Observation Data Model Core Components and its Implementation in the Table Access Protocol

Version 1.0
IVOA Working Draft 2011 02 28

This version:
WD-ObsTAP-20110228

Latest version:
http://www.ivoa.net/Documents/latest/latest-version-name

Previous version(s):

Author(s):
Mireille Louys, Francois Bonnarel, David Schade, Patrick Dowler, Alberto Micol, Daniel Durand, Doug Tody, Laurent Michel, Jesus Salgado, Igor Chilingarian, Bruno Rino

Abstract
This document discusses the definition of the core components of the Observation data model that are necessary to perform data discovery when querying data centers for observations of interest. It exposes the use-cases to be carried out, explains the model and provides guidelines for its implementation as a data access service based on the Table Access Protocol (TAP). Such a simple model is easy to understand and to
implement by data providers that wish to publish their data into the Virtual Observatory. This interface integrates data modeling and data access aspects in a single service and is named ObsTAP and will be referenced as such in the IVOA registries. This is not covering the full Observation data model that will be developed in other IVOA documents.

The Observation Data Model Core Components (ObsCoreDM) defines the core components of queryable metadata required for global discovery of observational data. It is meant to allow a single query to be posed to TAP services at multiple sites to perform global data discovery without having to understand the details of the services present at each site. It defines a minimal set of basic metadata and thus allows for a reasonable cost of implementation by data providers. The combination of the ObsCoreDM with TAP is referred to as an ObsTAP service. As with most of the VO Data Models, ObsCoreDM makes use of STC, Utypes, Units and UCDs. The ObsCoreDM can be serialized as a VOTable. ObsCoreDM can make reference to more complete data models such as ObsProvDM, CharDM, Spectrum DM or SSLDM.

Status of This Document

This document has been produced by the IVOA Data Model (DM) working group, in coordination with partners from the DAL and VOQL working groups. It describes the core components of the Observation data model and the metadata to be attached to an astronomical observation, and contains a guide for implementing this model within the Table Access Protocol (TAP) framework. Due to the DM and DAL aspects of this document, this will circulate and be reviewed by both Working Groups. This is still a Working Draft, and should not be considered stable.

A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/

Acknowledgements

This work has been partly funded by Euro-VO AIDA project that we acknowledge here. SSC XMM Catalog service supported the implementation of the SAADA version of ObsTAP at Strasbourg Observatory. The USVAO project contributed to developing this specification and is prototyping the use of ObsTAP in the VAO portal. The Canfar project also contributed for the implementation of ObsTAP at CADC, Victoria.
Appendix A: Use Cases 5: General Data

A.6. Discovering general data
A.6.1. Use case 5.1
A.6.2. Use case 5.2
A.6.3. Use case 5.3

A.7. Use Cases 6: Others
A.7.1. Use case 6.1
A.7.2. Use Case 6.2
A.7.3. Use case 6.3

Appendix B: Data Model Detailed Description
B.1. Observation Information
B.1.1. Data Product Type (dataprod_type)
B.1.2. Calibration level (calib_level)

B.2. Target
B.2.1. Target Name (target_name)
B.2.2. Class of the Target source/object (target_class)

B.3. Dataset Description
B.3.1. Creator name (obs_creator_name)
B.3.2. Observation Identifier (obs_id)
B.3.3. Dataset Text Description (obs_title)
B.3.4. Collection name (obs_collection)
B.3.5. Creation date (obs_creation_date)
B.3.6. Creator name (obs_creator_name)
B.3.7. Dataset Creator Identificator (obs_creator_did)

B.4. Curation metadata
B.4.1. Publisher Dataset ID (obs_publisher_did)
B.4.2. Publisher Identifier (publisher_id)
B.4.3. Bibliographic Reference (bib_reference)
B.4.4. Data Rights (data_rights)
B.4.5. Release Date (obs_release_date)

B.5. Data Access
B.5.1. Access Reference (access_url)
B.5.2. Access Format (access_format)
B.5.3. Estimated Size (access_estsize)

B.6. Description of physical axes: Characterisation classes
1. Introduction

This work originates from an initiative of the IVOA Take Up Committee that, in the course of 2009, collected a number of use cases for data discovery (see Appendix A). These use cases address the problem of an astronomer posing a world-wide query for scientific data with certain characteristics and eventually retrieving or otherwise accessing selected data products thus discovered. The ability to pose a single scientific query to multiple archives simultaneously is a fundamental use case for the Virtual Observatory. Providing a simple standard protocol such as the one described in this document increases the chances that a majority of the data providers in astronomy will
be able to implement the protocol, thus allowing data discovery for almost all archived astronomical observations.

This effort (version 1) is focused on public data. Provision to cover proprietary data is already in preparation (e.g. obs_release_date and data_rights in the list of optional fields), but is not part of this release. Future versions might cover that.

In the following are described the fundamental building blocks which are used to achieve the goal of global data discoverability and accessibility.

1.1. First building block: Data Models

Modeling of observational metadata has been an important activity of the IVOA since its creation in 2002. This modeling effort has already resulted in a number of integrated and approved IVOA standards such as the Resource Metadata, Space Time Coordinates (STC), Spectrum and SSA, and the Characterisation data models that are currently used in IVOA services and applications.

Figure 1. How the Observation data model Core Components fits into the overall IVOA architecture. Highlighted blocks in red are data models or specifications that are used by within this model.
1.2. Second building block: the Table Access Protocol (TAP)

TAP defines a service protocol for accessing tabular data such as astronomical catalogues, or more generally, database tables. TAP allows a client to (step 1) browse through the various tables and columns (names, units, etc.) in an archive to collect the information necessary to pose a query, then (step 2) actually perform a table query. The Table Access Protocol (TAP) specification was developed and reached recommendation status in March 2010.

1.3. The goal of this effort

Building on the work done on data models and TAP, it becomes possible to define a standard service protocol to expose standard metadata describing available datasets. In general, any data model can be mapped to a relational database and exposed directly with the TAP protocol. The goal of ObsTAP is to provide such a capability based upon a general observational data model.

Specifically, this effort aims at defining a database table to describe astronomical datasets stored in archives that can be queried directly with the TAP protocol. This is ideal for global data discovery as any type of data can be described in a straightforward and uniform fashion. Whole-file datasets can be directly downloaded, or IVOA Data Access Layer (DAL) protocols such as for accessing images (SIA) or spectra (SSA) can be used to directly access the contents of an individual data object without having to first download the entire file.

The final capability required to support uniform global data discovery and access, with a client sending one and the same query to multiple TAP services, is the stipulation that a uniform standard data model is exposed (through TAP) using agreed naming conventions, formats, units, and reference systems. Defining this core data model and associated query mechanism is what this document is for.

The purpose of this document is twofold: (1) to define a simple data model to describe observational data, and (2) to define a standard way to expose it through the TAP protocol to provide a uniform interface to discover observational science data products of any type.

This document is organized as follows:

- Section 2 briefly presents the types of the use cases collected from the astronomical community by the IVOA Uptake committee.
- Section 3 defines the core components of the Observation data model. The elements of the data model are summarized in Figure 2. Mandatory ObsTAP fields are summarized in Table 1.
- Section 4 specifies the required data model fields as they are used in the TAP service: table names, column names, column datatype, UCD Utype from the Observation Core components data model, and required units.
- Section 6 describes how to register an ObsTAP service in a Virtual Observatory registry. More detailed information is available in the appendices.
- Appendix A describes all the use cases as defined by the IVOA Take Up Committee.
Appendix B contains a full description of the Observation data model Core Components.

Appendix C shows the detailed content of the TAP_SCHEMA tables and how to build up and fill them for the implementation of an ObsTAP service.

Appendix D summarizes updates of this document.

2. Use cases

Our primary focus is on data discovery. To this end a number of use-cases have been defined, aimed at finding observational data products in the VO domain by broadcasting the same query to multiple archives (global data discoverability and accessibility). To achieve this we need to give data providers a set of metadata attributes that they can easily map to their database system in order to support queries of the sort listed below.

The goal is to be simple enough to be practical to implement, without attempting to exhaustively describe all exotic data sets.

The main features of these use-cases are as follows:

- Support multi-wavelength as well as positional and temporal searches.
- Support any type of science data product (image, cube, spectrum, time series, instrumental data, etc.).
- Directly support the sorts of file content typically found in archives (FITS, VOTable, compressed files, instrumental data, etc.).

Further server-side processing of data is possible but is the subject of other VO protocols. More refined or advanced searches may include extra knowledge obtained by prior queries to determine the range of data products available.

The detailed list of use cases proposed for data discovery is given in Appendix A.

3. Observation Core Components Data Model

This section highlights and describes the core components of the Observation data model. The term “core components” is meant to refer to those elements of the larger Observation Data Model that are required to support the use cases listed in Appendix A. In reality this effort is the outcome of a trade-off between what astronomers want and what data providers are ready to offer. The aim is to achieve buy-in of data providers with a simple and "good enough" model to cover the majority of the use cases.

The project of elaborating a general data model for the metadata necessary to describe any astronomical observation was launched at the first Data Model WG meeting held in Cambridge, UK at the IVOA meeting in May 2003. The Observation data model was sketched out relying on some key concepts: Dataset, Identification, Curation, physical Characterisation and Provenance (either instrumental or software). A description of the early stages of this development can be found in (Mc Dowell & al., 2005) (Observation IVOA note). Some of these concepts have already been elaborated in existing data models, namely SSA and the Spectrum data model (Tody & al., 2008) and (McDowell & al., 2007) respectively ..) for general items such as dataset identification and curation,
and the Characterisation data model (Louys & al., 2007) for the description of the physical axes and properties of an observation, such as coverage, resolution, sampling, and accuracy. The Core Components data model reuses the relevant elements from those models. Generalization of the observational model to support data from theoretical models (e.g., synthetic spectra) is possible but is not addressed here in order to keep the core model simple.

3.1. UML description of the model

This section provides a graphical overview of the Observation data model using the unified modeling language (UML).

The UML class diagram shown in Figure 2 depicts the overall Observation Data Model, detailing those aspects that are relevant to the Core Components, while omitting those not relevant. The Characterisation classes describing how the data span along the main physical measurement axes are simplified here showing only the attributes necessary for data discovery. This is also the case for the DataID and Curation classes extracted from the Spectrum/SSA data model where only a subset of the attributes are actually necessary for data discovery. For our purposes here we show Characterisation classes only down to the level of the Support class (level 3).
Figure 2. Depicted here are the classes used to organize observational metadata. Classes may be linked either via association or aggregation. The minimal set of necessary attributes for data discovery is shown in brown.

For the sake of clarity, the SpatialAxis, SpectralAxis and TimeAxis classes on the diagram are not expanded on the main class diagram.
Details for these axes are shown in Figure 3 for the spatial axis Figure 4 for the spectral axis and Figure 5 for the time axis.

Figure 3. Details of the classes linked to the description of the spatial axis for an Observation. All axes in this model inherit the main structure from the CharacterisationAxis class, but some peculiar attributes are necessary for Space coordinates.
Figure 4. Spectral axis: details of the classes necessary to describe the spectral properties of an Observation. UCD and units are essential to disentangle various possible spectral quantities.

Figure 5. Here are the classes used to describe time from the Characterisation DM. Details on the axes definition are available in the Characterisation data model standard document (Louys & al., 2007).
The hypertext documentation of the model is (will be?) available at in the IVOA site under the ObsCore wiki page (add reference)

3.2. Main Concepts of the ObsCore Data Model

The ObsCore data model is the result of the analysis of the data discovery use cases introduced in Chapter 2. Two sets of elements have been identified: those necessary to support the provided use cases, and others that are generally useful to describe the data but are not immediately relevant to the use cases. In this section only the first set is described. That set coincides with the set of parameters that any ObsTAP service must support. Please refer to appendix B for the detailed description of all model elements.

Table 1 lists the data model elements\(^1\) that any ObsTAP implementation must support (i.e. a column with such name must exist, though it could be nillable). Provision of these mandatory fields ensures that any query based on these parameters is guaranteed to be understood by all ObsTAP services.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Unit</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataproduct_type</td>
<td>unitless</td>
<td>string</td>
<td>Logical data product type (image etc.)</td>
</tr>
<tr>
<td>calib_level</td>
<td>unitless</td>
<td>Integer (enum?)</td>
<td>Calibration level {0, 1, 2, 3}</td>
</tr>
<tr>
<td>obs_collection</td>
<td>unitless</td>
<td>string</td>
<td>Name of the data collection</td>
</tr>
<tr>
<td>obs_id</td>
<td>unitless</td>
<td>string</td>
<td>Observation ID</td>
</tr>
<tr>
<td>obs_publisher_did</td>
<td>unitless</td>
<td>string</td>
<td>Dataset identifier given by the publisher</td>
</tr>
<tr>
<td>access_url</td>
<td>unitless</td>
<td>string</td>
<td>URL used to access (download) dataset</td>
</tr>
<tr>
<td>access_format</td>
<td>unitless</td>
<td>string</td>
<td>File content format (FITS, VOTable, etc.)</td>
</tr>
<tr>
<td>access_estsize</td>
<td>kbyte</td>
<td>integer</td>
<td>Estimated size of dataset, kB</td>
</tr>
<tr>
<td>target_name</td>
<td>unitless</td>
<td>string</td>
<td>Astronomical object observed, if any</td>
</tr>
<tr>
<td>s_ra</td>
<td>deg</td>
<td>double</td>
<td>Central right ascension, ICRS</td>
</tr>
<tr>
<td>s_dec</td>
<td>deg</td>
<td>double</td>
<td>Central declination, ICRS</td>
</tr>
<tr>
<td>s_fov</td>
<td>deg</td>
<td>double</td>
<td>Diameter (bounds) of the covered region</td>
</tr>
<tr>
<td>s_region</td>
<td>unitless</td>
<td>AstroCoordArea</td>
<td>Region covered as specified in STC or ADQL</td>
</tr>
<tr>
<td>s_resolution</td>
<td>arcsec</td>
<td>float</td>
<td>Spatial resolution of data as FWHM</td>
</tr>
<tr>
<td>t_min</td>
<td>d</td>
<td>double</td>
<td>Start time in MJD</td>
</tr>
<tr>
<td>t_max</td>
<td>d</td>
<td>double</td>
<td>Stop time in MJD</td>
</tr>
<tr>
<td>t_exptime</td>
<td>s</td>
<td>float</td>
<td>Total exposure time</td>
</tr>
<tr>
<td>t_resolution</td>
<td>s</td>
<td>float</td>
<td>Temporal resolution FWHM</td>
</tr>
<tr>
<td>em_min</td>
<td>m</td>
<td>double</td>
<td>Start in spectral coordinates</td>
</tr>
<tr>
<td>em_max</td>
<td>m</td>
<td>double</td>
<td>Stop in spectral coordinates</td>
</tr>
<tr>
<td>em_res_power</td>
<td>unitless</td>
<td>double</td>
<td>Spectral resolving power</td>
</tr>
<tr>
<td>o_ucd</td>
<td>unitless</td>
<td>string</td>
<td>UCD of observable (e.g. phot.fluxDensity)</td>
</tr>
</tbody>
</table>

\(^1\) Data model fields are listed here with their TAP column names rather than the IVOA data model element identifiers (Utype) to ease readability. See the associated Utypes in Appendix C.
3.3. Specific Data Model Elements

In order to support the global data discoverability and accessibility requirements, some new concepts previously not covered by any other data model have to be introduced. This section describes those, which are: the data product type, a classification of the various levels of calibration and processing applied to the data, the file content and format enriched and extended from the concept described in the SSA protocol (Tody & al., 2008). A clarification of how the terms Observation and Data Product are used in the ObsTAP context is provided.

3.3.1. Data Product Type

The model defines a data product type attribute to describe the high level scientific classification of the data product being described. This is coded as a string that conveys a general idea of the content and organisation of a dataset. We consider a coarse classification of the types of dataset interesting for science usage, covering: image, cube, spectrum, sed, time series, visibility data, and event data.

- **image.** An astronomical image, typically a 2D image with two spatial axes, e.g., a FITS image. The image content may be complex, e.g., an objective-grism observation would be considered a type of image, even though an extracted spectrum would be a Spectrum data product.

- **cube.** A multidimensional astronomical image with 3 or more image axes, e.g., a spectral image cube, a polarization cube, a full Stokes radio data cube, a time cube, etc.

- **spectrum.** Any dataset for which spectral coverage is the primary attribute, e.g., a 1D spectrum or a longslit spectrum.

- **sed.** A spectral energy distribution, an advanced data product often produced by combining data from multiple observations.

- **timeseries.** A one dimensional array presenting some quantity as a function of time. A light curve is a typical example of a time series dataset.

- **visibility.** A visibility (radio) dataset of some sort. Typically this is instrumental data, i.e., "visibility data". A visibility dataset is often a complex object containing multiple files or other substructures. A visibility dataset may contain data with spatial, spectral, time, and polarization information for each measured visibility, hence can be used to produce higher level data products such as image, spectra, timeseries, and so forth.

- **event.** An event-counting (e.g. X-ray or other high energy) dataset of some sort. Typically this is instrumental data, i.e., "event data". An event dataset is often a complex object containing multiple files or other substructures. An event dataset may contain data with spatial, spectral, and time information for each measured event, although the spectral resolution (energy) is sometimes limited. Event data may be used to produce higher level data products such as images or spectra.

- **other.** Any science data product which does not fit into any of the above categories. If any of the standard categories are applicable they must be used, in order to allow searches to find the appropriate data products.
Classification of astronomical data by data product type is inherently ambiguous hence the classification scheme defined here is intentionally kept as simple as possible. The data provider should pick the primary category most appropriate for their data. Values must be specified in lower-case (in order to simplify queries); a NULL value is not allowed. One of the defined dataproduct type values must be used.

Further information on the specific content and format of a data product can be provided by the subtype data model field defined in B1.B.1.1.1 in the data model appendix, by obs_title and also access_format (3.3.4) attributes. The intent of dataproduct_type is to provide only a general indication of the category to which the data product belongs; The ObsCore data model provides a classification tree showing the subclasses allowed to specify a finer data products classification.

NB : Up to now this tree is still to be discussed and examples where dataproduct_type='other’ are to be completed. See the discussion on DM list and on the dedicated wiki page http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/ObsTAPdraftDiscussion

3.3.2. Calibration level

The calibration level concept conveys to the user information on how much data reduction/processing has been applied to the data. It is up to the data providers to consider how to map their own internal classification to the suggested scale here.

- **Level 0**: Raw instrumental data, in a proprietary or internal data-provider defined format, that needs instrument specific tools to be handled.
- **Level 1**: Instrumental data in a standard format (FITS, VOTable, SDFITS, ASDM, etc) which could be manipulated with standard astronomical packages.
- **Level 2**: Calibrated, science ready data with the instrument signature removed.
- **Level 3**: Enhanced data products like mosaics, resampled or drizzled images, or heavily processed survey fields. Level 3 data products may represent the combination of data from multiple primary observations.

The examples in the following section should help illustrate use of the calib_level attribute. It is left to the data provider to decide for ambiguous cases.

3.3.2.1. Examples of data sets and their calibration level

Here are examples of various data sets, classified according to scheme defined above.

<table>
<thead>
<tr>
<th>Data product type</th>
<th>Data collection</th>
<th>Calibration Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>image</td>
<td>IRAS/NASA</td>
<td>2</td>
<td>Science ready data</td>
</tr>
<tr>
<td>image</td>
<td>IRIS/IRSA</td>
<td>3</td>
<td>Recalibrated from infrared IRAS images with removal of the sensor memory effect.</td>
</tr>
<tr>
<td>image</td>
<td>HDFS/ACS GOODS</td>
<td>3</td>
<td>Image associations</td>
</tr>
</tbody>
</table>
3.3.3. Observation

ObsTAP and the Observation data model describe *observations in a broad sense* (exactly what comprises an "observation" is not well defined within astronomy and is left up to the data provider to define for their data). ObsTAP also describes archive *data products* (e.g., actual archive files). In general an "observation" may be composed of *multiple individual data products*. In this case all the data products comprising an observation should share the same observation identifier (*obs_id*). The form of the *obs_id* string is up to the data provider so long as it uniquely identifies an observation within the archive. The individual data products comprising an observation may have different data product types, calibration levels, and so forth. ObsTAP only supports the direct description of science data products, i.e., data products which contain science data having some physical (spatial, spectral, temporal) coverage.

In general for instrumental data there are two different approaches for exposing the data from an observation. One can either expose the individual science data products comprising the observation, all sharing the same *obs_id*, or one can expose the entire observation as a single complex instrumental data product (combinations of the two approaches are also possible).

If the data products comprising an observation are exposed individually then attributes such as the calibration level can vary for different data products, e.g., the raw instrumental data as observed might be level 1, a standard pipeline data product might be level 2, and a custom user-processed data product subsequently published back to the archive might be level 3. All such data products would share the same *obs_id*.

If on the other hand all data from an observation is exposed as a single data product via ObsTAP this will likely be an aggregate of some sort (tar file, directory, etc.) containing multiple files. This latter approach is limited to instrumental data (level 0 or 1), even if objects within the aggregate observation file are higher level. From the perspective of ObsTAP this would be instrumental data, and it is up to the user or client application consuming the data to interpret the meaning of the data elements within the observation.

Which approach is best depends upon the anticipated scientific usage and is up to the data provider to determine. For example if the observational data provided is most commonly used for multi-wavelength analysis, exposing individual high level data products is likely to be the best approach. If the anticipated usage is dominated by complex analysis of instrumental data, then exposing the entire observation as a standard package of instrumental data may be the best approach.
3.3.4. File Content and Format

While \textit{dataproduct_type} specifies at a high level what a specific data product is, the \textit{access_format} attribute specifies what is actually in the file. For example, an "image" could be a FITS image, an image embedded in a FITS multi-extension format (MEF) file, a JPEG, etc. A "spectrum" could be represented in the VO-compliant Spectrum format, or in some instrument-specific FITS binary table format. A visibility dataset could be in FITS or ASDM format, or a variety of other radio data formats. A ROSAT or Chandra observation might be presented as a TAR or directory containing instrument-specific observational files. There are many such examples; we give only a few here to illustrate the concept.

Specifying the content and format of a data product is important as special software may be required to do anything useful with the data. The user needs to know exactly what the data product is before deciding to download it for analysis.

Access formats have values such as "fits.image", "fits.binarytable", "votable", and so forth. How to specify the access format is discussed in more detail in Appendix B.

4. Implementation of ObsCore in a TAP Service

The ObsCore model must be implemented within Table Access Protocol (TAP) services such that all valid queries can be executed unchanged on any service that implements the model. Additional optional or provider-defined columns are permitted (4.20) so long as all mandatory columns are provided. The protocol does not specify any specific ordering of fields in the query response so long as the mandatory parameters are present in the output stream.

Here we specify an explicit mapping of the model to relational database tables; in the context of TAP this means we are specifying the logical tables as described in the \texttt{TAP_SCHEMA} (the TAP-required database schema where the tables and columns exposed by the service are described). This does not necessarily imply that the underlying database will have the identical structure (what is exposed through TAP could be, for example, a database view of the underlying database tables), but in most cases the relationship between \texttt{TAP_SCHEMA} description and the underlying tables is straightforward.

<table>
<thead>
<tr>
<th>\texttt{schema_name}</th>
<th>\texttt{table_name}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ivoa</td>
<td>ivoa.ObsCore</td>
<td>ObsCore 1.0</td>
</tr>
</tbody>
</table>

\textbf{Table 3.} \texttt{TAP_SCHEMA.tables} description of the ObsCore model.

<table>
<thead>
<tr>
<th>\texttt{table_name}</th>
<th>\texttt{column_name}</th>
<th>\texttt{datatype}</th>
<th>\texttt{units}</th>
<th>\texttt{constraint}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ivoa.ObsCore</td>
<td>dataproduct_type</td>
<td>adql:VARCHAR</td>
<td></td>
<td>not null</td>
</tr>
<tr>
<td>ivoa.ObsCore</td>
<td>calib_level</td>
<td>adql:INTEGER</td>
<td></td>
<td>not null</td>
</tr>
<tr>
<td>Table 4. List of the minimal set of data model fields to implement for an Obs/TAP service. See tables on page 47 in appendix C for the full description of the TAP_SCHEMA.columns table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Table 3 (TAP_SCHEMA.tables) and Table 4 provide the primary information needed to describe the ObsCore model in terms of TAP_SCHEMA tables and columns. The “constraint” specified in Table 4 above is not part of the TAP_SCHEMA.columns description, but is required by the ObsCore model and specified here to make this clear to implementers. Additional standard content for the individual columns is specified below. See Appendix C for a usable SQL script that inserts the standard TAP_SCHEMA content. |

4.1. Data Product Type (dataproduct_type)

The dataproduct_type column contains a simple string value describing the primary nature of the data product. It should assume one of these string values: image, cube, spectrum, sed, timeseries, visibility, event, or other. These values are described in section 0. A NULL value is not permitted. Values in the dataproduct_type column must not be NULL, and must be written in lower case. Specifying this field along with the desired spatial and spectral coverage will be enough to discover data of interest in many common cases.

Usage: select * from ivoa.ObsCore where dataproduct_type='image' returns only image data.
4.2. Calibration Level (calib_level)

The calib_level column tells the user the amount of calibration processing that has been applied to create the data product. calib_level must assume one of the following integer values: 0 (instrumental or raw data in a non-standard/proprietary format), 1 (instrumental data in a standard format, e.g. FITS), 2 (calibrated data in standard format, with instrument signature removed), and 3 (more highly processed data product). Please refer to section 0 for a full description. Data providers decide which value best describes their data products.

Values in the calib_level column must not be NULL.

Usage: select * from ivoa.ObsCore where calib_level > 2 returns enhanced data products.

4.3. Collection Name (obs_collection)

The obs_collection column identifies the data collection to which the data product belongs. A data collection is any logical collection of datasets which are alike in some fashion. Typical data collections might be all the data from a particular telescope, instrument, or survey. The value is either the registered shortname for the data collection, the full registered IVOA identifier for the collection, or a data provider defined shortname for the collection. Often the collection name will be set to the name of the instrument that generated the data. In that case we suggest to specify the collection name a string composed of the facility name, followed by a slash, followed by the instrument name. Examples: HST/WFPC2, VLT/FORS2, CHANDRA/ACIS-S. There are other cases where it makes no sense to use the instrument name, maybe because the data product used data from different instruments or facilities, or for other reasons. Examples: SDSS-DR7, etc.

Values in the obs_collection column must not be NULL.

In practice this is not a very precisely defined field. What is important is for the data provider to use a collection name which is familiar to astronomers.

4.4. Observation Identifier (obs_id)

The obs_id column defines a unique identifier for an observation. In the case where multiple data products are available for an observation (e.g. with different calibration levels), the obs_id value will be the same for each data product comprising the observation. This is equivalent to the dataset name for many archives where dataset name could have many files associated with them. The returned obs_id for an archival observation should remain identical through time for future reference.

In the case of some advanced (level 3) data products, the data product may be the result of combining data from multiple primary (physical) observations. In this case the production of the advanced data product can be considered a type of "software" observation and a new unique observation identifier should be assigned. If the advanced processing results in several associated data products they should share the same obs_id. Describing the provenance of such an advanced data product is possible, but is out of scope for ObsTAP.

Values in the obs_id column must not be NULL.
4.5. Publisher Dataset Identifier (obs_publisher_did)

The `obs_publisher_did` column contains the IVOA dataset identifier (Plante & al., IVOA Identifiers, 2007) for the published data product. This value must be unique within the namespace controlled by the dataset publisher (data center). The value will also be globally unique since each publisher has a unique IVOA registered publisher ID. The same dataset may however have more than one publisher dataset identifier if it is published in more than one location; the creator DID, if defined for the given dataset, would be the same regardless of where the data is published.

We specify the datatype as CLOB in the TAP service so that users will know they can only use the `obs_publisher_did` column in the select clause of a query. That is, users cannot specify this column as part of a condition in the WHERE clause and implementers are free to generate the URL during output. The returned `obs_publisher_did` for a static data product should remain identical through time for future reference.

Values in the `obs_publisher_did` column must not be NULL.

4.6. Access URL (access_url)

The `access_url` column contains a URL that can be used to download the data product (as a file of some sort).

We specify the datatype as CLOB in the TAP service so that users will know they can only use the `access_url` column in the SELECT clause of a query. That is, users cannot specify this column as part of a condition in the WHERE clause and implementers are free to generate the URL during output.

Access URLs are not guaranteed to remain valid and unchanged indefinitely. To access a specific data product after a period of time (e.g., days or weeks) a query should be performed (e.g., using `obs_publisher_did`) to obtain a fresh access URL.

4.7. Access Format (access_format)

The `access_format` column contains a string indicating the content format of the data product if downloaded as a file. The values are made up of dot-separated words that describe (in increasing detail) the overall file format as well as the structure of the data within the file. Allowed values include any legal MIME type (Authority Internet Assigned Numbers, 2007) that describes the overall file format or a dot-delimited specifier describing in more astronomy-specific terms the format and content of the file. For example: fits, fits.image, fits.image.mef, fits.binarytable, votable, csv, tsv, pdf, directory, or any of the preceding with a compression extension (e.g., fits.image.gz). The allowable values are specified more fully in Appendix B. [We still need to flesh this out]

4.8. Estimated Download Size (access_estsize)

The `access_estsize` column contains the approximate size (in kilobytes) of the file available via the `access_url`. This is used only to gain some idea of the size of a data product before downloading it, hence only an approximate value is required. Provision of dataset size estimates is important whenever it is possible that datasets can be very large.
4.9. Target Name (target_name)
The target_name column contains the name of the target of the observation, if any. This is typically the name of an astronomical object, but could be the name of a survey field. The target name is most useful for output, to identify the target of an observation to the user. In queries it is generally better to refer to astronomical objects by position, using a name resolver to convert the target name into a coordinate (when possible).

4.10. Central Coordinates (s_ra, s_dec)
The coordinate system in which coordinates are expressed is ICRS. The s_ra column specifies the ICRS Right Ascension of the center of the observation. The s_dec column specifies the ICRS Declination of the center of the observation.

4.11. Spatial Extent (s_fov)
The s_fov column (1D size of the field of view) contains the approximate size of the region covered by the data product. For a circular region, this is the diameter (not the radius). For most data products the value given should be large enough to include the entire area of the observation; coverage within the bounded region need not be complete, for example if the specified FOV encompasses a rotated rectangular region. For observations which do not have a well-defined boundary, e.g. radio or high energy observations, a characteristic value should be given.

The s_fov attribute provides a simple way to characterise and use (e.g. for discovery computations) the approximate spatial coverage of a data product. The spatial coverage of a data product can be more precisely specified using the s_region attribute (4.12).

4.12. Spatial Coverage (s_region)
The s_region column can be used to precisely specify the covered spatial region of a data product.

It is often an exact, or almost exact, representation of the illumination region of a given observation defined in a standard way (Rots, 2007)

We specify the datatype as the logical type adql:REGION so that users can specify spatial queries using a single column and in a limited number of ways. If included in the select list of the query, the output is always an STC-S string as described in (Dowler & al., 2010) [section 6]. In the WHERE clause, the s_region column can be used with the ADQL geometry functions (INTERSECTS, CONTAINS) to specify conditions; the service will generally have to translate these into native SQL that enforces the same conditions or a suitable approximation. Implementers may approximate the spatial query conditions by translating the INTERSECTS and CONTAINS function calls in the query.

In addition, ADQL specifies several functions, which may take the s_region column as an argument: AREA, CENTROID, and COORDSYS. The AREA function returns the area (in sq. deg.) of the observed region. In cases where the s_region itself is an approximation (a bounding box, for example), this function should still return the actual value. This may be implemented by computing and storing the area in a separate column and converting the AREA (s_region) function call into a column reference in the query. The CENTROID function returns an ADQL POINT value; if used in the select list the output is always an STC-S string as described in (Dowler & al., 2010)[section 6].
coordinates must be the same as those found in the s_ra and s_dec columns, which are provided for convenience. The COORDSYS function returns the coordinate system used for the s_region; in the ObsCore model implementation here this is restricted to ICRS, so this can be implemented by converting the COORDSYS(s_region) function call to a constant in the query.

Region computations are an advanced query capability which may not be supported by all services. Services should however specify s_region when possible to more precisely specify the spatial coverage of an observation.

4.13. Spatial Resolution (s_resolution)

The s_resolution column specifies the best spatial resolution of the data product in arcseconds. This refers to the smallest spatial feature in the observed signal that can be resolved.

In cases where the spatial resolution varies across the field the best spatial resolution (smallest resolvable spatial feature) should be specified. In cases where the spatial frequency sampling of an observation is complex (e.g., interferometry) the best spatial resolution should be specified; additional characterization may be necessary to fully specify the spatial characteristics of the data.

4.14. Time Bounds (t_min, t_max)

The t_min column contains the start time of the observation specified in MJD. The t_max column contains the stop time of the observation specified in MJD. In case of data products result of the combination of multiple frames, t_min must be the minimum of the start times, and t_max as the maximum of the stop times.

4.15. Exposure Time (t_exptime)

The t_exptime column contains the exposure time. For simple exposures, this is just \(t_{max} - t_{min} \) expressed in seconds. For data where the detector is not active at all times (e.g. data products made by combining exposures taken at different times), the t_exptime will be smaller than \(t_{max} - t_{min} \). For data where the t_exptime is not constant over the entire data product, the median exposure time per pixel is a good way to characterise the typical value. In all cases, t_exptime is generally used as an indicator of the relative sensitivity (depth) within a single data collection (e.g. obs_collection); data providers should supply a suitable relative value when it is not feasible to define or compute the true exposure time.

4.16. Time Resolution (t_resolution)

The t_resolution column is the minimal interpretable interval between two points along the time axis. This can be an average or representative value. For products with no sampling along the time axis, the t_resolution could be set to the exposure time. That way one could compose a WHERE clause like:

\[
\text{WHERE } t_{resolution} < t_{exptime}
\]
to find those products that are time resolved.
4.17. **Spectral Bounds (em_min, em_max)**

The *em_min* column specifies the minimum spectral value observed, expressed as a vacuum wavelength in meters.

The *em_max* column contains the maximum spectral value observed, expressed as a vacuum wavelength in meters.

As mentioned in the data model in Appendix B, at least 3 physical quantities could in principle be used to represent the spectral axis: energy, wavelength or frequency; which is most appropriate depends upon the observation domain. For ObsTAP we are less concerned with how to present data to the user than with providing a simple and uniform way to describe astronomical data, hence we restrict the spectral bounds units to wavelength in meters in vacuum. Conversion to other quantities could be performed either on the client side for an application encapsulating queries, and/or on the server side, for a data provider to expose its data from other regimes to ObsTAP queries.

4.18. **Spectral Resolving Power (em_res_power)**

The *em_res_power* column contains the typical or characteristic spectral resolving power defined as $\lambda/\delta\lambda$. The value is dimensionless.

4.19. **Observable Axis Description (o_ucd)**

The *o_ucd* column specifies a UCD (Preite Martinez & al., 2007) describing the nature of the observable within the data product. The observable is the measured quantity, for example photon counts or flux density stored in the pixel value within an image. Often for optical astronomical images the value would be phot.count; for fully flux calibrated data a value such as phot.flux.density (usually specified in Jy) would be used.

Any valid UCD is permitted. If no appropriate UCD is defined the field should be left NULL (the IVOA provides a process by which new UCDs can be defined).

4.20. **Additional Columns**

Service providers may include additional columns in the *ivoa.ObsCore* table to expose additional metadata. These columns must be described in the *TAP_SCHEMA.columns* table and in the output from the VOSI-tables resource (Graham & al., 2010). Users may access these columns by examining the column metadata for individual services and then using them explicitly in queries or by selecting all columns in the query (e.g. “select * from ivoa.ObsCore ...” in an ADQL query). In order to provide homogeneity in the keywords used as optional fields, we recommend where possible to use the items defined in the full data model (Appendix B) and flagged as optional. ObsTAP compliant services will support all columns defined as mandatory and possibly some of the optional ones. Queries built up using additional columns defined archive specifically might not be portable.

6. **Registering an ObsTAP Service**

[TBA] TAP services that implement the ObsCore model should be registered to indicate this fact so that users can easily find all services that accept ObsCore queries. Initially, this can be done by using the keyword “ObsCore” to describe the service. Fine-grained registries may include the complete VODataService *dataset* description, but this is not
available through all searchable registries. The TAP extension schema [still TBD] allows service providers to specify which IVOA data models are used within a TAP service. Services that implement the ObsCore model should use the registry extension schema mechanism to publicise their support with:

standardID="ivo://ivoa.net/std/ObsCore/v1.0"

placed (somewhere) in the TAP Registry extension schema (Demleitner & al., 2011) [REF], where ivo://ivoa.net/std/ObsCore/v1.0 is the IVOA identifier of the StandardRegExt [REF] defined in this document.

References

Bibliography

Appendix A: Use Cases in detail

The ability to discover data of a certain kind (images, spectra, cubes, etc.) according to scientific criteria (e.g., a given sky position, spectral coverage including spectral line X, spatial resolution better than Y, resolving power greater than Z) is central to archival astronomy. A special Take Up Committee of the IVOA was formed in 2009 to stimulate IVOA work in the area of catalogue-based science data access to allow astronomers to easily query and access scientific data. This committee came up with a list of data discovery use cases expressed as a set of constraints on selected scientific parameters to be used to query for datasets of interest. The full list of use cases is summarized below.

Please note that for most science cases, a FULL TAP implementation is required for them to work as well as STC regions support. (Rots, 2007)

Some of the use-cases listed by the committee require advanced functionalities like "search by type", "query from an input list", and have not been fully developed here.

Once a full TAP implementation is available, we will expand these science cases into working examples so they could be used as template and/or teaching examples.

A.1. Simple Examples

A.1.1. Simple Query by Position

Show me a list of all data that satisfies:

- Datatype=any
- contains RA=16.0 and DEC=40.0

These data would be searched on all VO services by sending the following query:

```
SELECT * FROM ivoa.Obscore WHERE
CONTAINS(POINT('ICRS',16.0,40.0),s_region)=1
```

This query could be submitted to a remote TAP service using the `curl` application as follows (in this example a CADC TAP service is referenced):

```
curl -v -L -d "REQUEST=doQuery&LANG=ADQL&QUERY=select * from
ivoa.ObsCore where CONTAINS(POINT('ICRS',16.0,40.0 ),s_region)=1"
"http://wa.nrc.gc.ca/caom/sync"
```

More constraints are added in the following use-case (1.3).

A.1.2. Query by both Spatial and Spectral Attributes

Show me a list of all data that satisfies:

- DataType=Image
- Spatial resolution better than 0.3 arc seconds
- Filter = J or H or K
- RA between 16 hours and 17 hours
- DEC between 10 degrees and 11 degrees

Such a query needs to compute RA in degrees, extract information from Filter and adjust spectral intervals for search.

```
SELECT * FROM ivoa.Obscore_ext
```
WHERE dataproduct_type='image'
AND s_resolution < 0.3 AND s_ra > 240 AND s_ra < 255
AND s_dec > 10 AND s_dec < 11
AND (em_min > 2.1e-06 AND em_max < 2.4e-06)
 OR(em_min >= 1.6e-06 AND em_max <= 1.8e-06)
 OR(em_min >= 1.2e-06 AND em_max <= 1.4e-06)

This query could be submitted to a remote TAP service using the curl application as follows (in this example a CADC TAP service is referenced):

curl -v -L -d "REQUEST=doQuery&LANG=ADQL&QUERY=select * from ivoa.ObsCore where dataproduct_type='image' AND s_resolution < 1 AND s_ra >_ra < 255 AND s_dec > 10 AND s_dec < 11 AND em_min > .61e-06" http://www.cadc.hia.nrc.gc.ca/caom/sync

A.2. Discovering Images

A.2.1. Use case 1.1

Show me all observations satisfying:

I. DataType = any
II. Energy includes 5 keV
III. RA includes 16.00
IV. DEC includes +10
V. Exposure time > 10 ks

SELECT * FROM ivoa.Obscore
WHERE em_min < 2.48E-10 AND em_max > 2.48 E-10
AND CONTAINS(POINT('ICRS',16.0,10.0),s_region) = 1
AND t_exptime > 10000

A.2.2. Use case 1.2

Let me input a list of RA and DEC coordinates and show me spatially coincident observations satisfying:

I. Imaging or spectroscopy data
II. Includes one or more of the RA,DEC values in the list (LIST=SERVICE REQ)
III. Includes both a wavelength in the range 5000-900 angstroms AND an X-ray image (AND=SERVREQ)

Part 1: Find XRAY data of interest:

SELECT obs id, obs publisher did, s_region, access url INTO xray user table FROM ivoa.Obscore
WHERE dataproduct_type IN ('image', 'spectrum')
AND em_min < 1E-8 AND em_max > 0.01E-8
AND CONTAINS(POINT('ICRS', user ra, user dec), s_region) = 1

Part 2: Find optical data of interest:

SELECT obs id, obs publisher did, s_region, access url INTO optical user table FROM ivoa.Obscore
AND dataproduct type IN ('image', 'spectrum')
AND em min < 9E-9 AND em max > 5E-9
AND CONTAINS(POINT('ICRS', user ra, user dec), s region) = 1

Part 3: Compute overlap:
SELECT * FROM xray user table AS xray, optical user table AS opt
WHERE INTERSECTS(xray.s region, opt.s region) = 1

A.2.3. Use case 1.3
Show me a list of all observations satisfying:
I. DataType=Image
II. Spatial resolution better than 0.3 arcseconds
III. Filter = J or H or K
IV. RA between 16 hours and 17 hours
V. DEC between 10 degrees and 11 degrees

SELECT * FROM ivoa.Obscore
WHERE dataproduct type='image'
AND s resolution < 0.3
AND (
 (-- J band approximated
 (em min + em max)/2 BETWEEN 1.234E-6 - 162E-9 AND 1.234E-6 + 162E-9
 AND
 (em max - em min) BETWEEN 0.5 * 162E-9 AND 1.5 * 162E-9
)
 OR
 (-- H band approximated
 (em min + em max)/2 BETWEEN 1.662E-6 - 251E-9 AND 1.662E-6 + 251E-9
 AND
 (em max - em min) BETWEEN 0.5 * 251E-9 AND 1.5 * 251E-9
)
 OR
 (-- J band approximated
 (em min + em max)/2 BETWEEN 2.159E-6 - 262E-9 AND 2.159E-6 + 262E-9
 AND
 (em max - em min) BETWEEN 0.5 * 262E-9 AND 1.5 * 262E-9
)
)
AND s ra BETWEEN 16*15 AND 17*15
AND s dec BETWEEN 10 and 11

A.2.4. Use case 1.4
Show me a list of all observations that satisfying:
I. DataType=Image
II. Wavelength=V or I or Z
III. Spatial Resolution < 0.7 arcseconds FWHM
IV. Exposure Time > 1000 seconds
V. Data Quality: Fully Calibrated

SELECT * FROM ivoa.Obscore
WHERE dataproduct type='image'
AND (
 (-- V band approximated
 (em min + em max)/2 BETWEEN 5.5E-8 - 89E-9 AND 5.5E-8 + 89E-9
 AND
 (em max - em min) BETWEEN 0.5 * 89E-9 AND 1.5 * 89E-9
)
 OR
 (-- I band approximated
 (em min + em max)/2 BETWEEN 9E-8 - 240E-9 AND 9E-8 + 240E-9
 AND
 (em max - em min) BETWEEN 0.5 * 240E-9 AND 1.5 * 240E-9
)
 OR
 (-- Z band approximated (Using correct values???)
 (em min + em max)/2 BETWEEN 8.8E-8 - 95E-9 AND 8.8E-8 + 95E-9
 AND
 (em max - em min) BETWEEN 0.5 * 95E-9 AND 1.5 * 95E-9
)
AND s resolution < 0.7
AND t exptime > 1000.
AND calib level > 1

A.2.5. Use case 1.5

Show me all data that satisfies:

I. DataType=IFU
II. DataQuality: Fully Calibrated
III. ObjectClass=quasar (SERVIC REQ + NEEDS ANOTHER SERVICE (CATALOGUE))
IV. Redshift > 3:
V. Radio flux > 1 mJy

SELECT * FROM ivoa.Obscore
WHERE dataproduct type='cube'
AND calib leval > 1
AND CONTAINS(POINT('ICRS', quasar ra, quasar dec), s region) = 1

A.2.6. Use case 1.6

For an input list of RA, DEC, Mean Julian Date (MJD), show me all data that satisfies (LIST=SERVREQ)

I. DataType=imaging
II. RA,DEC include the value and the list and Observation date is within 1 day of the MJD value

SELECT * FROM ivoa.Obscore
WHERE dataproduct type='image'
AND CONTAINS(POINT('ICRS', user ra, user dec), s region) = 1
AND | (t max + t min)/2 - user date | < 1 day
A.3. Discovering spectral data

A.3.1. Use case 2.1

Show me a list of all data that satisfies:

I. DataType=Spectrum
II. Energy spans 1 to 5 keV
III. Total counts in spectrum > 100
IV. Exposure time > 10000 seconds
V. Data Quality: Fully Calibrated

A.3.2. Use case 2.2

Show me a list of all data that satisfies:

I. DataType=Spectrum
II. Wavelength includes 6500 angstroms
III. Spectral Resolution better than 15 angstroms
IV. Spatial Resolution better than 2 arcseconds FWHM
V. Exposure Time > 3600 seconds
VI. Data Quality = Any

SELECT * from ivoa.Obscore
WHERE dataproduct type='spectrum'
AND em min < 650E-9
AND em max > 650E-9
AND em res power > 6500/15.
AND s resolution < 2
AND t exptime > 3600

A.3.3. Use case 2.3

Show me a list of all data that satisfies:

I. Emission line width Halpha > 2000 km/s FWHM (SERVICEREQ+NEEDS OTHER SERVICE)

A.4. Discover multi-dimensional observations

A.4.1. Use case 3.1

Show me a list of data with:

I. DataType=cube (IFU spectroscopy?)
II. RA,DEC includes value RA1,DEC1
III. Field size > 100 square arcseconds
IV. DataSensitivity = deep
V. Spectral resolution better than 5 angstroms FWHM
A.4.2. Use case 3.2

[ML /I think Spanish VO showed a tap service for data cubes like this in Nara]

Show me a list of all data that satisfies:

I. **DataType=Cube with 3 dimensions**
II. Axes includes Velocity
 em_u=pect.DopplerVeloc
III. Axes includes RA
IV. Axes includes DEC
V. Velocity Resolution better than 50 km/s
VI. RA includes 16.000
VII. Dec includes +41.000

NB: in this case optional data model fields can be used like em_u=pect.DopplerVeloc,
em_unit=m/s, etc...

A.4.3. Use case 3.3

Show me a list of all data that satisfies:

I. **DataType=cube**
II. RA includes 16.00
III. Dec includes +41.00
IV. Wavelength includes 6500 angstroms
V. Wavelength includes 4000 angstroms
VI. Spectral resolution better than 5 angstroms
VII. Exposure time more than 3600 seconds
VIII. Data Quality: Fully Calibrated

```sql
SELECT * from ivoa.ObScore  
WHERE dataproduct_type='cube'  
AND CONTAINS(POINT('ICRS',16, 41), s_region) = 1  
AND em_res_power > 6500./5.  
AND t_exptime > 3600  
AND em_min < 650E-9  
AND em_max > 650E-9
```

A.4.4. Use case 3.4

Show me a list of all data that satisfies:

I. **DataType=Cube with 3 dimensions**
II. Axes includes FREQ
III. Axes includes RA
IV. Axes includes DEC
V. Velocity Resolution better than 1 km/s
VI. RA includes 83.835000
VII. Dec includes -5.014722
VIII. Rest Frequency = 345.795990 GHz
IX. VLSRK in the range [6.0, 10.0]

A.4.5. Use case 3.5

Show me a list of all data that satisfies:
I. **DataType=Cube with 3 dimensions**
II. **Axes includes FREQ**
III. **Axes includes RA with > 100 pixels**
IV. **Axes includes DEC with > 100 pixels**
V. **Frequency extent > 500 MHz**
VI. **Rest Frequency = 345.795990 GHz appears in band**
VII. **The redshift is not specified, but should default to \(z_{source} \) for the target.**

A.4.6. Use case 3.6

Show me a list of all data that satisfies:

I. **DataType=Cube with 3 dimensions**
II. **Axes includes FREQ**
III. **Axes includes RA**
IV. **Axes includes DEC**
V. **Frequency resolution < 10 MHz**
VI. **Rest Frequency = 337.2966 GHz appears in band**
VII. **Any observation that could have detected a line at this rest frequency from any target, using the nominal redshift for the target.**

A.4.7. Use case 3.7

Show me a list of all data that satisfies:

I. **DataType=Cube with 3 dimensions**
II. **Axes includes FREQ**
III. **Axes includes RA**
IV. **Axes includes DEC**
V. **Frequency resolution < 10 MHz**
VI. **Rest Frequency in \((213.36053, 256.0278, 298.6908925, 341.350826, 384.0066819, 426.6579505, 469.3041221, 511.944687, 554.5791355) GHz appears in band**
VII. **Any observation that could have detected HCS+ (list of transition rest frequencies given above) from any target, using the nominal redshift for the target.**

A.4.8. Use case 3.8

Show me a list of all data that satisfies:

I. **DataType=Cube with 4 dimensions**
II. **Axes includes FREQ**
III. **Axes includes RA with > 100 pixels**
IV. **Axes includes DEC with > 100 pixels**
V. **Axes includes STOKES**
VI. **Frequency resolution < 1 MHz**
VII. **Rest Frequency = 345.795990 GHz appears in band**

A.4.9. Use case 3.9

Looking for moving targets:

I. **Show me the names of all the objects that have moving coordinates (i.e. no fixed RA, Dec position).**
A.5. Discovering time series

A.5.1. Use case 4.1
Show me a list of all data which satisfies:

I. DataType=TimeSeries
II. RA includes 16.00 hours
III. DEC includes +41.00
IV. Time resolution better than 1 minute
V. Time interval (start of series to end of series) > 1 week
VI. Observation data before June 10, 2008
VII. Observation data after June 10, 2007

SELECT * from ivoa.Obscore
WHERE dataproduct type='timeseries'
AND CONTAINS(POINT('ICRS',16, 41), s region) = 1
AND t resolution < 60.
AND t max - t min > 7 * 86400
AND t max < 54627.5 -- mjd for June 10, 2008
AND t min > 54261.5 -- mjd for June 10, 2007

A.6. Discovering general data

A.6.1. Use case 5.1
Show me a list of all data that satisfies:

I. Optical imaging
II. In the M81 group
III. With area greater than 0.5 degrees square
IV. With sensitivity > 10 _ _ for point source m=25
V. I also want X-ray data with cutouts 5 arcmin on a side of all the detected galaxies
VI. I also want Radio data cutouts 5 arcmin on a side around detected galaxies

A.6.2. Use case 5.2
Show me a list of all data that satisfies:

I. DataType=Imaging or Spectroscopy
II. RA includes 16.00 hours
III. DEC includes +41.00 degrees
IV. SDSS images and spectra AND CFHTLS images and spectra

SELECT * from ivoa.Obscore
WHERE dataproduct type IN ('image','spectrum')
AND CONTAINS(POINT('ICRS',16, 41), s region) = 1

A.6.3. Use case 5.3
In Virgo cluster show me imaging and X-ray data for all galaxies that are cluster members and have B < 21.
A.7. Use Cases 6: Others

A.7.1. Use case 6.1

Given COSMOS (or other survey) X-Ray source catalogue give me all the sources with photoZ > X, and spiral galaxy counterpart and produce radio - X-ray SEDs.

Comment: Requires source/object catalogues to drive data query (for SED info which may be catalogue or data).

A.7.2. Use Case 6.2

Given a list of Abell clusters, give me all their Chandra images with exposure time > X, after I select regions occupied by the diffuse emission, give me all the Chandra point sources in these regions, and find their redshift (I want to find background quasars because I am interested in lensing and I have no idea where to go to find z). For the quasars, give me high resolution (< 0.5") optical and radio images, and build SEDs.

Comment: Requires source/object catalogues and interactive image interactions (applications/interfaces), further query, and more catalogues to drive data query.

A.7.3. Use case 6.3

Find me all the variable Chandra sources with optical counterpart and redshift. If redshift is not available, give me an SED to compare with source templates (I also would like to run a tool or obtain a library of such templates from a theory database, which I expect the VO to provide). My aim is to separate stars from variable quasars.

Comment: Complicated, including templates and theory as well as catalogues.
Appendix B: Data Model Detailed Description

This section provides a full description of all data model elements including both mandatory and optional elements (specified by the value in the "MAN" column). The full utype for all elements of the Observation Core Components data model includes an “obscore” prefix (defining the namespace for ObsCoreDM) which has been elided here for brevity.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Utype</th>
<th>Unit</th>
<th>Type</th>
<th>Description</th>
<th>MAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATION INFORMATION (section B.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dataproduct_type</td>
<td>Obs.dataproductType</td>
<td>unitless</td>
<td>enum</td>
<td>Data product (file content) primary type</td>
<td>YES</td>
</tr>
<tr>
<td>dataproduct_subtype</td>
<td>Obs.dataporoductSubtype</td>
<td>unitless</td>
<td>string</td>
<td>Data product specific type</td>
<td>NO</td>
</tr>
<tr>
<td>calib_level</td>
<td>Obs.calibLevel</td>
<td>unitless</td>
<td>enum</td>
<td>Calibration level of the observation: in {0, 1, 2, 3}</td>
<td>YES</td>
</tr>
<tr>
<td>TARGET INFORMATION (B1.B.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_name</td>
<td>Target.name</td>
<td>unitless</td>
<td>string</td>
<td>Object of interest</td>
<td>YES</td>
</tr>
<tr>
<td>target_class</td>
<td>Target.class</td>
<td>unitless</td>
<td>string</td>
<td>Class of the Target object as in SSA</td>
<td>NO</td>
</tr>
<tr>
<td>DATA DESCRIPTION (section B3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obs_id</td>
<td>DataID.observationID</td>
<td>unitless</td>
<td>string</td>
<td>Internal ID given by the obs/tap service</td>
<td>YES</td>
</tr>
<tr>
<td>obs_title</td>
<td>DataID.title</td>
<td>unitless</td>
<td>string</td>
<td>Brief description of dataset in free format</td>
<td>NO</td>
</tr>
<tr>
<td>obs_collection</td>
<td>DataID.collection</td>
<td>unitless</td>
<td>string</td>
<td>Name of the data collection</td>
<td>YES</td>
</tr>
<tr>
<td>obs_creation_date</td>
<td>DataID.date</td>
<td>unitless</td>
<td>date</td>
<td>Date when the data set was created</td>
<td>NO</td>
</tr>
<tr>
<td>obs_creator_name</td>
<td>DataID.creator</td>
<td>unitless</td>
<td>string</td>
<td>Name of the creator of the data</td>
<td>NO</td>
</tr>
<tr>
<td>obs_creator_did</td>
<td>DataID.creatorDID</td>
<td>unitless</td>
<td>string</td>
<td>IVOA dataset identifier given by the creator</td>
<td>NO</td>
</tr>
<tr>
<td>CURATION INFORMATION (section B1.B.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obs_release_date</td>
<td>Curation.releaseDate</td>
<td>unitless</td>
<td>string</td>
<td>Observation release date (ISO 8601)</td>
<td>NO</td>
</tr>
<tr>
<td>obs_publisher_did</td>
<td>Curation.publisherDID</td>
<td>unitless</td>
<td>string</td>
<td>Data set ID given by the publisher.</td>
<td>YES</td>
</tr>
<tr>
<td>publisher_id</td>
<td>Curation.publisherID</td>
<td>unitless</td>
<td>string</td>
<td>IVOA-ID for the Publisher</td>
<td>NO</td>
</tr>
<tr>
<td>bib_reference</td>
<td>Curation.reference</td>
<td>unitless</td>
<td>string</td>
<td>Service bibliographic reference</td>
<td>NO</td>
</tr>
<tr>
<td>data_rights</td>
<td>Curation.rights</td>
<td>unitless</td>
<td>enum</td>
<td>Public/Reserved/Proprietary</td>
<td>NO</td>
</tr>
<tr>
<td>ACCESS INFORMATION (section B5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>access_url</td>
<td>Access.reference</td>
<td>unitless</td>
<td>string</td>
<td>URL used to access dataset</td>
<td>YES</td>
</tr>
<tr>
<td>access_format</td>
<td>Access.format</td>
<td>unitless</td>
<td>string</td>
<td>Content format of the dataset</td>
<td>YES</td>
</tr>
<tr>
<td>access_estsize</td>
<td>Access.size</td>
<td>unitless</td>
<td>integer</td>
<td>Estimated Size of dataset: in Kilo Bytes</td>
<td>YES</td>
</tr>
<tr>
<td>SPATIAL CHARACTERISATION (section B6.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_ra</td>
<td>Char.spatialAxis.coverage.location.coord.position2D.value2.c1</td>
<td>deg</td>
<td>double</td>
<td>Central Spatial Position in ICRS</td>
<td>YES</td>
</tr>
<tr>
<td>s_dec</td>
<td>Char.spatialAxis.coverage.location.coord.position2D.value2.c2</td>
<td>deg</td>
<td>double</td>
<td>Estimated size of the covered region</td>
<td>YES</td>
</tr>
<tr>
<td>s_fov</td>
<td>Char.spatialAxis.coverage.bounds.extent</td>
<td>deg</td>
<td>double</td>
<td>Estimated size of the covered region</td>
<td>YES</td>
</tr>
<tr>
<td>s_region</td>
<td>Char.spatialAxis.coverage.support.area</td>
<td></td>
<td>AstroCoordArea</td>
<td>Region covered in STC or ADQL</td>
<td>YES</td>
</tr>
<tr>
<td>s_resolution</td>
<td>Char.spatialAxis.resolutio.n.resolution</td>
<td>arcsec</td>
<td>float</td>
<td>Spatial resolution of data as FWHM</td>
<td>YES</td>
</tr>
<tr>
<td>s_ucd</td>
<td>Char.spatialAxis.ucd</td>
<td>unitless</td>
<td>string</td>
<td>(x or y data)</td>
<td>NO</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Type</td>
<td>Length</td>
<td>Nullable</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>s_resolution_min</td>
<td>Resolution min value on spectral axis (FWHM of PSF)</td>
<td>double</td>
<td>arcsec</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>s_resolution_max</td>
<td>Resolution max value on spectral axis</td>
<td>double</td>
<td>arcsec</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>s_calib_status</td>
<td>Type of coord calibration</td>
<td>enum</td>
<td>unitless</td>
<td>NO</td>
<td>NOT CALIBRATED, FINE, COARSE</td>
</tr>
<tr>
<td>s_stat_error</td>
<td>Astrometric precision along the spatial axis</td>
<td>double</td>
<td>arcsec</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>t_min</td>
<td>Start time in MJD</td>
<td>double</td>
<td>day</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>t_max</td>
<td>Stop time in MJD</td>
<td>double</td>
<td>day</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>t_exptime</td>
<td>Total exposure time</td>
<td>double</td>
<td>s</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>t_resolution</td>
<td>Temporal resolution FWHM</td>
<td>double</td>
<td>s</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>t_calib_status</td>
<td>Type of coord calibration</td>
<td>enum</td>
<td>unitless</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>t_stat_error</td>
<td>Time coord statistical error</td>
<td>double</td>
<td>s</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>em_ucd</td>
<td>Nature of the spectral axis</td>
<td>string</td>
<td>unitless</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>em_min</td>
<td>Start in spectral coordinates</td>
<td>double</td>
<td>m</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>em_max</td>
<td>Stop in spectral coordinates</td>
<td>double</td>
<td>m</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>em_res_power</td>
<td>Value of the resolution power along the SpectralAxis. (R)</td>
<td>double</td>
<td>unitless</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>em_res_power_min</td>
<td>Resolution power min value on spectral axis</td>
<td>double</td>
<td>unitless</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>em_res_power_max</td>
<td>Resolution power max value on spectral axis</td>
<td>double</td>
<td>unitless</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>em_resolution</td>
<td>Value of Resolution along the SpectralAxis</td>
<td>double</td>
<td>m</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>em_stat_error</td>
<td>Spectral coord statistical error</td>
<td>double</td>
<td>m</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>o_ucd</td>
<td>Nature of the observable axis</td>
<td>string</td>
<td>unitless</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>o_units</td>
<td>Units used for the observable values</td>
<td>enum</td>
<td>unitless</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>
Data Product Type (dataproduct_type)

- The model defines a data product type attribute for the Observation Class. It is the type of observation the user queries for or selects for retrieval. This is coded as a string that conveys a general idea of the content and organization of a dataset. Possible values for this string are described in section 0. The short name for this attribute is `dataproduct_type` in the implemented Ivoa.ObsCore table, as shown in Table 4

B.1.1.1. Dataproduct Subtype

In order to be more precise, the data product type could be completed with a second field, called a subtype.

[TBA: Need examples of such combinations Check discussion at http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/ObsTAPdraftDiscussion]

Calibration level (calib_level)

It is a convention we suggest to use to classify the different possible calibration status of an observed dataset. These 4 categories allow distinguishing 4 levels of calibration and would be sufficient for 80% of the data collections. This will be up to the data provider to consider how to map his own internal classification to the suggested scale here.

Following examples can help to find the most appropriate value for the `calibLevel` attribute (Obs.calibLevel).
- Level 0: Raw instrumental data, possibly in proprietary internal provider format, that needs specific tools to be handled.

- Level 1: Instrumental data in a standard format (FITS, VOTable, SDFITS, ASDM, etc. The data may or may not be calibrated. Standards tools can handle it.

- Level 2: Science ready data, with instrument signature removed, and calibration status defined on all physical axes.

- Level 3: Enhanced data products like mosaics, improved co-added image cubes, resampled or drizzled images, etc. spectra with calibrated velocity axis at a particular line rest frequency. In such case, the improved calibration procedure is described by the data provider in some way, progenitors of such a data product can be identified into the reduction pipeline.

This classification is simple enough to cover all regimes. Data providers will adjust the mapping of their various internal levels of calibration to this general frame.

B.2. Target

This is the astronomical object of interest for which the observation was performed. Only the name is used in the Core Components model but the Target object is fully designed in the Spectrum data model. Serendipitous archives or surveys may not contain this information for all observations, so this can be ‘NULL’ if necessary or have a value like ‘DARK’ for instance to specify a dark field and not a pointed observation.

B.2.1. Target Name (target_name)

The target_name specified here is often unreliably when one is searching for specific classes of objects, at least for most archives since it is quite hard to standardize automatically the target name for each observation. So the users could be warn that specifying target_name for their search will not necessarily return the expected results. It is quite useful for moving target like planets.

B.2.2. Class of the Target source/object (target_class)

This field indicates the type of object that was pointed for this observation. It is a string with possible values defined in a special vocabulary set to be defined: list of object classes (or types) used by the SIMBAD database, NED or defined in another IVOA vocabulary.

B.3. Dataset Description

After acquisition and reduction an observation is uniquely identified by its creator and gets a creator dataset identifier. This information is defined in the Spectrum data model in the DataID class. We re-use this class and the Utype DataID.CreatorDID in order to distinguish two dataset curated by two different services (archives) but originating from the same creator. When broadcasting a query to multiple servers, the response may contain multiple copies of the same dataset, with a unique DataID.CreatorDID obs_creator_did but possibly different obs_publisher_did (given by the data provider) Therefore a unique identifier is needed here. In the ObsCore model, the short name associated to this ID should be obs_id (to be checked).
The second identifier used in this model is the one given by the data provider, and defined in the Curation Class.

B.3.1. Creator name (obs_creator_name)

The name of the institution or entity which created the dataset, in a simple string.

B.3.2. Observation Identifier (obs_id)

The *obs_id* column contains a collection-specific identifier for an observation. In the case where multiple data products are available for an observation (e.g. with different calibration levels), the *obs_id* value will be the same for each product of the observation. This is equivalent to the dataset name for many archives where dataset name could have many files associated with them.

B.3.3. Dataset Text Description (obs_title)

The *obs_title* column should contain a brief description (displayable in less than one line of text) specifying in scientific terms the content of the dataset. The contents of this field are free format and are up to the data provider. For example a radio survey field consisting of HI and CO cubes and an associated 2D continuum image might use *obs_title* to describe the individual data products as "HI cube", "CO cube", "Stokes I continuum image at 1420 MHz", and so forth.

B.3.4. Collection name (obs_collection)

The name of the collection (DataID.Collection) identifies the data collection to which the data product belongs. A data collection can be any collection of datasets which are alike in some fashion. Typical data collections might be all the data from a particular telescope, instrument, or survey. The value is either the registered shortname for the data collection, the full registered IVOA identifier for the collection, or a data provider defined shortname for the collection. Examples: HST/WFPC2, VLT/FORS2, CHANDRA/ACIS-S, etc.

We understand that this is not a very precisely defined field. What is important for the data provider is to use the *collection_id* which is meaningful to astronomers.

B.3.5. Creation date (obs_creation_date)

The date when the dataset was created. This is a time stamp, stored in ISO 8601 format (“YYYY-MM-DDThh:mm:ss”).

B.3.6. Creator name (obs_creator_name)

The name of the institution or entity which created the dataset.

B.3.7. Dataset Creator Identificator (obs_creator_did)

IVOA dataset identifier given by its creator. See definition in the SpectrumDM specification (McDowell & al., 2007)
B.4. Curation metadata

The *Curation* class inherits from the Spectrum data model and VOResource concepts too. The various attributes for ObsCore are:

B.4.1. Publisher Dataset ID (obs_publisher_did)

This is the identifier the publisher provides for this observation. It may differ from the original identifier given by the creator of the data set. (new reduction, new version, etc.). The corresponding Utype mapped from the Spectrum DM is *Curation.PublisherDID* and relates to the same definition.

This field contains the IVOA dataset identifier (Plante & al., 2007) for the published data product. This value must be unique within the namespace controlled by the dataset publisher (data center). The value will also be globally unique since each publisher has a unique registered publisher ID. The same dataset may however have more than one publisher dataset identifier if it is published in more than one location (the creator DID, if defined for the given dataset, would be the same regardless of where the data is published).

B.4.2. Publisher Identifier (publisher_id)

The IVOA ID for the data provider as defined in the Spectrum DM.

B.4.3. Bibliographic Reference (bib_reference)

URL or Bibcode for documentation. This is a forward link to publications which reference the data set. This is an exact re-use of the SSA definition. See (Tody & al., 2008) in section 4.2.5.6 about Curation Metadata.

B.4.4. Data Rights (data_rights)

This parameter allows mentioning the availability of a data set. Possible values are: PUBLIC, PROTECTED, PROPRIETARY as stated in the Spectrum Data Model.

B.4.5. Release Date (obs_release_date)

This is a new attribute added to the original class inherited from the Curation class in SpectrumDM.

It specifies the date of release for an observation or data product. This timestamp is a convenient way to distinguish public and private observations and also tell users when a specific data product will become available. The value is in ISO 8601 format ("YYYY-MM-DDThh:mm:ss") and could be NULL. An observation with a NULL value in the releaseDate attribute is private by definition.

B.5. Data Access

The data format as well as the URL to access the data set is provided by the *Access* Class inherited from the SSA Utype list. (Tody & al., 2008). The estimated size of the data file is also given by the Size attribute and corresponds to the number of kilobytes expected.
B.5.1. Access Reference (*access_url*)

This item (Access.Reference) contains a URL that can be used to download the data product (as a file of some sort).

Users should be notified that these URL values could be volatile and subject to be different from one access time to another.

B.5.2. Access Format (*access_format*)

This data model item contains a string indicating the format of the data product if downloaded as a file. The values are made up of dot-separated words that describe (in increasing detail) the overall file format as well as the structure of the data within the file. Allowed values include any legal MIME type ([Authority Internet Assigned Numbers, 2007](#)) that describes the overall file format or a dot-delimited specifier describing in more astronomy-specific terms the format and content of the file. For example: fits, fits.image, fits.image.gz, fits.image.mef, fits.table, fits.cube, fits.cube.mef, directory, VOTable, csv, tsv, pdf.

[NB: Editors could not come up with a general acceptable scheme to define the access format. We need help from the community to define it.]

[TB completed and discussed on the DAL/DM mailing lists].

B.5.3. Estimated Size (*access_estsize*)

The Access.Size field contains the approximate size (in kilobytes) of the file available via the corresponding URL. This is used only to gain some idea of the size of a data product before downloading it, hence only an approximate value is required. It is only a useful indication that can help to tune download functionalities in an application according to high volumes of data and transfer bit rate.

B.6. Description of physical axes: Characterisation classes

As mentioned in the use-cases, selection criteria for an observation depend on the physical axes contained in the dataset especially the position, band, time, and the type of observed quantity that we call “observable” in the data model. The observable axis can cover various types of flux but also velocity, etc. Such a description was tackled in the IVOA Characterisation data model (Louys & al., 2007) from which we re-use mainly the first level and second levels of details except for the spatial coverage where the support region (level 3) is used too.

B.6.1. Spatial axis

B.6.1.1. The observation reference position: (*s_ra and s_dec*)

Two coordinates in position are used to identify a reference position (typically the center) of an observation in the sky, attached to a coordinate system definition.

- **Coordinate system**

 The coordinate system defined in the Characterisation DM is based on the STC:Coordsys class. The model in principle supports all kind of coordinate systems defined in the STC reference list. However, the ObsTAP implementation
of the model mandates that queries expressed in ICRS should be supported in an ObsTAP service. This allows a general query to be sent to multiple archives or data centers, but requires some interpretation/conversion of coordinates at the server side. Still this is efficient for the large data discovery strategy we need to provide. Data in a specific coordinate system will be available via client applications that would do the conversions or adapt the coordinate system to some specific servers.

- **Coordinates**

The model uses the *Location* Class from the Characterisation DM, with the Utype values:

  ```
  Char.spatialAxis.coverage.location.Coord.Position2D.Value2.C1
  ```

 whose short names in the ObsCore table are *s_ra* and *s_dec*. We assume that ObsTAP implements these coordinates in the ICRS system. Using other coordinate systems as defined in STC (Rots, 2007) and re-used in the Characterisation DM as well as Spectrum DM can be considered in client applications in charge of the coordinate translations.

B.6.1.2. The covered region

The Coverage class along the spatial axis provide 2 possible concepts:

- **Bounds** which in turn can use 2 representations:

 - **A bounding box** that can estimate very coarsely the coverage of an observation. It is modeled as a couple of intervals on each coordinates with Utypes:

    ```
    ```

 - **The extent of the field of view** (*s_fov*)

 The model offers to estimate the size of the diameter of the greater circle encompassing the field of view. This is not covered by the Characterisation DM v1.1 but in the new release of Characteriation v2.0 as Char.spatialAxis.coverage.bounds.extentRadius

- **Support**: (*s_region*)

 A precise region description of spatial footprint of the dataset using region types like Circle, Polygon, etc., provided in STC. The Utypes:

  ```
  Char.SpatialAxis.Coverage.Support.AreaType
  ```

 define this region, and STC-S can be used to serialise the values.
B.6.1.3. Spatial Resolution (s_resol)

The minimal size that can be distinguished along the spatial axis, s_resol is specified in arcseconds and has the following Utype: Char.SpatialAxis.Resolution.RefVal.

B.6.1.4. Astrometric Calibration Status: (s_calibStatus)

A string to encode the calibration status along the spatial axis (astrometry).

Possible values could be {uncalibrated, raw, , calibrated} as defined for Char.SpatialAxis.calibStatus in the Characterisation Data Model.

For some observations, only the pointing position is provided (s_calibStatus = “uncalibrated”). Some other may have a raw linear relationship between the pixel coordinates and the world coordinates (s_calibStatus = “raw”).

B.6.1.5. Astrometric precision (s_stat_error)

This parameter gives an estimate of the astrometric statistical error after the astrometric calibration phase. The corresponding Utype is: Char.SpatialAxis.Accuracy.StatError.Refval

B.6.1.6. Spatial sampling (s_pixel_scale)

This corresponds to the sampling precision of the data along the spatial axis. It is stored as a real number corresponding to the spatial sampling period, i.e., the distance in world coordinates system units between two pixel centers. It may contain two values if the pixels are rectangular.

B.6.2. Spectral axis

This axis is generally used to represent different kinds of physical measurements: wavelength, energy, frequency or some interpretation of this with respect to a reference position like velocity.

The data model distinguishes the various flavors of this axis using the UCD attached to it, Char.spectralAxis.ucd named as em_ucd in Obs/Tap optional fields. Possible values for this UCD are defined in the Spectrum DM (McDowell & al., 2007) in section 4.1.

Depending on the UCD used to specify the axis, the Obscore model allows to describe the spectral coordinates in a relevant unit, corresponding to the spectral quantity, and specified in the model in Char.spectralAxis.unit

Here is a short list of preferred value for the Observation data model Core Components extracted from the recommended values proposed in the Spectrum DM.

<table>
<thead>
<tr>
<th>Spectral coordinate</th>
<th>Char.spectralAxis.ucd</th>
<th>Char.spectralAxis.unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>em.freq</td>
<td>Hz</td>
</tr>
<tr>
<td>wavelength</td>
<td>em.wl</td>
<td>m or angstrom</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>energy</td>
<td>em.energy</td>
<td>keV, J, erg</td>
</tr>
</tbody>
</table>

Note that for the ObsTAP implementation, the Spectral axis coordinates are constrained as a wavelength quantity expressed in meters as mentioned in section 4.17.

B.6.2.1. Spectral calibration status (em_calib_status)
This attribute of the spectral axis indicates the status of the data in terms of spectral calibration. Possible values are defined in the CharDM and belong to \{calibrated, uncalibrated, relative, normalized\}.

B.6.2.2. Spectral Bounds
These are the limits of the spectral interval covered by the observation, in short \(em_min \) and \(em_max \). Such values are expressed as frequencies but using meters as units as it is easily convertible.

B.6.2.3. Spectral Resolution
As in the characterisation data model we distinguish a reference value of the point spread function along the spectral axis from the resolution power along this axis, more appropriate when the resolution varies along the spectral axis. Only one of the following is needed in the data model:

- a. A reference value for **Spectral Resolution** (\(em_resol \))

 A mean estimate of the resolution (FWHM of the LSF). This can be used for narrow range spectra whereas in the majority of cases, the resolution power is preferable due to the LSF variation along the spectral axis.

 \(Char.\text{spectralAxis}.\text{resolution}.\text{refval}.\text{value} \).

- b. A reference value for **Resolution Power** (\(em_res_power \))

 This is an average estimation for the spectral resolution power stored as a double value, with no unit.

 \(Char.\text{spectralAxis}.\text{resolution}.\text{resolPower}\text{refval} \).

- c. **Resolution Power limits** (\(em_res_power_min \), \(em_res_power_max \))

 These parameters simply give the limit of variation of the resolution power in the observation as minimal and maximal values and use the following Utypes:

 \(Char.\text{spectralAxis}.\text{resolution}.\text{resolPower\ bounds}.\text{LoLim} \)

 \(Char.\text{spectralAxis}.\text{resolution}.\text{resolPower\ bounds}.\text{HiLim} \)

B.6.2.4. Accuracy along the spectral axis
This is also provided in the Characterisation data model, using the item mapped to the Utype: \(Char.\text{spectralAxis}.\text{accuracy}.\text{statError}\text{.refval}.\text{value} \) and, stored in the same units as all the other spectral quantities.
B.6.3. Time axis

B.6.3.1. Time coverage (t_min, t_max, t_exptime)

Three time stamps are used: $t_{\text{start}}, t_{\text{stop}},$ and t_{exptime} the exposure time. A format like MJD is useful for easy calculations and preferred for the Observation Core components model. Other information is given in subsection 4.14 and 4.15.

B.6.3.2. Time resolution (t_resolution)

Estimated or average value of the temporal resolution with Utype

$\text{Char.timeAxis.resolution.refval.value}$

B.6.3.3. Time Calibration Status: (t_calib_status)

This parameter gives the status of time axis calibration. This is especially useful for time series.

B.6.3.4. Time Calibration Error: (t_staterror)

A parameter used if we can estimate a statistical error on the time measurements (for time series again).

B.6.4. Observable Axis:

B.6.4.1. Nature of the observed quantity (o_ucd)

Most observations measure some flux quantity depending on position, spectral coordinate, or time. Here we consider a more general axis: the “observable axis” that can be either flux or any other quantity, the nature of which is specified by the UCD attached to this axis.

The possible UCD values are part of the UCD1+ vocabulary (Preite Martinez & al., 2007). One can find simple flux classes like: $\text{phot.flux, phot.flux.density, phot.count, phot.mag}$, or more complex combinations such as: $\text{phot.flux.density;phys.polarization.stokes.I}$

Various possibilities have been gathered at http://www.ivoa.net/internal/IVOA/ObsTap/ListForObservable25Oct2010.pdf which provides a (non-exhaustive) list of possible triplets (observable name, UCD, units) for various observables data providers may want to describe in their archive. The unit used to encode values of the Observable quantity are specified in $\text{Char.ObservableAxis unit}$ See examples in the table..

B.7. Provenance

Provenance contains a class to represent the entire Observing configuration used to acquire an observation. Instrumental parameters are gathered here.
B.7.1. Instrument name (*instrument*)

The name of the instrument used for the acquisition of the observation. It is given in the model as `Provenance.ObsConfig.instrument.name` and encoded as a string.

B.7.2. Proposal

Each proposal has an identifier attribute that can be used to collect all observations and data products related to the same proposal. The corresponding Utype will simply be `Proposal.identifier`

[NB: Here is presented only a minimal set of information on the instrumental configuration. See future documents on ProvenanceDM]

Appendix C: Details on the TAP_SCHEMA tables and usage example

C.1 List of data model fields in TAP_SCHEMA

Here are the description of all mandatory/optional data model fields that must/can be used in the `TAP_SCHEMA.columns`

We suggest using only lower case in the tables involved to support ObsTAP. Tables have been updated accordingly.
Table 6: TAP_SCHEMA.columns Mandatory ObsTAP fields (2 pages)

<table>
<thead>
<tr>
<th>column name</th>
<th>datatype</th>
<th>size</th>
<th>units</th>
<th>Utype (obscore: prefix omitted)</th>
<th>ucd</th>
<th>principal</th>
<th>indexed</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataproduct_type</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>obs.dataproducttype</td>
<td>meta.id;class</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>calib_level</td>
<td>adql:INTEGER</td>
<td>NULL</td>
<td>NULL</td>
<td>obs.caliblevel</td>
<td>meta.id;class</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>obs_collection</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>dataid.collection</td>
<td>meta.id</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>obs_id</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>dataid.createrdid</td>
<td>meta.id</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>obs_publisher_did</td>
<td>adql:CLOB</td>
<td>TBD</td>
<td>NULL</td>
<td>curation.publisherdid</td>
<td>meta.ref.url;meta.curation</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>access_url</td>
<td>adql:CLOB</td>
<td>NULL</td>
<td>NULL</td>
<td>access.reference</td>
<td>meta.ref.url</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>access_format</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>NULL</td>
<td>access.format</td>
<td>meta.id;class</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>access_estsize</td>
<td>adql:BIGINT</td>
<td>NULL</td>
<td>kB</td>
<td>access.size</td>
<td>??</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>target_name</td>
<td>adql:varchar</td>
<td>TBD</td>
<td>NULL</td>
<td>target.name</td>
<td>meta.id;src</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_ra</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>deg</td>
<td>char.spatialaxis.coverage.location.coord.position2d.value2.c1</td>
<td>pos.eq.ra</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>s_dec</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>deg</td>
<td>char.spatialaxis.coverage.location.coord.position2d.value2.c2</td>
<td>pos.eq.dec</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>s_fov</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>deg</td>
<td>char.spatialaxis.coverage.bounds.extent</td>
<td>phys.angSize;instr.fov</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>s_region</td>
<td>adql:REGION</td>
<td>NULL</td>
<td>deg</td>
<td>char.spatialaxis.coverage.support.area</td>
<td>??</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>s_resolution</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>deg</td>
<td>char.spatialaxis.resolution.refval.cresolution</td>
<td>pos.angResolution</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>t_min</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>d</td>
<td>char.timeaxis.coverage.bounds.limits.interval .starttime</td>
<td>time.start;obs.exposure</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>t_max</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>d</td>
<td>char.timeaxis.coverage.bounds.limits.interval .stoptime</td>
<td>time.stop;obs.exposure</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
</tbody>
</table>

- 47 -
<table>
<thead>
<tr>
<th>column name</th>
<th>datatype</th>
<th>size</th>
<th>units</th>
<th>Utype (obscore: prefix ommitted)</th>
<th>ucd</th>
<th>principal</th>
<th>indexed</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_exptime</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>s</td>
<td>char.timeaxis.coverage.support.extent</td>
<td>time.duration.obs.exposure</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>t_resolution</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>s</td>
<td>char.timeaxis.resolution.refval</td>
<td>time.resolution</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>em_min</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>m</td>
<td>char.spectralaxis.coverage.bounds.limits.interval.lolim</td>
<td>em.wl;stat.min</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>em_max</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>m</td>
<td>char.spectralaxis.bounds.limits.interval.hiLim</td>
<td>em.wl;stat.max</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>em_res_power</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spectralaxis.resolution.resolpower.refval</td>
<td>spec.resolution</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>o_ucd</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>char.observableaxis.ucd</td>
<td>meta.code</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 7 TAP.schema.columns Optional fields for an ObsTAP service (2 pages) All utypes have a prefix “obscore:” omitted in the table

<table>
<thead>
<tr>
<th>column name</th>
<th>datatype</th>
<th>size</th>
<th>units</th>
<th>Utype</th>
<th>ucd</th>
<th>principal</th>
<th>indexed</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_class</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>target.class</td>
<td>src.class</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>obs_creation_d</td>
<td>adql:TIMESTAMP</td>
<td>NULL</td>
<td>NULL</td>
<td>dataid.date</td>
<td>time;meta.dataset</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obs_creator_n</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>dataid.creator</td>
<td></td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obs_title</td>
<td>adql:VARCHAR</td>
<td>200</td>
<td>NULL</td>
<td>dataid.title</td>
<td>TBD</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>publisher_id</td>
<td>adql:VARCHAR</td>
<td>TBD</td>
<td>NULL</td>
<td>curation.publisherid</td>
<td>meta.ref.url;meta.cur</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>bib_reference</td>
<td>adql:CLOB</td>
<td>TBD</td>
<td>NULL</td>
<td>curation.reference</td>
<td>meta.bib.bibcode</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>data_rights</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>d</td>
<td>curation.rights</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>obs_release_d</td>
<td>adql:TIMESTAMP</td>
<td>NULL</td>
<td>NULL</td>
<td>curation.releasedate</td>
<td>time.release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_ucd</td>
<td>adql:CLOB</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spatialaxis.ucd</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_resolution_m</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spatialaxis.resolution.bounds.</td>
<td>pos.angResolution;</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td></td>
<td></td>
<td></td>
<td>limits.interval.lolim</td>
<td>stat.limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_resolution_m</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spatialaxis.resolution.bounds.</td>
<td>pos.eq.instr.fov</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ax</td>
<td></td>
<td></td>
<td></td>
<td>limits.interval.hilim</td>
<td>limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_calib_status</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spatialaxis.calibstatus</td>
<td>meta.code.qual</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>s_stat_error</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spatialaxis.accuracy.staterror.</td>
<td>stat.error,pos.eq</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>refval.value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>column name</td>
<td>datatype</td>
<td>size</td>
<td>units</td>
<td>Utype</td>
<td>ucd</td>
<td>principal</td>
<td>indexed</td>
<td>std</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>----------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>t_calib_status</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>NULL</td>
<td>char.timeaxis.calibstatus</td>
<td>meta.code.qual</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t_stat_error</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>s</td>
<td>char.timeaxis.accuracy.staterror.refval.value</td>
<td>stat.error;time</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>em_ucd</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spectralaxis.ucd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>em_res_power_min</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spectralaxis.resolution.resolpower.lo lim</td>
<td>spect.resolution;stat.min</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>em_res_power_max</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>NULL</td>
<td>char.spectralaxis.resolution.resolpower.hi lim</td>
<td>spect.resolution;stat.max</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>em_resolution</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>m</td>
<td>char.spectralaxis.resolution.refval.value</td>
<td>spect.resolution;stat.mean</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>em_stat_error</td>
<td>adql:DOUBLE</td>
<td>NULL</td>
<td>m</td>
<td>char.spectralaxis.accuracy.staterror.refval.value</td>
<td>stat.error;em</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>instrument</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td></td>
<td>provenance.obsconfig.instrument.name</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>proposal_id</td>
<td>adql:VARCHAR</td>
<td>NULL</td>
<td>NULL</td>
<td>provenance.proposalid</td>
<td>meta.id; obs.proposal</td>
<td>1</td>
<td>TBD</td>
<td>1</td>
</tr>
</tbody>
</table>
C.2 ObsTAP Schema Example

All TAP services that implement the ObsCore model will have the same table and column descriptions in their TAP_SCHEMA, with the exception of the service-specific column descriptions as described in 4. Specifically, implementations may change the description, the indexed flag, and the size (in the case of variable width columns).

Note: The following SQL was modified but not tested to match the requirements in section 4. A tested version will be included as soon as possible.

To be updated according to the new tables.

delete from TAP_SCHEMA.columns where table_name = 'ivoa.ObsCore';
delete from TAP_SCHEMA.tables where table_name = 'ivoa.ObsCore';
delete from TAP_SCHEMA.schemas where schema_name = 'ivoa';

insert into TAP_SCHEMA.schemas (schema_name, description) values ('ivoa', 'collection of tables for IVOA data models with standard relational mappings');

insert into TAP_SCHEMA.tables (schema_name, table_name, utype, description) values ('ivoa', 'ivoa.ObsCore', 'Observation', 'ObsCore 1.0');

-- NOTE: values in the size column are implementation-specific
-- and should be set by data providers.
-- NOTE: values in the description may be changed/enhanced by
--- data providers.
-- NOTE: all other columns have values mandated by the specification

insert into TAP_SCHEMA.columns (table_name, column_name, datatype, unit, utype, ucd, size, principal, indexed, std, description)
values ('ivoa.ObsCore', 'dataproduct_type', 'adql:VARCHAR', NULL, 'Observation.DataProductType', NULL, 128, 1,0,1, 'type of data product (image, spectrum, timeseries, visibility, event, cube) '),
('ivoa.ObsCore', 'calib_level', 'adql:VARCHAR', NULL, 'Observation.calibLevel', NULL, NULL, 1,0,1, 'calibration level (0,1,2,3) '),
('ivoa.ObsCore', 'target', 'adql:VARCHAR', NULL, 'Observation.Target.name', NULL, 128, 1,0,1, 'name of the intended target ');
ObsTAP

(`ivoa.ObsCore', 'obs_collection', 'adql:VARCHAR', NULL,
'Observation.DataID.collection', NULL, 128, 1,0,1,
'name of the archive or data collection'),
(`ivoa.ObsCore', 'obs_id', 'adql:VARCHAR', NULL,
'TBD:Observation.DataID.creatorDID', NULL, 128, 1,0,1,
'IVOA dataset identifier assigned by the publisher'),
(`ivoa.ObsCore', 'obs_publisher_did', 'adql:CLOB', NULL,
'Observation.Curation.PublisherDID', NULL, NULL,
'128, 1,0,1,
'IVOA dataset identifier assigned by teh publisher'),
(`ivoa.ObsCore', 'access_url', 'adql:CLOB', NULL,
'Observation.Access.reference', NULL, NULL, 1,0,1,
'URL to download the data'),
(`ivoa.ObsCore', 'access_format', 'adql:VARCHAR', NULL,
'TBD:Observation.Access.format', NULL, 128, 1,0,1,
'file format or structure of downloaded product(s)'),
(`ivoa.ObsCore', 'access_estsize', 'adql:INTEGER', 'KB',
'TBD:Observation.Access.size', NULL, NULL, 1,0,1,
'estimated download size'),
(`ivoa.ObsCore', 's_ra', 'adql:DOUBLE', 'deg',
NULL, NULL, 1,0,1,
'ICRS Right Ascension of central coordinates'),
(`ivoa.ObsCore', 's_dec', 'adql:DOUBLE', 'deg',
NULL, NULL, 1,0,1,
'ICRS Declination of central coordinates'),
(`ivoa.ObsCore', 's_region', 'adql:REGION', 'deg',
NULL, NULL, 1,0,1,
'region bounded by observation'),
(`ivoa.ObsCore', 's_resolution', 'adql:DOUBLE', 'arcsec',
NULL, NULL, 1,0,1,
'typical/representative/characteristic spatial resolution'),
(`ivoa.ObsCore', 't_min', 'adql:DOUBLE', 'd',
NULL, NULL, 1,0,1,
'start time of observation (MJD)'),
(`ivoa.ObsCore', 't_max', 'adql:DOUBLE', 'd',
null

- 52 -
ObsTAP

NULL, NULL, 1,0,1,
'end time of observation (MJD)'),
('ivoa.ObsCore', 't_exptime', 'adql:DOUBLE', 'sec',
NULL, NULL, 1,0,1,
'exposure time of observation'),
('ivoa.ObsCore', 't_resolution', 'adql:DOUBLE', 'sec',
'Characterisation.TimeAxis.Resolution.refVal',
NULL, NULL, 1,0,1,
'typical/representative/characteristic Time resolution'),

('ivoa.ObsCore', 'em_min', 'adql:DOUBLE', 'm',
NULL, NULL, 1,0,1,
'minimum wavelength'),
('ivoa.ObsCore', 'em_max', 'adql:DOUBLE', 'd',
NULL, NULL, 1,0,1,
'maximum wavelength'),
('ivoa.ObsCore', 'em_res_power', 'adql:DOUBLE', NULL,
NULL, NULL, 1,0,1,
'typical/representative/characteristic spectral resolution'),

('ivoa.ObsCore', 'o_fluxucd', 'adql:VARCHAR', NULL,
'Characterisation.ObservableAxis.ucd', NULL, 32, 1,0,1,
'UCD describing the observable axis (pixel values)')
;
Appendix D: Updates to the Document

- Version 0.2 to 1.0 Spring 2010
 - Include implementation part in section 3
 - Fix underscore character in most places
 - Include data model summary table for all fields in appendix A
 - Add a status column for each field M or R or O
 - Update tables em_domain moved up (minimal change)

- Version 1.0 May 2010
 - Section 5: re-write XMM SSC ObsTAP service description
 - Introduce use case shortly at beginning and point to appendix
 - Moved data model summary table back to data model section

- Version 1.0 Dec 2010 to February 2011
 - Converted document from LaTeX to Word
 - Revised data model column names to make more consistent
 - Moved table showing full data model to an appendix
 - Added a short table of only the mandatory fields to the DM intro
 - Many small edits to make text more readable and correct
 - Edit Use-case part and provide query examples
 - Added references and citations
 - Added figure for time Axis
 - Changed appendix C for a data modeling orientation

- Version 1.0-20110227
 - Merged appendix A and B into A
 - Flesh out appendix B for a data modeling orientation
 - Update utype syntax in all tables
 - Re-organise appendix C and D for tap_schema.columns and example of table initialisation