft Software defined objects, e.g., services, archives, catalogs

spec Quantities related to spectroscopic measurements

src
properties of the observed source of radiation: common ids, source classifications and
morphology, extension in the sky, variability,

time Quantities related to time.

The new tree was simplified compared to the old UCD tree; important modifications include:

• Atomic and molecular data are moved to a branch of phys
• The src branch is introduced for photon sources such as stars, galaxies etc.

• Observatory information is moved to the instr branch.

• A human tree is added to hold concepts relating to the people and institutions
• A soft tree is added to hold concepts relating to software entities that may be

described in VO entities.
• The single word concept is added to be the root of all concepts.

More details about some of the most important branches are shown in the annex below.

4.2.2 Modifier properties.
These words are used to modify the meaning of a base concept. Changes and additions to the
modifier tree should be made with somewhat greater care than for base concepts. Users
should carefully consider how the modifier works in conjunction with the all base concepts.
Modifiers should be carefully chosen so as not to introduce ambiguities in the formulation of
UCDs.

 8

em

quantities which describe the kind of electromagnetic radiation involved in the base
concept, notable frequency/energy/wavelength and polarization. Since many of these
same quantities apply to gravitational radiation and some to particle detections, the em
atom may be interpreted loosely in these cases.

frame

quantities which describe the frame in which the base concept is to be taken, i.e., the
context in which the base concept is realized. The em qualifier addresses the energy
dimension of the frame and the spatial element is typically included in the base concept
(cf. the eq and gal fields inside pos). However time frames should generally be
addressed here. E.g., a UCD might be defined as time;frame.time.geocentric;value.
The frame attribute might also be used modify spatial coordinate systems as in:
pos.body.lat;frame.body.mars;value.
Almost all modifiers can be thought of as being in the frame tree, e.g., the em and
intent trees could easily be rendered as frame.em and frame.human, but are separated
out since they are so common.

intent

quantities that restrict the human context of the concept. E.g., calculated, predicted,
simulated. This should not be used to distinguish among distinct science elements,
e.g., background versus foreground which would normally be part of the base concept
or the measurement if they are addressed at all.

The modifiers include two new trees, frame and intent which are discussed above.

4.2.3 Attribute properties.
Attribute properties indicate that the given UCD labels an attribute of the base concept. E.g.,
the value,meas.error,and stat.max attributes describe entities that give values, errors and
maximum of the base concept. Note that the UCD indicates a semantic relationship and not
necessarily a physical relationship. E.g., suppose a user submits a request rendered in SQL as
“select max(ra) from table”. This return from this query might be a single cell table with a
UCD for the column as pos.eq.ra;stat.max even though there is no right ascension column
present in the table the user sees.

This does not mean that attribute properties cannot be used to determine the likely
relationships among columns in a table. How this is done is discussed in section 5.
As with modifiers attributes should be extended with considerable care. Additions to the
single word attributes are should be particularly scrupulously considered.

The following attribute trees are defined.

filter

A filter is an attribute that reflects processing on some other column. The attribute
trees for filter and stat and the concept tree for arith are linked but distinct.
Arith should normally be reserved for concepts that involve the combination of
multiple columns so that there is no single base UCD. The association of an arith

 9

column with the columns it derives from is discussed in section 5.
Stat attributes refer to processing of single columns that normally reduces the
dimensionality of the data (e.g., a data column is transformed into some statistic on the
column). There will normally be a single value of stat.max associated with all of the
values in a column. Thus for simple VOTables the stat attributes may often be found
in PARAMETER elements rather than FIELD elements. However if a column has
vector valued cells, then there may be a stat.max attribute associated with each row –
but it will be a scalar. Occasionally stat quantities may have the same dimensionality
in the table as the base concept, but even this will often reflect the fact that the max
column pointed to an array of data that has not been recorded. E.g., we might record
the temperature of aninstrument at the beginning of each minute as well as the
maximum and minimum temperatures during the minute. The value and stat.max
columns have the same dimensionality, but the maximum was derived from a higher
dimensionality dataset.
The filter tree reflects processing of a single column that preserves its dimensionality.
Filters may be common for vector columns. Attributes would include: smooth,
compress, rotate.

meas

Attributes associated with the process of measurement. The attribute meas.value
should not be used (use just value instead). Error, error.statistical, error.systematic are
key members of this tree.
See the discussion for filter to understand why error was taken out of the stat tree, i.e.,
error has the same dimensionality as value. It also doesn’t really fit semantically into
stat.

stat

Attributes that reflect the calculation of a statistic on a collection of elements described
in the base concept. Where appropriate attributes like stat.max may be used in
alphanumeric as well as numerical contexts, but many stat elements are useful only in
numerical contexts. See the discussion in filter above.

The filter and meas trees are new.
There are a few new special single word attributes which we now discuss. These attributes
play a central role in building complex UCDs.

value

The value attribute is the basic attribute for simple concepts. It represents the actual
instantiation of the string or number that is implied by the concept. A value
attribute should never be used after another attribute. I.e.,
phot.flux;meas.error;value.is incorrect: the value is superfluous. Note that if the
basic concept is vector-valued, the value may be a vector. I.e., consider cell that
contains an array of fluxes. Since UCDs are intended to convey the semantic
content of the cell, it would be appropriate to distinguish whether the information in
the cell was a time series or a spectrum. If we define appropriate UCDs
phot.spectrum;em.optical;value and phot.timeseries;em.optical;value we can
distinguish these two situations.

vector
This attribute may be used when there is no special UCD describing an array of the
base concept. While VOTables provide a dimension attribute, it seems likely that
users will find being able to distinguish vector and scalar columns in the UCD

 10

useful. Errors and filters associated with vector quantities would also likely be
vectors. Note that some UCDs should imply a vector column. E.g., a
phot.spectrum or phot.timeseries might be used to describe a cell with an array of
flux values. The UCD phot.spectrum;vector would imply a vector of spectra in each
cell.

instance

This play the role of value for complex UCDs, i.e., the UCDs of tables and groups.
It indicates that all of the fields and parameters in the appropriate scope are
attributes of the concept described in this UCD. E.g., a simple table UCD might be
src;instance. The instance indicates that in each row the ra, dec, flux, name, etc.
refer to a single particular source.

multiplet

This can be used instead of instance in complex UCDs to indicate that there are
several of the same instances in each row of the table. This attribute should rarely
be used, but might be appropriate in a context where two tables have been cross-
correlated and neither table is considered subordinate to the other. E.g., after cross-
correlating the ROSAT and ASCA observations over the sky, the result is a table
each row of which represents a pair of observations.

local

This special attribute asserts that the semantics of the column are such that it cannot
be used outside of its local context. In particular it indicates that this column should
not be cross-correlated with any other columns.
Note that local should be used when the semantics of the column are not matchable,
not when matching is not feasible due to the representation. E.g., there are many
different systems for classification of objects so that a given tables classes may not
be correlatable with others in practice. However such a column should not be given
a property of local, since the base concept of what a class is, is shared by other
tables and one could imagine usefully joining tables on this idea. However, the
jitter in the temperature of the fourth stage photomultiplier of some instrument is
just not something that can usefully be compared with data in a VO context and
should be given the attribute local.
This fills a potentially serious gap in the original proposal. The idea was (I think)
that for say a bunch of engineering data a user would just specify a UCD of (say)
instr. However we now need to have a rule for understanding how long a UCD
needs to be before it makes sense to compare them. In this proposal the UCD is
given as instr.local so we still give a bit of information about what is in the table,
but we make it clear that the column shouldn’t even be thought of for cross-
matching.

4.3 Freedom in Hierarchy
UCDs at any level can be used to describe some parameter, whether sub-levels are existing or
not. This rule implies that we do not use a qualifier like misc or gen: if a quantity is not
accurately defined, we just use the `parent' UCD. An example comes with the division of the
electromagnetic spectrum: the standard UCD words can label parts of the spectrum, for
example em.IR.3-4um and em.IR.4-8um. To label a region from 3 to 5 um, the recommended
UCD is the generic em.IR.

 11

4.4 Standard Usage
The elements of the tree make use of a standard vocabulary, in the sense that a single word is
used to designate a physical concept or quantity. For instance, if electron is used to designate
any electron-related quantity, we write e.g. phys.temp.electron to designate the electronic
temperature and not an abbreviation like phys.temp.el; conversely, electron keeps the same
meaning among all UCDs. We should try to maintain a list of these meanings -- we are for
instance using temp for temperature, phys for physical, and so on.

4.5 UCDs and Relationships among Concepts

UCDs describe relationships among concepts in three distinct ways.

UCDs provide a standard framework in which we can create labels whose relationship is
understood as expert information in the field. [Doubtless the word ontology belongs in this
paragraph.] E.g., there is nothing in the two strings pos.eq.ra and pos.eq.dec that indicates the
relationship between Right Ascension and declination. However users and software
understand that relationship and UCDs provide consistent markers to enable the use of that
knowledge. This is perhaps just a fancy way of saying that UCDs provide a consistent way
of labeling columns – unlike column names which tend to vary wildly.

UCDs also indicate the comparability of columns. Two columns with the same UCD should
be ‘comparable’ in some sense. The more precise the UCD is, the more useful this
comparability is likely to be.
 The next section uses UCDs of objects, usually with the attribute instance. Comparability of
such UCDs does not generally mean that they have the same structure, but rather that there is
some sense that the underlying instances may be the same. E.g., two source tables may both
have a UCD of src.instance but one may contain flux information while the other has proper
motions. These tables are comparable, because rows of the two tables might be referring to
the same object. I.e., the underlying source instance is the same even though the attributes of
the source expressed in the tables are very different.
Columns may be comparable even if they have different UCDs. Generally if the two UCDs
can be made identical by omitting terminal atoms in one or more words of the UCDs, then the
fields are comparable when thought of in the more generic context of the truncated UCD.
E.g., the UCDs phot.flux;em.optical.band.u;meas.error.statistical and
phot.flux;em.xray.hard;meas.error.systematic may be truncated to phot.flux;em;meas.error
and compared as instances of this more generic UCD.
Similarly if UCDs differ in their modifiers they are comparable as UCDs where the differing
contexts have been omitted. E.g., a calculated and measured flux might have UCDs
phot.flux;em.optical;intent.calculated;value and phot.flux;em.optical;value. These fluxes are
comparable by ignoring the intent of the first column.

 12

When modifiers or atoms in the UCD words are ignored software and users should be aware
that entity is being treated in a more generic context than it was defined in.

The final way that UCDs describe relationships is in the association of different attributes to a
given base concept (or base concept and modifiers). The attribute structures define generic
relationships among entities, e.g., the relationship between a value and an error or between an
image and a smoothed counterpart.

To build an understanding of data, we need to address not only the semantic relationships
among concepts that UCDs provide: i.e., the flux concept is related to errors in fluxes, but
also a physical relationship: this particular flux is related to this particular error. How this is
done, and how the combination of semantic and physical relations allows use to build models
of VO datasets is described in the following section.
Just a few words here to summarize the distinction between this proposal and the proposal it
responds to…
 The basic difference is that everything revolves around the base concepts, not properties.
Here are some specific differences:
 The function of a word is always the same. It cannot sometimes be a property and
sometimes a concept.
 Many UCDs that would valid in the old scheme are illegal in this one. Indeed I’m not sure
that any string of words can be determined to be illegal in the old scheme. The only
restriction on words was that the first be a property, and there is no way to tell which words
are properties. This strictness is a good thing if we anticipate using UCDs in software. E.g.,
stat.error was a valid UCD even though it was completely unclear what it referred to. UCDs
could be built into arbitrarily large agglomerations. This is much harder in the new scheme,
since one cannot put in a second base concept, modifiers are strictly ordered and most of the
attributes tend to be limiting. E.g., the statistics trees decimates the dimensionality of the
quantity so it’s hard to imagine UCDs like concept;stat.max;stat.max even though they may
be lexically valid. In the previous scheme UCDs like:
 arith.diff;arith.sum;phot.flux;em.optical;arith.sum;phot.flux;em.optical;phot.flux.xray
were clearly in the offing with hosts of parenthesis and such. All of this complex tying of
one table to another has been moved to where it belongs in the grouping structures discussed
in the next chapter.
 The format for UCDs is much more tightly constrained and it should be much easier to
ensure that UCDs for the same quantity are actually written identically. The previous scheme
allowed substantial ambiguity in how a UCD should be written even if the words comprising
the UCD were known. This will make it easier to build UCDs and to automatically parse
them.
 Only a single base concept can appear in a UCD. Relationships among base concepts are
addressed using the grouping structure discussed in the following chapter.
 The order of properties and concepts is reversed and mirrors the conventional
representations of objects and attributes.

 13

 Error is moved to a new meas tree. I would suggest this even for the previous scheme.
Errors are not a statistical property – they arise from the physics associated with the
measurement. This also allows a useful separation of stat and filter attributes.
 The local property is added. Something similar would be appropriate in the old scheme.
 Several new word trees are defined as well as a few special single word attributes. The
latter are important for the discussion in section 5. Most of the trees are simple reflections of
what I see as holes in the UCD coverage but they probably aren’t critical and have nothing
really to do with the difference in schemas. I haven’t actually seen the full tree of UCDs for
the new proposal. One important issue with my proposal is that I would like users to be able
to distinguish attributes, values and concepts by looking only at the first atom of a given word
and not repeat words in those three categories. This is manifestly possible (e.g., I could
simply create new trees as needed), and I think it even works out nicely, but the proof is in
the pudding.
 The alias concept is deleted. The whole idea of UCDs is to be standard and so I think it’s a
bad idea. but perhaps I misunderstand it.

5. UCDs in Complex Structures.

This following discussion is largely independent of whether we choose the original UCD2
framework or what I have described above. However this approach enables us to build
complex concepts from the simple UCDs so that the UCDs themselves bear much less
weight in describing the organization of data. Personally I believe this approach will largely
obviate the need for utypes in VOTables. I would be very interested in other reactions.
The recent proposal for grouping structures within VOTables makes it possible to use UCDs
in a much more sophisticated way than was possible when tables could comprise only a linear
array of columns. UCDs are not necessarily tied to VOTables, but we recommend that
grouping structures should be available and used whenever UCDs are used in other contexts
to describe tabular information. From the perspective of UCDs the key elements of the group
are that it ‘physically’ associates a group of columns, and that there is a group UCD. A UCD
for tables as a whole will also be extremely valuable.
When we say that the group physically associates entities, all we mean is that by placing
entities within a group the table builder is declaring that these entities are linked together in
some relationship. The grouping does not describes the semantics of the relationship. That is
the role of UCDs. Generally the grouped entities may be thought of as attributes of the entity
described in the grouping UCD.
Groups should be used in a table whenever two or more columns (or parameters) are related
to one another in some way other than as being distinct attributes within their enclosing table
(or group). Table and group UCDs are usually simple two word UCDs. The use of groups
and table UCDs is described below using a series of examples. These examples use a simple
graphic, the UCDtree to represent the UCDs within a table. Each UCD is placed on its own
line occasionally with a comment following. Whitespace separates the UCD from any
comment. The table UCD is on the first line and is not indented. Whenever we go into a
group or table the subsequent lines are indented one more tab. This immediate illustrates the
group structure of the table.
.

 14

Example 1: A simple table giving the id, position and flux of a set of sources.
src;instance The table UCD, since this defines a group subsequent
 lines are indented
 meta.id;value A column UCD
 pos;instance A group UCD – since the next column is indented more
 pos.eq.ra;value A column UCD
 pos.eq.dec;value A column UCD
 phot.flux;value A column UCD

This is the UCDTree for a simple table with an id, position and flux for a set of sources. The
table UCD indicates that each row in the table represents one source. The ID and flux are
given using simple value UCDs, but since RA and Dec are related to each other they are
grouped as a position instance.
The VOTable XML for the header of this table might look something like:
<TABLE … ucd=’src;instance’>
 <FIELD … ucd=’meta.id’/>
 <GROUP … ucd=’pos;instance’>
 <FIELD … ucd=’pos.eq.ra’/>
 <FIELD … ucd=’pos.eq.dec’/>
 </GROUP>
 <FIELD … ucd=’phot.flux’/>
…
</TABLE>

Only the UCD relevant elements of the XML table have been given. Note the use of the
convention allowing the omission of the value attribute.
Software that knows nothing of group UCDs will work fine here. It will find the RA and Dec
and flux columns without any trouble. We don’t lose anything by using groups.

Now let us consider more complex cases, to see the real power of combining UCDs and
groups. In the old UCD schema UCDs with ‘main’ attributes are needed to resolve
ambiguities among columns with similar UCD, but this kludge fails as tables get even
modestly complex.

Example 2: A source table with the observation plate center and an observation table with a
guide star position.
src.instance This is the source table
 meta.id;value The id of the source
 pos.instance
 pos.eq.ra The RA for the source
 pos.eq.dec The Dec for the source
 obs.instance
 meta.id;value The ID of the plate
 pos.instance
 pos.eq.ra The RA for the plate center
 pos.eq.dec The declination for the plate center
 phot.flux;value The flux of the source

 15

obs.instance This is the observation table
 src.instance
 meta.id;value The id/name of the guide star
 pos.instance
 pos.eq.ra;value The RA of the guide star
 pos.eq.dec;value The declination of the guide star
 meta.id;value The id of the observation
 pos.instance
 pos.eq.ra The RA of the center of the observation
 pos.eq.dec The declination of the observation.
 time.exposure;value The exposure time of the observation

These two UCDTrees merit careful study. This example is contrived such that, with the
exception of the last column, the column UCDs in these two tables are identical and in the
same order yet both software and humans should have no trouble distinguishing the very
different semantics of the two tables.

First, the table UCDs indicate the basic sense of what each row in the tables is. Software or
people can see that we get information about sources in the first table, and information about
observations in the second.

Next, to find the primary position (or id) fields we simply look for the position field which is
least indented, closer to the root table UCD. This simple approach will obviate the need for
‘main’ qualifiers. Note that the order of the columns is not significant – it is the table
structure that reveals the primary fields.

Finally consider a situation where a user is looking for the positions of sources and does not
care if the information is a primary attribute of the table. There’s no problem with the first
table naturally – it is a source table after all. But the second table manifestly has such
information too and the user can easily find it. What is quite remarkable is that user can get
the source positions in a non-source table by making exactly the same query of the second
table as of the first: find a pos entry in a src context. Essentially the user can specify a model
– a data model – for the information they are looking for and find it regardless of its depth in
the table. This is exactly the kind of query on hierarchical data that XQuery has been
developed for.

 16

Example 3: Two examples of two sources in a table.
src.instance
 phys.wavelength;value
 phot.flux;value
 src.instance
 phot.flux;value

src.multiplet
 phys.wavelength;value
 src.instance
 phot.flux;value
 src.instance
 phot.flux;value

Here we have two tables with three columns with identical UCDs, but the grouping UCDs are
quite different. What could this mean?

The tables seem to be spectra since we have a flux and wavelength for each row. In the first
case there is also a source which is an attribute of the table source.

In the second there are two sources that are not dependent on one another. The multiplet
attribute of the table UCD suggested that we would have more than one instance in each row
and the detailed examination of the UCDTree confirms this. Apparently the wavelength
column is shared by each of these two source instances.

The first table would be appropriate where the second flux value is from a calibrator object.
The calibration object is considered as an attribute of the primary source. So if we want to
find the flux for the primary source we look at the less indented column.

The second table would be appropriate if we happen to have a detector that takes two spectra
of independent targets and records them together. The two sources are associated physically
in the table – they were observed at the same time perhaps -- but there is no semantic
relationship between them, or at least none that the table creator chose to express. It is
important that our semantic framework is able to indicate lack of relationship just as easily as
relationship.

One interesting issue here is what we choose for the table UCD. Here the UCD indicates that
this is information about a source, but it could perhaps have used a phot.flux;instance or
phot.flux;multiplet. A case can be made for both but we should try to agree on appropriate
templates to be used within the VO.

 17

Example 4: Source cross-correlations.
One of the commonest operations we anticipate in the Virtual Observatory is the correlation
of two object tables. We can make quite subtle distinctions about the results of such a
correlation by how we structure the resulting output. Consider

src.multiplet
 src.instance
 meta.id;value The Sloan ID
 pos;instance The Sloan position (the actual columns are suppressed)
 phot.flux;em.optical;value A Sloan Flux
 src.instance
 meta.id;value The 2MASS ID
 pos.instance The 2MASS position
 phot.flux;em.infrared;value The 2MASS flux
 phys.degrees;value The offset between the two targets

This representation of the table suggests that each row is a candidate pair that we have
associated, but by making the table UCD a multiplet we have not implied that the two sources
in each row necessarily refer to the same object. Note that we cannot find a ‘main’ position
for this table. This is good. In this situation we don’t really know what the correct position
is. Structure should not manufacture information that does not exist and it is important that
the structure allows us to preserve that ambiguity.

If we believe that the cross-match is matching data from the same object we might have
written data in a table with a UCDTree

src.instance
 meta.id;value The Sloan ID
 pos;instance The Sloan position (the actual columns are suppressed)
 phot.flux;em.optical;value A Sloan Flux
 src.instance
 meta.id;value The 2MASS ID
 pos.instance The 2MASS position
 phys.degrees;value The offset between the two targets
 phot.flux;em.infrared;value The 2MASS flux

Aside from moving the offset column we haven’t changed the data in the table at all.
However the table now indicates that each row contains data about a single source. The
Sloan ID and position are now the ‘main’ name and id. The 2MASS information is retained,
but other than the flux value it is considered subsidiary to the Sloan. The software that has
done the cross-correlation has resolved the ambiguities that arise in the cross-match.

 18

Example 5. Cross-correlating sources and observations.
A generic cross-correlator might be asked to correlate a table of observations and a table of
sources. Perhaps the user wants to find the sources within the field of view of the
observations, or perhaps they wish to find the observations that contain a source. Without
knowledge of what the user wants the correlator might produce a UCDTree like

concept;multiplet
 obs.instance
 … observation fields
 src.instance
 … src fields

Note the use of concept in the table UCD. Given more input about the user wants, the
correlator might have chosen either src.instance or obs.instance as the basic type of the table.

In the discussion of the last few examples above we began abbreviating UCDTrees by not
including every column but just including the group parameters in some places. This
illustrates another aspect of the flexibility of the UCDTree in describing the table structure.
We needn’t clutter the discussion of our data models with irrelevant details, e.g., we can talk
about positions with having to specify the detailed columns. We can just as easily match a
position specified in galactic coordinates as one specified in RA and Dec.

5.1. UCDTrees and Data Models
Standard idioms for the structure of tables should be developed as soon as the new UCD
scheme and VOTable grouping enhancements are available. If tables use the grouping
structures in consistent fashions, then UCDTrees may be used in defining data models at least
as they relate to tabular data. Since most common high-level datatypes can be represented in
a number of different ways, data models will likely need to specify multiple possible
structures, but the with the development of tools specifically intended for winkling
commonality hidden within complex XML structures, notably XQuery, it may be possible to
build tools that see if tables can be used as spectra, timeseries, images and so forth. Even if
this ambitious goal cannot be met, the structuring of tables allows data models to
unambiguously find required information, e.g., the error associated with position or flux or
the reference frame parameters associated with a given measurement when there are several
reference frames used within the table.
Unlike UCDs where it seems reasonable to strive for a syntax that largely ensures the
uniqueness of the appropriate UCDs, it seems unlikely that there is any natural way to ensure
unique table structures for complex data. The publication of standard UCDTrees or other
structure templates will be needed to ensure that VO services can translate data models into
actions on real data.

 19

I have deleted the extensive description of the previous scheme. While there was a lot of text
that is probably clearer and more precise than what I have written, I wanted to get this new
proposal out as quickly as possible, and trying to express what I wanted to say in the context
of the existing document was harder than just doing things directly. However I would
anticipate that in a final document substantial elements might be retained. This material was
very important in clarifying my thoughts on UCDs even though I came to somewhat different
conclusions.
The discussion on use cases and self-match has been deleted. Self-match issues have been
discussed above and the old text while defining the issues says nothing about how they are to
be resolved.
I have deleted the section on software and services. It was quite sketchy anyway and I’m not
sure it adds anything to the document.

6. UCD Steering Committee
6.1 Creation of a Board for New UCD Words
We believe that the inclusion of new UCD words must be a flexible process, yet controlled.
The best way to accomplish these two needs would be to create a proper scientific board that
would study new UCD requirements and, within a given period of time, give an answer as to
whether a new UCD must or must not be included in the UCD standards.
The use of “mission-specific” namespaces has been addressed in many occasions, and we
believe that namespaces should be avoided as much as possible. There has been an exercise
in revising the VOX words for the SIAP protocol and trying to assign existing UCDs to them,
or proposing new UCD words for the non-existing ones.
The responsibility of the board would consist of studying the cases where a UCD word is
proposed and to figure out whether the proposed word should be accepted or rejected, and in
case of rejection recommending the closest existing word that should be used.
In case a new word is accepted into the main tree, an internal procedure should be established
so that the new UCD becomes live after a proper internal new release in a short period of
time.
It should be agreed whether this board would study the proposed cases in an “on demand”
basis or would collect requests and study them on a periodic basis.
A suggestion on the formation of this scientific committee would be that it might contain
people from CDS (as they have the experience and the resources) but it should be offered to
all relevant parties. It would also be very important to have a member from the data providers
community, as the scientists view on some issues might not include other important views
from data providers.

6.2 A procedure to request new UCD words
A procedural document should be created to make it easy to a user to ask for a new UCD and
to understand the implications of doing so. This document would address:

• the contact point to ask for new UCD
• the life-cycle of the process of asking for a new UCD

 20

• when and how a new UCD becomes live

• what to do if a UCD is rejected
This type of actions could (and should) be supported by tools like an automatic form that is
filled in and sent to the scientific board, giving an answer back to the user acknowledging the
request, and giving a time estimate for an answer. All these issues will be suggested in a
separate point.
Lessons should be learnt from other projects where similar boards exist. There should be a
thorough investigation (maybe from the board mentioned above) of how other projects have
worked in this direction (like the Planetary Data System (PDS), the FITS consortium, the
W3C) and try to get the right things from them while avoiding the wrong ones.

6.3 Creation of a Technical Board
There should be tools available for the user to check for the existence of UCDs, etc. Some of
these tools exist already in CDS, and they are good candidates to become the sort of
“official” tools for the UCD standards. However, we feel it is necessary to have a proper
technical board that could, eventually, decide on what tools are really necessary to make the
UCD work feasible and as easy as possible for the user. This board would be mainly in
charge of writing proper requirements for the tools. The management of resources, etc.,
should be handled by the concepts wanting to work for the VO project, but the definitions of
requirements, etc., should be centralized on this board.

6.3 Contact point for UCD issues
We feel the necessity to create a contact point to which all UCD related matters can be
addressed. This contact point could be a web address devoted explicitly to that in the context
of the VO, a properly organized web place, where all the tools would be available, as well as
all documents and procedures for creation of new UCD words, etc., with practical examples
and the like.

Appendix 1.
There has been much debate in the UCD forum over division of the electromagnetic
spectrum, since this is where the qualitative and the quantitative meet. If we put every word
about spectrum coverage into the UCD, there would be hundreds of terms, therefore we have
chosen to keep to a rational division (below) plus a very few special words.
The wavelength spectrum is first divided in the 7 classical domains radio / IR / Optical / UV /
EUV / X-ray / gamma. Further divisions are made to define the large bands classically used
in optical / IR / UV, and in radio frequencies we keep bands spaced by a factor 2. In Figure 3,
a special word is there for Halpha as a subclass of opt.R. If a desired band does not fit in the
rational list, it is recommended to use the smallest enclosing band.

 21

Figure 1: Hierarchical organization of the electromagnetic spectrum. The standard bands are
represented in black. The suggested description of the non-standard blue ranges is shown in blue: in each
case, we use the smallest enclosing standard band.

The overall list is as follows:

UCD designation Lambda Freq Energy Notes
Radio Regime

em.radio.20-100MHz
>3m <100MHz

em.radio.100-200MHz
1.5-3m 100-200MHz

em.radio.200-400MHz
75-150cm 200-400MHz

em.radio.400-750MHz
40-75cm 400-750MHz

em.radio.750-1500MHz 20-40cm 750-1500MHz
em.radio.1500-3000MHz 10-20cm 1.5-3GHz
em.radio.3-6GHz 5-10cm 3-6GHz
em.radio.6-12GHz 2.5-5cm 6-12GHz
em.radio.12-25GHz 1.2-2.5cm 12-25GHz
em.radio.25-50GHz 6-12mm 25-50GHz
em.radio.50-100GHz 3-6mm 50-100GHz
em.radio.100-200GHz 1.5-3mm 100-200GHz
em.radio.200-400GHz 750-1500µm 200-400GHz
em.radio.400-750GHz 400-750µm 400-750GHz
em.radio.750-1500GHz 200-400µm 750-1500GHz COBE 240µm
em.radio.1500-3000GHz 100-200µm 1500-3000GHz COBE 140µm

Infra-Red Regime
em.IR.60-100um 60-100µm 3-5THz IRAS 100µm
em.IR.30-60um 30-60µm 5-10THz IRAS 60µm
em.IR.15-30um 15-30µm 10-20THz IRAS 25µm
em.IR.8-15um 8-15µm 20-37.5THz N band; IRAS 12µm
em.IR.4-8um 4-8µm 37.5-75THz M band;
em.IR.3-4um 3-4µm 100-150THz L, L', L''
em.IR.K 2-3µm 75-100THz K band
em.IR.H 1.5-2.0µm 200-300THz H band;

 22

em.IR.J 1.0-1.5µm 150-200THz J band;
Optical Regime

em.opt.I 750-1000nm 300-400THz 1.2-1.6eV I band;
em.opt.R 600-750nm 400-500THz 1.6-2.0eV R band;
em.opt.V 500-600nm 500-600THz 2.0-2.4eV V band;
em.opt.B 400-500nm 600-750THz 2.4-3.0eV B band;
em.opt.U 300-400nm 750-1000THz 3.0-4.0eV U band;

Ultra-Violet Regime
em.UV.200-300nm 200-300nm 1000-1500THz 4-6eV UV1 band
em.UV.100-200nm 100-200nm 1500-3000THz 6-12eV UV2 band;

Extreme Ultra-Violet Regime
em.EUV.50-100nm 50-100nm 3-6PHz 12-24eV Ly{Limit}=91.2nm
em.EUV.10-50nm 10-50nm 6-30PHz 24-120eV

X-ray Regime
em.X-ray.soft 6-100Å 30-500PHz 0.12-2keV
em.X-ray.hard 0.1-6Å 0.5-30EHz 2-12keV

Gamma Regime
em.gamma.soft 0.25-10pm 30-1200EHz 12-500keV
em.gamma.hard <250fm > 1200EHz >500keV e+/e-

