
International
Virtual
Observatory

Alliance

IVOA Provenance Data Model
Version 1.0

IVOA Proposed Recommendation 2019-07-19
Working group

DM
This version

http://www.ivoa.net/documents/ProvenanceDM/20190719
Latest version

http://www.ivoa.net/documents/ProvenanceDM
Previous versions

WD-ProvenanceDM-1.0-20190614.pdf
PR-ProvenanceDM-1.0-20181015.pdf
WD-ProvenanceDM-1.0-20180530.pdf
WD-ProvenanceDM-1.0-20170921.pdf
WD-ProvenanceDM-1.0-20161121.pdf
ProvDM-0.2-20160428.pdf
ProvDM-0.1-20141008.pdf

Author(s)
Mathieu Servillat, Kristin Riebe, Catherine Boisson, François
Bonnarel, Anastasia Galkin, Mireille Louys, Markus Nullmeier,
Nicolas Renault-Tinacci, Michèle Sanguillon, Ole Streicher

Editor(s)
Mathieu Servillat

http://www.ivoa.net/documents/ProvenanceDM/20190719
http://www.ivoa.net/documents/ProvenanceDM
https://wiki.ivoa.net/internal/IVOA/ObservationProvenanceDataModel/Provenance_WD2.pdf
http://www.ivoa.net/documents/ProvenanceDM/20181015/
http://wiki.ivoa.net/internal/IVOA/ObservationProvenanceDataModel/WD-ProvenanceDM-1.0-20180530.pdf
http://www.ivoa.net/documents/ProvenanceDM/20170921/
http://www.ivoa.net/documents/ProvenanceDM/20161121/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/description/ProvDM-0.2-20160428.pdf
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/description/ProvDM-0.1-20141008.pdf

Abstract
This document describes how provenance information can be modeled,

stored and exchanged within the astronomical community in a standard-
ized way. We follow the definition of provenance as proposed by the W3C1,
i.e. that “provenance is information about entities, activities, and people
involved in producing a piece of data or thing, which can be used to form as-
sessments about its quality, reliability or trustworthiness.” Such provenance
information in astronomy is important to enable any scientist to trace back
the origin of a dataset (e.g. an image, spectrum, catalog or single points in a
spectral energy distribution diagram or a light curve), a document (e.g. an
article, a technical note) or a device (e.g. a camera, a telescope), learn about
the people and organizations involved in a project and assess the reliability,
quality as well as the usefulness of the dataset, document or device for her
own scientific work.

Status of this document
This is an IVOA Proposed Recommendation made available for public

review. It is appropriate to reference this document only as a recommended
standard that is under review and which may be changed before it is accepted
as a full Recommendation.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 5
1.1 Goal of the provenance model 6
1.2 Requirements and best practices 9

1.2.1 Model requirements 9
1.2.2 Best practices . 9

1.3 Role within the VO architecture 10
1.4 Previous efforts . 10

2 The IVOA Provenance data model 12
2.1 Overview and class diagram 12
2.2 Entity and Activity classes . 13

2.2.1 Entity and Collection classes 13
2.2.2 Activity class . 13

2.3 Entity-Activity relations . 14
2.3.1 Used class . 15

2

http://www.ivoa.net/documents/

2.3.2 WasGeneratedBy class 16
2.3.3 Roles in Entity-Activity relations 16
2.3.4 WasDerivedFrom relation 17
2.3.5 WasInformedBy relation 17

2.4 Agent and relations to Agent 18
2.4.1 Agent class . 18
2.4.2 WasAssociatedWith class 19
2.4.3 WasAttributedTo class 19
2.4.4 Agent roles . 20

2.5 Description classes . 20
2.5.1 ActivityDescription class 21
2.5.2 EntityDescription class 23
2.5.3 UsageDescription and GenerationDescription classes . 23
2.5.4 Types of Usage and Generation 25

2.6 Specific types of Entity classes 25
2.6.1 DatasetEntity and DatasetDescription classes 26
2.6.2 ValueEntity and ValueDescription classes 27

2.7 Activity configuration . 29
2.7.1 Overview of the ActivityConfiguration package 29
2.7.2 Parameter and ParameterDescription classes 29
2.7.3 ConfigFile and ConfigFileDescription classes 30
2.7.4 Relations with Activity class 31

3 Full class diagram 34

Appendices 34

Appendix A Changes from Previous Versions 35
A.1 Changes from PR-ProvenanceDM-1.0-20181015 35
A.2 Changes from WD-ProvenanceDM-1.0-20180530 36
A.3 Changes from WD-ProvenanceDM-1.0-20170921 36
A.4 Changes from WD-ProvenanceDM-1.0-20161121 37

Appendix B Modeling Conventions 39
B.1 Class . 39
B.2 DataType . 39
B.3 Enumerations . 39
B.4 Generalization . 40
B.5 Composition . 40
B.6 Reference . 40
B.7 Multiplicity . 40

3

Appendix C Data Types 41
C.1 Base Data Types . 41

C.1.1 Units . 41
C.1.2 Dates . 41

List of Figures 42

List of Tables 42

Bibliography 43

Acknowledgments

The Provenance Working Group acknowledges support from the Astron-
omy ESFRI and Research Infrastructure Cluster – ASTERICS project2,
funded by the European Commission under the Horizon 2020 Programme
(GA 653477). This document has been developed in part with support from
the German Astrophysical Virtual Observatory, funded by BMBF Bewilli-
gungsnummer 05A14BAD and 05A08VHA. Additional funding was provided
by the INSU (Action Spécifique Observatoire Virtuel, ASOV), the Action
Fédératrice CTA at the Observatoire de Paris, the Paris Astronomical Data
Centre (PADC), and the E-Info-Astro project (BMBF 05AI7BA2).

Thanks to: Karl Kosak, Johan Bregeon, Julien Lefaucheur and Jose En-
rique Ruiz for the binding to the Cerenkov Telescope Array (CTA) project,
Gerard Lemson and Laurent Michel for the VO-DML expression of the data
model, Markus Demleitner, Harry Enke, Florian Rothmaier, Jochen Klar
and Adrian Partl, for fruitful discussions, remarks and comments at differ-
ent stages during the preparation of this specification.

We thank the participants of the Provenance Week 2018 in London, in
particular Michael Johnson for joining one of our meeting.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, Bradner (1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

2http://www.asterics2020.eu/

4

http://www.ivoa.net
http://www.asterics2020.eu/

1 Introduction

In this document, we propose an IVOA standard data model (DM) for de-
scribing the provenance of astronomical data. How this specification of the
Provenance model can be implemented is developed in a companion docu-
ment to be published as an IVOA Note (Servillat and Riebe et al., 2017).

The provenance of scientific data is a part of the open publishing policy
for science data and follows some of the FAIR principles for data sharing
(Wilkinson and Dumontier et al., 2016).

We follow the definition of provenance as proposed by the W3C (Bel-
hajjame and B’Far et al., 2013), i.e. that provenance is “information about
entities, activities, and people involved in producing a piece of data or thing,
which can be used to form assessments about its quality, reliability or trust-
worthiness”.

In astronomy, such entities are generally datasets composed of VOTables,
FITS files, database tables or files containing values (spectra, light curves),
any value, logs, documents, as well as physical objects such as instruments,
detectors or photographic plates. The activities correspond to processes
like an observation, a simulation, processing steps (image stacking, object
extraction, etc.), execution of data analysis code, publication, etc. The
people involved can be for example individual persons (observer, publisher,
etc.), groups or organisations, i.e. any agent related to an activity or an
entity.

An example for activities, entities and agents as they can be discovered
backwards in time is given in Figure 1.

data release pipeline
calibrated

files
calibration

raw
images

observation

calibration
images

project xxx
software
developer

observer

time

Figure 1: An example graph of provenance discovery. Starting with a re-
leased dataset (left), the involved activities (blue boxes), progenitor entities
(yellow rounded boxes) and responsible agents (orange pentagons) are dis-
covered.

5

1.1 Goal of the provenance model

The goal of this Provenance DM is to describe how provenance information
arising from astronomy projects can be modelled, stored and exchanged. Its
scope is mainly modelling of the flow of data, of the relations between pieces
of data, and of processing steps. However, the Provenance DM is sufficiently
abstract that its core pattern could be applied to any kind of process related
to either observation or simulation data.

Information attached to observation activities such as ambient conditions
and instrument characteristics provide useful information to assess the qual-
ity and reliability of the generated entities. Contextual information during
the execution of processing activities (computer structure, nodes, operating
system used, etc.) can also be relevant for the description of the main enti-
ties generated. This complementary information should be included in the
form of metadata or additional entities connected to an activity. However,
the precise structure and modelling of this information is out of the scope
of this document.

In general, the model shall capture information in a machine-readable
way that would enable a scientist who has no prior knowledge about a
dataset to get more background information. This will help the scientist
to decide if the dataset is adequate for her research goal, assess its qual-
ity and reliability and get enough information to be able to trace back its
history as far as required or possible.

Provenance information can be exposed with different granularity. A
specific project has to decide this granularity. The granularity and amount
of provenance information provided depends on the available information,
the needs of the project and the intended usage of this information.

This flexible approach has an impact on the interoperability between
different services as this level of detail is not known a priori. The objective
of the model is to propose a general structure for the provenance informa-
tion. In addition, proposed vocabularies of reserved words help to further
formalize the detailed provenance information.

The following list is a collection of use cases addressed by the Provenance
DM.

A: Traceability of products
Track the lineage of a product back to the raw material (backwards search),
show the workflow or the data flow that led to a product.
Examples:

• Having a dataset, find the main progenitors and in particular locate
the raw data.

6

• Find out what processing steps have been already performed for a
given dataset: Is an image already calibrated? What about dark field
subtraction? Were foreground stars removed?

• Find out if a filter to remove atmospheric background muons has been
applied.

B: Acknowledgement and contact information
Find the people involved in the production of a dataset, the people/orga-
nizations/institutes that one may want to acknowledge or can be asked for
more information.
Examples:

• I want to use an image for my own work – who was involved in creating
it? Who can I contact to get information?

• Find out who was on shift for data taking for a given dataset

• I have a question about column xxx in a data table. Who can I ask
about that?

C: Quality and Reliability assessment
Assess the quality and reliability of an observation, production step or
dataset, e.g. based on detailed descriptions of the processing steps and
manipulated entities.
Examples:

• Get detailed information on the methods/tools/software that were in-
volved: What algorithm was used for Cherenkov photon reconstruc-
tion? How was the stacking of images performed?

• Check if the processing steps (including data acquisition) went "well":
Were there any warnings during the data processing? Any quality
control parameters?

• Extract the ambient conditions during data acquisition (cloud cover-
age? wind? temperature?)

• Is the dataset produced or published by a person/organisation I can
trust?

D: Identification of error location
Find the location of possible error sources in the generation of a product.
This is connected to use cases described in section C above, but implies
an access to more information on the execution such as configuration or
execution environment.
Examples:

7

• I found something strange in an image. Was there anything strange
noted when the image was taken? a warning during the processing?

• Which pipeline version was used, the old one with a known bug for
treating bright objects or a newer version?

• What was the execution environment of the pipeline (operating sys-
tem, coding language version, ...)?

• What was the detailed configuration of the pipeline? were the param-
eters correctly set for the image cleaning step?

E: Search in structured provenance metadata
Use Provenance criteria to locate datasets (forward search), e.g. finding all
images produced by a certain processing step or derived from data which
were taken by a given facility.
Examples:

• Find more images that were produced using the same version of the
CTA pipeline.

• Get an overview of all images reduced with the same calibration
dataset.

• Are there any more images attributed to this observer?

• Find all datasets generated using this given algorithm, with this given
configuration, for this given step of the data processing.

• Find all generated data files that used incorrectly generated file X as
an input, so that they can be marked for re-processing

• Extract all the provenance information of a SVOM light curve or spec-
trum to reprocess the raw data with refined parameters.

General Remarks
In addition to those use cases, if the stored information is sufficiently fine
grained, it is possible to enable the reproducibility of an activity or se-
quence of activities, with the exact same configuration and exact same con-
ditions.

Another important usage of provenance information is to assess the per-
tinence of a product for scientific objectives, which can be facilitated
through the selection of the relevant provenance information attached to an
entity that is delivered to a science user.

8

1.2 Requirements and best practices

1.2.1 Model requirements

This document was developed with these general requirements in mind:

• Provenance information must be formalized following a standard
model, with corresponding standard serialization formats.

• Provenance information must be machine readable.

• Provenance data model classes and attributes should make use of ex-
isting IVOA standards.

• Provenance information should be serializable into the W3C prove-
nance standard formats (PROV-N, PROV-XML, PROV-JSON) with
minimum information loss.

• Entities, Activities and Agents must be uniquely identifiable within a
domain.

1.2.2 Best practices

The following additional points are recommended when managing prove-
nance information within the VO context:

• The reliability of provenance information should be ensured (e.g. by an
authority endorsing the information, or by provenance of provenance).

• Provenance metadata for a given entity should contain information to
find immediate progenitor(s).

• An entity should be linked to the activity that generated it.

• Activities should be linked to input entities.

• Activities should point to output entities.

• Provenance information should make it possible to derive the logical
sequence of activities.

• All activities and entities are recommended to have contact informa-
tion and contain a (short) description or link to a description.

9

Figure 2: Architecture diagram for the Provenance Data Model. It is based
on existing concepts defined in existing IVOA data models, and existing
formats and semantics and fully integrated in the IVOA framework

1.3 Role within the VO architecture

The IVOA Provenance Data Model is structuring and adding metadata to
trace the original process followed during the data production for provid-
ing astronomical data. Even if it borrows the main general concepts from
data management science, it binds to the specific context of astronomical
metadata description and re-uses or interacts with existing IVOA models.
It takes benefits from existing IVOA notations and standards like UCD (se-
mantic tags), VOUnits (standard expression of units for the VO) and service
design; and it is planned for a full integration into the VO landscape.

Fig. 2 shows the dependencies of this document with respect to other
existing standards.

1.4 Previous efforts

The provenance concept was early introduced by the IVOA within the scope
of the Observation Data Model (see IVOA Note by IVOA Data Model
Working Group, 2005), as a class describing where the data is coming from.
A full observation data model specifically dedicated to spectral data was

10

then designed (Spectral Data Model, McDowell and Tody et al., 2007), as
well as a fully generic characterisation data model of the measurement axes
of data (Characterisation Data Model, Louys and Richards et al., 2008),
while the progress on the provenance data model was slowing down.

The IVOA Data Model Working Group first gathered various use cases
coming from different communities of observational astronomy (optical, ra-
dio, X-ray, interferometry). Common motivations for a provenance tracing
of their history included: quality assessment, discovery of dataset progen-
itors, and access to metadata necessary for reprocessing. The provenance
data model was then designed as the combination ofData processing, Observ-
ing configuration, and Observation ambient conditions data model classes.
The Processing class was embedding a sequence of processing stages which
were hooking specific ad hoc details and links to input and output datasets,
as well as processing step descriptions. Despite the attempts at an UML de-
scription of the model and writing XML serialization examples, the IVOA
efforts failed to provide a workable solution: the scope was probably too am-
bitious and the technical background too unstable. A compilation of these
early developments can be found on the IVOA site (Bonnarel and the IVOA
Data Model Working Group, 2016). From 2013 onwards, the IVOA concen-
trated on use cases related to processing description and decided to design
the model by extending the basic W3C provenance structure, as described
in the current specification.

Outside of the astronomical community, the Provenance Challenge series
(2006 – 2010), a community effort to achieve inter-operability between dif-
ferent representations of provenance in scientific workflows, resulted in the
Open Provenance Model (OPM) (Moreau and Clifford et al., 2010). Later,
the W3C Provenance Working Group was founded and released the W3C
Provenance Data Model as Recommendation in 2013 (Belhajjame and B’Far
et al., 2013). OPM was designed to be applicable to anything, scientific data
as well as cars or immaterial things like decisions. With the W3C model,
this becomes more focused on the web. Nevertheless, the core concepts are
still in principle the same in both models and are very general, so they can
be applied to astronomical datasets and workflows as well. The W3C model
was taken up by a larger number of applications and tools than OPM. We
are therefore basing our modeling efforts on the W3C PROV Data Model,
making it less abstract and more specific, or extending it where necessary.

The W3C model already specifies PROV-DM Extensibility Points (sec-
tion 6 in Belhajjame and B’Far et al. 2013) for extending the core model.
This allows one to specify additional roles and types for each entity, agent
or relation using the attributes prov:type and prov:role.

11

2 The IVOA Provenance data model

2.1 Overview and class diagram

Figure 3: Overview class diagram of the IVOA Provenance Data Model. The
core part in yellow is based on W3C PROV definitions where relations are
shown in grey. It is extended by a Description part (orange), specific types
of entities (red) and an optional Activity Configuration package (green). A
full diagram with attributes is shown in Section 3, Figure 8

The IVOA Provenance DM is based on the the PROV-DM recommenda-
tion (Belhajjame and B’Far et al., 2013) of the World Wide Web Consortium
(W3C), that provides the core elements of the model (see Sections 2.2 to 2.4).
In this context, the provenance of something is a sequence of activities using
and generating entities run by agents.

12

The model includes in addition Description classes (see Section 2.5) to
provide information common to several elements; Specific types of Entity
classes commonly used in astronomy (see Section 2.6); and an optional Ac-
tivityConfiguration package (see Section 2.7).

The IVOA Provenance DM is a class data model that follows the VO-
DML designing rules (Lemson and Laurino et al., 2018). It is represented
as a UML class diagram: an overview diagram is shown in Figure 3, and a
full diagram with attributes is shown in Appendix 3, Figure 8.

2.2 Entity and Activity classes

The core classes and relations of the IVOA Provenance DM are presented
in Figure 4. Traceability (see goal A in Section 1.1) is enabled by chaining
entities and activities, which are the building blocks of the history graph.

2.2.1 Entity and Collection classes

An entity is a physical, digital, conceptual, or other kind of thing with some
fixed aspects (W3C PROV-DM §5.1.1).

The Entity class in the model have the attributes given in Table 1.
Entities in astronomy are usually astronomical or astrophysical datasets

in the form of images, tables, numbers, etc. But they can also be log files,
files containing system information, any input or output value, environment
variables, ambient conditions, or, in a wider sense, observation proposals,
scientific articles, or manuals and other documents. Though the focus is
on digital entities in this document, entities can also refer to devices that
may be linked to digital entities, such as e.g. tools, instruments, detectors,
photographic plates.

A collection is an entity that provides a structure to some constituents
that must themselves be entities (W3C PROV-DM §5.6.1). These con-
stituents are said to be member of the collections. They are connected in
the model with a hadMember relation.

2.2.2 Activity class

An activity is something that occurs over a period of time and acts upon
or with entities; it may include consuming, processing, transforming, modi-
fying, relocating, using, or generating entities (W3C PROV-DM §5.1.2).

The Activity class in the model have the attributes given in Table 2.
Activities in astronomy include all steps from obtaining data to the re-

duction of images and production of new datasets, such as image calibration,
bias subtraction, image stacking, light curve generation from a number of ob-
servations, radial velocity determination from spectra, post-processing steps
of simulations, etc.

13

https://www.w3.org/TR/prov-dm/#term-entity
https://www.w3.org/TR/prov-dm/#term-collection
https://www.w3.org/TR/prov-dm/#term-Activity

Figure 4: Core classes and relations. Attributes for these classes are detailed
in tables found in Sections 2.2 to 2.4.

2.3 Entity-Activity relations

Each entity is usually a result of an activity, expressed by a link from the
entity to its generating activity, and can be used as input for (many) other
activities. Thus the information on whether data is used as input or was
produced as output of some activity is given by the relations between activi-
ties and entities. Tracking those relations answers one of the main objective
of the model (see goal A in Section 1.1).

14

Entity

Attribute Data type Description

id string a unique identifier for this entity
name string a human-readable name for the entity
location string a path or spatial coordinates, e.g. a

URL, latitude-longitude coordinates
on Earth, the name of a place.

generatedAtTime datetime date and time at which the entity was
created (e.g. timestamp of a file)

invalidatedAtTime datetime date and time of the destruction,
cessation, or expiry of the entity. The
entity is no longer available for use (or
further invalidation) after
invalidation.

comment string text containing specific comments on
the entity

Table 1: Attributes of the Entity class. Attributes in bold must not be null.

Activity

Attribute Data type Description

id string a unique id for this activity
name string a human-readable name (to be

displayed by clients)
startTime datetime start of an activity
endTime datetime end of an activity
comment string text containing specific comments on

the activity

Table 2: Attributes of the Activity class. Attributes in bold must not be
null.

2.3.1 Used class

Usage is the beginning of utilizing an entity by an activity. Before usage,
the activity had not begun to utilize this entity and could not have been
affected by the entity (W3C PROV-DM §5.1.4).

Usage is implemented in the model by a class Used that connects Activity
to Entity and contains the attributes in Table 3.

For example, an activity “calibration” used entities with the roles “cali-
bration data” and “raw images”.

15

https://www.w3.org/TR/prov-dm/#term-Usage

Used
Attribute Data type Description

role string function of the entity with respect to
the activity

time datetime time at which the usage of an entity
started

Table 3: Attributes of the Used relation class.

The time of the usage can be specified, and must be between the
startTime and the stopTime of the corresponding activity.

The Used class is closely coupled to the Activity by a composition (see
B.5). Any given entity can be used by more than one activity.

2.3.2 WasGeneratedBy class

Generation is the completion of production of a new entity by an activity.
This entity did not exist before generation and becomes available for usage
after this generation (W3C PROV-DM §5.1.3).

Generation is implemented in the model by a classWasGeneratedBy that
connects Entity to Activity and contains the attributes in Table 3.

For example, the entity “raw_image.fits” was generated by the activity
“observation” with the role “raw image”.

WasGeneratedBy

Attribute Data type Description

role string function of the entity with respect to
the activity

Table 4: Attributes of the WasGeneratedBy relation class.

As the Entity class has an attribute generatedAtTime, there is no ad-
ditional time attribute in this relation.

The WasGeneratedBy relation is closely coupled with the Entity via a
composition (see B.5). An entity can be generated by only one activity, so
the multiplicity is 1 or 0 between Entity and WasGeneratedBy.

2.3.3 Roles in Entity-Activity relations

The role of an entity within an activity should be provided. Roles in
Entity-Activity relations are free text attributes.

16

https://www.w3.org/TR/prov-dm/#term-Generation

The role cannot be an attribute of the Entity class, since the same
entity (e.g. a specific file containing an image) may play different roles with
different activities.

In some cases the role is mandatory to distinguish two input entities. For
example, an activity for dark-frame subtraction requires two input images.
But it is very important to know which of the images is the raw image and
which one fulfils the role of dark frame.

Several entities may play the same role for an activity. For example,
many image entities may be used as science-ready-images for an image stack-
ing process.

2.3.4 WasDerivedFrom relation

A derivation is a transformation of an entity into another, an update of an
entity resulting in a new one, or the construction of a new entity based on
a pre-existing entity (W3C PROV-DM §5.2.1).

Derivation is an optional relation wasDerivedFrom in the model, that
connects an instance of Entity to another instance.

For example, the entity “calibrated_image.fits” was derived from the
entity “raw_image.fits”

This relation makes it possible to visualize independently the flow of
entities, e.g. a dataflow. It does not need a priori a specific class or table in
an implementation, but it provides a way to expose partial information that
follow the general chain WasGeneratedBy-Activity-Used where the activity
may be an empty instance because it is unknown or irrelevant.

2.3.5 WasInformedBy relation

Communication is the exchange of information (some unspecified entity)
by two activities, one activity using some entity generated by the other
(W3C PROV-DM §5.1.5).

Communication is an optional relation wasInformedBy in the model,
that connects an instance of Activity to another instance.

For example, the activity “calibration” wasInformedBy the activity
“pipeline”.

This relation makes it possible to visualize independently the flow of
activities as they occurred, which may be the result of the execution of a
workflow. It does not need a priori a specific class or table in an imple-
mentation, but it provides a way to expose partial information that follow
the general chain Used-Entity-WasGeneratedBy where the entity may be an
empty instance because it is unknown or irrelevant.

17

https://www.w3.org/TR/prov-dm/#term-Derivation
https://www.w3.org/TR/prov-dm/#term-Communication

2.4 Agent and relations to Agent

A contact information is needed in case more information about a certain
activity or entity is required, but also in order to know who was involved
and to fulfil the Acknowledgement objective (see goal B in Section 1.1).

2.4.1 Agent class

An agent is something that bears some form of responsibility for an activity
taking place or for the existence of an entity (W3C PROV-DM §5.3.1).

The Agent class in the model has the attributes given in Table 5.
An Agent is generally someone who pressed a button, ran a script, per-

formed the observation or published a dataset. The agent can be a single
person, a group of persons, a project or an institute.

It is recommended to use organizational agents and agents with generic
contacts.

Agent

Attribute Data type Description

id string unique identifier for an agent
name string a common name for this agent; e.g.

first name and last name; project
name, pipeline team, data center.

type AgentType type of the agent as given in Table 6
comment string text containing specific comments on

the agent
email string contact email of the agent
affiliation string affiliation of the agent
phone string phone number
address string address of the agent
url anyURI reference URL to the agent

Table 5: Attributes of the Agent class. Attributes in bold must not be null.

For each agent a name must be specified. Other attributes can help
locate or contact the agent (email, affiliation, phone, address). Not
every project will need them; e.g. an advanced system may use permanent
identifiers (e.g. ORCIDs, identities in federations, etc) to identify agents
and retrieve their properties from an external system instead.

There can be more than one agent for each activity and one agent can be
responsible for more than one activity or entity, using the relations defined
in the following sections.

18

https://www.w3.org/TR/prov-dm/#term-agent

AgentType

Literal Comment

Person person agents are people, e.g. described by their
name or their official position

Organization an organization is a social or legal institution, e.g.
an institute, a consortium, a project

SoftwareAgent a software agent is running software, e.g. a cron job
or a trigger

Table 6: Enumeration of Agent types.

2.4.2 WasAssociatedWith class

An activity association is an assignment of responsibility to an agent for an
activity, indicating that the agent had a role in the activity (W3C PROV-
DM §5.3.3).

Association is implemented in the model by a class WasAssociatedWith
that connects Activity to Agent and contains the attributes in Table 7.

For example, the agent “Max Smith” wasAssociatedWith the activity
“observation” with the role “Observer”.

WasAssociatedWith
Attribute Data type Description

role string function of the agent with respect to
the activity

Table 7: Attributes of WasAssociatedWith relation class.

2.4.3 WasAttributedTo class

Attribution is the ascribing of an entity to an agent. When an entity
is attributed to an agent, this entity was generated by some unspecified
activity that in turn was associated to the agent. Thus, this relation is
generally useful when the activity is not known, or irrelevant (W3C PROV-
DM §5.3.2).

Attribution is implemented in the model by a classWasAttributedTo that
connects Entity to Agent and contains the attributes in Table 8.

For example, the entity “science_image.fits” wasAttributedTo the agent
“observatory”.

19

https://www.w3.org/TR/prov-dm/#term-Association
https://www.w3.org/TR/prov-dm/#term-attribution

WasAttributedTo
Attribute Data type Description

role string function of the agent with respect to
the entity

Table 8: Attributes of WasAttributedTo relation class.

2.4.4 Agent roles

Agents may play a specific role with respect to an activity or an entity. The
role attribute should be specified whenever it is known.

Roles in relations to Agent are free text attributes, but if one of the
terms in Table 9 applies, it should be used.

Agent roles

Role Comment

Author the agent is an author of this entity (e.g. article,
software, proposal)

Contributor the agent helped in the creation of this entity
Coordinator the agent was coordinating a specific activity
Creator the agent created this entity (creators of articles or

software are rather called “author”)
Curator the agent curated this entity
Editor the agent was responsible for editing this entity
Funder the agent provided financial support for this activity

or the creation of the entity
Investigator the agent is responsible for the scientific goals of this

activity
Observer the agent was observing and is associated to a specific

“observation” activity or responsible for observing a
specific entity

Operator the agent was an operator for a specific activity
Provider the agent provided this entity
Publisher the agent published this entity

Table 9: Terms applicable as agent roles.

2.5 Description classes

In the domain of astronomy, certain processes and steps are repeated over
and over again, maybe using a different configuration and within a different

20

context. We therefore separate the descriptions of activities from the actual
processes and introduce an ActivityDescription class (Section 2.5.1). Like-
wise, we also apply the same pattern for Entity and add an EntityDescription
class (Section 2.5.2).

Defining such descriptions allows them to be predefined and reused,
which is less redundant when exposing the provenance of a series of tasks
of the same type. Providing detailed descriptions to activities and entities
help assess the quality and reliability of the processes executed (see goal C
in Section 1.1).

Figure 5 shows the class diagram part focused on the description classes.

Figure 5: Partial class diagram focused on description classes.

2.5.1 ActivityDescription class

How an activity works internally is further explained by information con-
tained in the ActivityDescription class. An activity is then a concrete case
(instance) with a given start and stop time, and it refers to a description for
further information.

ActivityDescription is directly attached to Activity and can thus be seen
as a list of attributes that can be known before an Activity instance is
created.

There must be exactly zero or one ActivityDescription per Activity. Note
that if an instance of Used/WasGeneratedBy/Entity is linked to its corre-
sponding description (see next sections), then there must exist a link between
the corresponding activity and activity description.

21

ActivityDescription

Attribute Data type Description

name string a human-readable name
version string a version number, if applicable (e.g.

for the code used)
description string additional free text description for the

activity
doculink anyURI link to further documentation on this

activity, e.g. a paper, the source code
in a version control system etc.

type string type of the activity
subtype string more specific subtype of the activity

Table 10: Attributes of the ActivityDescription class. Attributes in bold
must not be null.

The activity type is a free text attribute, but if one of the terms in Table
11 applies, it should be used. The activity subtype is a free text attribute to
be used internally by the project that defined ActivityDescription instances
(e.g. mosaicing, denoising, photometric calibration, cross correlation).

ActivityDescription types

Type Comment

Observation Active acquisition of information on a phenomenon
Simulation Generation of data through a computational process
Reduction Transformation of digital information into a cor-

rected, ordered, and simplified form
Calibration Transformation and comparison of measurement val-

ues with respect to a calibration standard of known
accuracy

Reconstruction Estimation of physical properties using indirect in-
formation

Selection Application of filters or criteria to select partial in-
formation

Analysis Process of inspecting, cleansing, transforming, and
modeling data with the goal of discovering useful
information, informing conclusions, and supporting
decision-making

Table 11: Terms applicable as activity types.

22

2.5.2 EntityDescription class

EntityDescription

Attribute Data type Description

name string a human-readable name for the entity
description

description string a descriptive text for this kind of
entity

doculink anyURI link to more documentation
type string type of the entity

Table 12: Attributes of the EntityDescription class.

The EntityDescription class is meant to store descriptive information for
different categories of entities. It contains information that is known before
an Entity instance is created. The EntityDescription general attributes are
summarized in Table 12.

For example, a specific category of entities in a project may be defined in
details in a document or on a webpage (e.g. a CTA DL3 file, a CCD device,
a photographic plate).

The entity type is a free text attribute, that contains the general cate-
gory of the entity, e.g. if it is data, a document, a vizualization, a device...

The EntityDescription class should not contain information about the
usage of the data, in particular, it generally tells nothing about them being
used as input or generated as output. This kind of information should be
provided by the relations (and their descriptions) between activities and
entities (see Sections 2.3 and 2.5.3).

2.5.3 UsageDescription and GenerationDescription classes

In order to describe more precisely an activity, the expected inputs and
outputs of this activity should be specified.

We introduce the UsageDescription and the GenerationDescription
classes, that are meant to store the information about the usage or gen-
eration of entities that is known before an activity instance is executed, i.e.
what we expect to store in the Used and WasGeneratedBy relations (see
2.3). Instances of Used (respectively WasGeneratedBy) may thus point to
an instance of UsageDescription (respectively GenerationDescription).

If a UsageDescription (respectively GenerationDescription) instance is
defined, the role attribute of the related Used (respectively WasGenerat-
edBy) instances must match the role attribute of this UsageDescription
(respectively GenerationDescription) instance.

23

UsageDescription

Attribute Data type Description

role string function of the entity with respect to
the activity

description string a descriptive text for this kind of
usage

type string type of relation, see Section 2.5.4
multiplicity string Number of expected input entities to

be used with the given role. The
string "unbounded" indicates that the
number of input entities can be more
than 1.

Table 13: Attributes of the UsageDescription class. Attributes in bold must
not be null.

GenerationDescription

Attribute Data type Description

role string function of the entity with respect to
the activity

description string a descriptive text for this kind of
generation

type string type of relation, see section 2.5.4
multiplicity string Number of expected output entities

that will be generated with the given
role. The string "unbounded"
indicates that the number of output
entities can be more than 1.

Table 14: Attributes of the GenerationDescription class. Attributes in bold
must not be null.

A multiplicity attribute should be specified to indicate the number
of entities expected to share the same role for a given ActivityDescription
instance, e.g. in the case of the stacking of images, several images are
expected with the same input role (multiplicity=*).

When related to the UsageDescription or GenerationDescription, the at-
tributes of EntityDescription (see Section 2.5.2) help to describe the category
of entities expected as an input or an output in an activity. For example:
when the input bias files are expected to be in FITS format (relation to a
DatasetDescription with contentType=application/fits), or the red, green
and blue channel images are expected to be in PNG or JPEG format.

24

2.5.4 Types of Usage and Generation

The typing of those relations is particularly needed to enable quality assess-
ment and identification of error sources in the process (see goals C and D in
Section 1.1), so as to facilitate the exploration of provenance information.

The type of usage or generation is an optional attribute. It is a free text
attribute, but if one of the terms in Table 15 applies, it should be used.

Type Description

Main main input or output entities of the activity, i.e.
strictly necessary, and the primary objective of the
activity.

Calibration usage of an entity to calibrate another entity.
Preview generation of a quick representation of an entity.
Setup usage of an entity as configuration information, see

also Section 2.7.1
Quality generation of information that helps to assess the

quality of the activity results, example: errors, warn-
ings, flags, percentage of overexposed pixels, ...

Log generation of logging information
Context contextual information that influences the activity,

but for which there are no or little control at the mo-
ment of its execution, examples: temperature, wind,
conditions of observation, execution platform, oper-
ating system, instrumental context, ...

Table 15: Terms applicable as usage or generation type.

The type "Main" indicates the main input and output entities of an
activity. It should help to provide the minimum relevant data flow to the
initial entity or activity, i.e. to find the most relevant progenitors.

2.6 Specific types of Entity classes

Entity and EntityDescription classes carry the minimum metadata that can
apply to any kind of entity without specifying the nature or the structure
of the content of the entity. In some cases, the structure of the content is
relevant information to assess the usefulness of the entity, in particular for
datasets.

In some other cases, the content itself of an entity is relevant information
to assess the usefulness of the related entities or activities. Such content
must then be expose as properly described values.

In astronomy and the VO, we thus define two main types of entity classes:

25

• Dataset: a dataset is a resource which encodes data in a defined
structure. It is generally a file or a set of files which are considered to
be a single deliverable. The content may be e.g. a cube, an image, a
table, a list.

• Value: a value is an atomic piece of data with a given value type (e.g.
a data type such as boolean, integer, real, string).

Figure 6: Partial class diagram focused on Specific types of Entity classes.

As shown in Figure 6, the entity description classes for both ValueEn-
tity and DatasetEntity are subsetted respectively as ValueDescription or
DatasetDescription.

We anticipate that more specific categories of entities can be defined by
the projects (for example, a device, a document, a vizualization...). The
type attribute of the EntityDescription class should be used to differentiate
the different categories of entities.

2.6.1 DatasetEntity and DatasetDescription classes

The handling of datasets is implemented in the model by a DatasetEntity
class. A corresponding DatasetDescription class contains a contentType
attribute that must not be null (see Table 16).

The contentType indicates the MIME-type or format of a dataset,
or a more precise structure, following the definition of the attribute
access_format defined in ObsCoreDM (Louys and Tody et al. (2017), Sec-
tion 4.7).

26

DatasetDescription

Attribute Data type Description

contentType string MIME-type or format of the dataset

Table 16: Attributes of the DatasetDescription class. The class also inherits
the attributes of EntityDescription listed in Table 12. Attributes in bold
must not be null.

2.6.2 ValueEntity and ValueDescription classes

The handling of values is implemented in the model by a ValueEntity class
that contains a value attribute. A corresponding ValueDescription class
contains attributes commonly used in the VO to qualify values. Those at-
tributes are listed in Table 18.

ValueEntity

Attribute Data type Description

value string the value of the entity. If a
corresponding
ValueDescription.valueType attribute
is set, the value string can be
interpreted by this valueType.

Table 17: Attributes of the ValueEntity class. The class also inherits the
attributes of EntityDescription listed in Table 12. Attributes in bold must
not be null.

27

ValueDescription

Attribute Data type Description

valueType string value types of the VODML ivoa base
model, see Lemson and Laurino et al.
(2018)

unit Unit physical unit, see C.1.1 and Derriere
and Gray et al. (2014) for
recommended unit representation

ucd string Unified Content Descriptor, supplying
a standardized classification of the
physical quantity, see Martinez and
Louys et al. (2018)

utype string Utype, meant to express the role of
the value in the context of an external
data model, see Graham and
Demleitner et al. (2013)

min string minimum value as a string whose
value can be interpreted by the
valueType attribute

max string maximum value as a string whose
value can be interpreted by the
valueType attribute

options string comma separated list of possible
values

default string the default value of the value entity as
a string whose value can be
interpreted by the valueType
attribute

Table 18: Attributes of the ValueDescription class. The class also inherits
the attributes of EntityDescription listed in Table 12. Attributes in bold
must not be null.

28

2.7 Activity configuration

Configuring an activity is the way to set parameters so that the activity
occurs in the desired conditions.

In some cases developed in Section 1.1 (goals C and D in particular),
configuration information is relevant to assess the quality and reliability
of an activity or an entity, and to identify the location of configuration
errors in a processing. It also facilitates the re-execution of an activity
(reproducibility).

Configuration information may be carried by entities using the core fea-
tures, where an entity (e.g. ValueEntity and DatasetEntity instances) is
referenced in Used relations with a given role and type=“setup”. With
this solution, the configuration information is independent from the activity
and can be generated and used as any entity.

The data model also provides a specialized ActivityConfiguration pack-
age to directly attach configuration information to an activity. This pack-
age is composed of a WasConfiguredBy relation connecting Parameter and
ConfigFile classes with the Activity class (see 2.7.1). With this solution the
configuration information is independent from the entities, and seen as part
of the activity.

2.7.1 Overview of the ActivityConfiguration package

As shown in Figure 7 the ActivityConfiguration package contains two classes
for the execution side: Parameter and ConfigFile which are connected to
an Activity instance via the WasConfiguredBy association class. An Activity
may thus be configured by a set of Parameter instances, or by ConfigFile
instances containing a list of (key,value) pairs, or by a combination of both.

The corresponding description classes, ParameterDescription and Con-
figFileDescription, are both defined in the context of the description of an
activity. There can be several instances of a Parameter (respectively Con-
figFile) that are described by the same instance of ParameterDescription
(respectively ConfigFileDescription).

2.7.2 Parameter and ParameterDescription classes

The Parameter class contains a value and a name attribute that must be
set (Table 19).

The ParameterDescription class describes the parameter value attribute
similarly to the ValueEntity and ValueDescription classes. Those attributes
are listed in Table 20.

If a ParameterDescription instance is defined, the name attribute of the
related Parameter instances must match the name attribute of this Param-
eterDescription instance.

29

Figure 7: Partial class diagram focused on the ActivityConfiguration pack-
age. The Parameter and ConfigFile classes provide configuration informa-
tion for an Activity instance. The right side of the diagram shows the de-
scriptions, where an ActivityDescription class is bound with the Parameter-
Description and ConfigFileDescription classes.

Parameter
Attribute Data type Description

name string name of the parameter
value string the value of the parameter. If a

corresponding
ParameterDescription.valueType
attribute is set, the value string can
be interpreted by this valueType.

Table 19: Attributes of the Parameter class. Attributes in bold must not
be null.

2.7.3 ConfigFile and ConfigFileDescription classes

The ConfigFile is a text file, where key value pairs are listed as parameters
for running an activity. It contains a location and a name that must be
set, and a comment attribute (Table 21).

The ConfigFileDescription class indicates the format in which the list is

30

ParameterDescription

Attribute Data type Description

name string name of the parameter
valueType string value types of the VODML ivoa base

model, see Lemson and Laurino et al.
(2018)

description string a descriptive text for the parameter
unit Unit physical unit, see C.1.1 and Derriere

and Gray et al. (2014) for
recommended unit representation

ucd string Unified Content Descriptor, supplying
a standardized classification of the
physical quantity, see Martinez and
Louys et al. (2018)

utype string Utype, meant to express the role of
the parameter in the context of an
external data model, see Graham and
Demleitner et al. (2013)

min string minimum value as a string whose
value can be interpreted by the
valueType attribute

max string maximum value as a string whose
value can be interpreted by the
valueType attribute

options string comma separated list of possible
values

default string the default value of the parameter as a
string whose value can be interpreted
by the valueType attribute

Table 20: Attributes of the ParameterDescription class. Attributes in bold
must not be null.

provided in a contentType attribute (see Table 22).
If a ConfigFileDescription instance is defined, the name attribute of the

related ConfigFile instances must match the name attribute of this Config-
FileDescription instance.

2.7.4 Relations with Activity class

The relation of Parameter and ConfigFile to Activity is formalized by a
WasConfiguredBy class. There must be exactly one instance connected to
a WasConfiguredBy instance, either a Parameter instance or a ConfigFile

31

ConfigFile

Attribute Data type Description

name string a human-readable name for the config
file

location string a path to the config file, e.g. a URL
comment string text containing comments on the

config file

Table 21: Attributes of the ConfigFile class. Attributes in bold must not
be null.

ConfigFileDescription

Attribute Data type Description

name string a human-readable name for the config
file

contentType string MIME-type or format of the dataset
description string a descriptive text for the config file

Table 22: Attributes of the ConfigFileDescription class. Attributes in bold
must not be null.

instance. The WasConfiguredBy class contains the attribute artefactType
to indicate the type of class pointed by the WasConfiguredBy instance (see
Table 23).

The life cycle of a Parameter instance (respectively ConfigFile instance)
is the one of the corresponding Activity instance. The life cycle of a Parame-
terDescription instance (respectively ConfigFileDescription instance) is the
one of the corresponding ActivityDescription instance. This means that
when an activity is deleted from the provenance repository, its parameters
and config files also disappear.

Several activities launched with various possible values for a parame-
ter share the same ParameterDescription instance. For instance, a cube
analysis activity with a parameter "nbofChannels" will point to the corre-
sponding instance of ParameterDescription (name = "nbofChannels", ucd
= "meta.number", unit = NULL, description = "Nb of channel used for
segmentation").

Similarly, we can foresee a number of different ConfigFile instances
used for various instances of an Activity, which rely on the same Config-
FileDescription instance bound to the corresponding ActivityDescription
instance.

The Parameter instance may refer to a ValueEntity instance using a

32

WasConfiguredBy

Attribute Data type Description

artefactType TypeOfConfigArtefact string that takes the value
"Parameter" or "ConfigFile" to
indicate the type of class pointed by
the WasConfiguredBy instance.

Table 23: Attributes of theWasConfiguredBy class. Attributes in boldmust
not be null.

hadReference which gives the origin of this value.

33

3 Full class diagram

Figure 8: Full class diagram of the IVOA Provenance Data Model.

34

Appendix A Changes from Previous Versions

A.1 Changes from PR-ProvenanceDM-1.0-20181015

• Rewording of the use cases in the Goal section.

• Requirements divided into Model Requirements and Best Practices.

• Restruturation of Section 2, removing the separation of the Core Model
and the Extended Model. An overview is now given in 2.1, and each
following subsection corresponds to a feature of the model, in rela-
tion with the goals. Each subsubsection is an element of the model
presented in Figure 3.

• WasInformedBy and WasDerivedFrom are optional and included in
section 2.3 on Entity-Activity relations. They are simple relations.

• Addition of ValueEntity and DatasetEntity (with their description
classes) as specific types of Entity classes (section 2.6).

• Grouping of the Parameter-ParameterDescription classes as an op-
tional ActivityConfiguration package that also includes config files.

• Modification of class attributes:

– annotation → comment (annotation → description in De-
scription classes)

– creationTime → generatedAtTime (W3C PROV term)
– destructionTime → invalidatedAtTime (W3C PROV term)
– added: Agent.url

– removed: WasGeneratedBy.time, Entity.rights, Activity.status,
ParameterDescription.xtype, ParameterDescription.arraysize.

• Datatype of a value is replaced by a valueType (see VO-DML docu-
ment).

• Only attributes are shown in tables, relations between classes are
shown in diagrams.

• Lists of terms are explicitely given for Agent roles, ActivityDescription
types, UsageDescription/GenerationDescription types.

• The section on serializations was removed (a dedicated document will
be proposed). References to serialization in the text were removed, as
well as related sentences, and Appendix A.

35

• The section on accessing provenance information was removed (it was
already reduced to a paragraph referencing external documents in
preparation).

• Appendix B on Links to other data models was removed.

• Modeling Conventions and Data Types were added as appendices
(taken from STC/Meas document).

A.2 Changes from WD-ProvenanceDM-1.0-20180530

• Separate core model (W3C only) and extended model (IVOA Prove-
nance DM).

• Add definitions for specialised entities, including all the description
classes and parameters.

• Add definitions for specialised relations.

• Updated serialization of the description classes for web services.

A.3 Changes from WD-ProvenanceDM-1.0-20170921

• Moved ProvDAL (now ProvSAP) to separate document.

• Moved ProvTAP section and full definition of VOTable serialisation
to separate ProvTAP document.

• Moved chapter 6 with use cases and “How to use the data model” to
separate Implementation Note (Servillat and Riebe et al., 2017).

• Moved section on links to other data model into appendix.

• ParameterDescription: Added attributes xtype and arraysize.

• Agent.roles: Removed “PI” alternative to “coordinator”.

• Use values of RightsType of DatasetDM, public, secure, proprietary,
for Entity.rights.

• Minor corrections in HiPS use case, and tables in TAP schema.

• Minor correction in role names for hadStep/hadMember relationship.

• Modified text on Parameters

• Rename 3.4 section to Serialization of description classes for web ser-
vices

• Modified text on W3C serialization

• add location and value attributes to Entity

36

A.4 Changes from WD-ProvenanceDM-1.0-20161121

• New appendix for PROV-VOTable/TAP SCHEMA tables added

• Corrected and extended attribute tables and mapping tables for links
with DatasetDM and SimDM.

• Restructured Accessing provenance section by splitting it in two: Sec-
tion for explaining the different serialization formats and differences
to W3C serializations, Section “Accessing provenance information”for
describing the access protocols ProvDAL and ProvTAP.

• Removed discussion section, since now all the topics are addressed in
the main text.

• Added paragraph on how to use the model in Section 6.

• Shortened serialization examples, partially moved them to appendix.

• Added paragraph on VOSI interface.

• Added a proposed serialization of description classes.

• Modified text on the content of EntityDescription, now seen as Entity
attributes known before the Entity instance exists.

• Renamed Section 6 to stress that it explains applications of the model
(use cases); implementation details and code examples can be found
in Implementation Note (Servillat and Riebe et al., 2017).

• Complete rewrite of the ProvDAL section in Section “Accessing prove-
nance information”;new parameters, new figure and examples added.

• Added additional figure for entity-activity relations.

• Moved the figure showing relations between Provenance.Agent and
Dataset.Party into the Section on data model links.

• Extended the entity role examples in table tab:entity-roles.

• Added links to provn and votable-serialization for HiPS-use case,
added first part of provn as example in the HiPS-use case section.

• More explanations on links to data models in a dedicated section,
introduced subsections, added table with SimDM-mapping.

• Moved detailed implementation section from appendix to a separate
document (implementation note), shortened the use cases & imple-
mentation section.

37

• Attribute/class updates:

– Added attribute votype to Activity, can be used for ActivityFlows
– Added attribute time to Used and WasGeneratedBy
– Added optional attributes Entity.creationTime and EntityDe-

scription.category
– Added optional attributes Parameter.min, Parameter.max, Pa-

rameter.options
– Removed the obscore/dataset attributes from EntityDescription,

since they are specific for observations only and are not applicable
to configuration entities etc.

– Use voprov:type and voprov:role in Table on Agent roles, i.e.
replaced prov:person by Individual and prov:organization by Or-
ganization.

– Renamed label attribute to name everywhere, for more consis-
tency with SimDM naming scheme (label is reserved there for
SKOS labels).

– Renamed attribute Entity.access to Entity.rights for more consis-
tency with DatasetDM etc.

– Avoid double-meaning of description (as reference and free-text
description) by renaming the free-text description to annotation.
Mark description-references with arrows in attribute tables.

– Applied similar naming scheme to Parameter and ParameterDe-
scription-classes

– Renamed docuLink to doculink
– Corrected attribute names in Table on mapping to DatasetDM.

38

Appendix B Modeling Conventions

This model follows the VO-DML modeling practices, however, the UML
representations may vary depending on the tool used. Below we describe
the graphical representation of the modeling concepts and relations.

Figure 9: Notation example diagram

B.1 Class

Classes are represented by a plain box. The class name is annotated in the
top window, abstract classes use italic typeface. Attributes, if any, are listed
in the lower panel. Attributes may only be of primitive type (real, string,
etc), a defined DataType, or an Enumeration type. Relationships to other
objects are defined via the composition and reference relation arrows.

B.2 DataType

DataTypes are represented by a box shape similar to Class, but annotated
with a "T" symbol in the top left corner.

B.3 Enumerations

Enumerations are represented by a box shape similar to Class, but annotated
with a "1,2.." symbol in the top left corner. Enumeration Literals (possible
values) are listed below the enumeration class name.

39

B.4 Generalization

Generalizations are represented by a line (shown in red in Figure 9), with
open triangle at the end of the source, or more general, object.

B.5 Composition

The composition relation is indicated by a line with a solid diamond at-
tached to the containing object, and an arrow pointing to the object being
contained. The composition relation is very tight, where the container is
responsible for the creation and existence of the target. Any object may be
in no more than one composition relation with any container. The attribute
name for the composition relation is annotated at the destination of the
relation (e.g. "+ dataID"). This is typically a lower-cased version of the
destination class name, but this is not required.

B.6 Reference

The reference relation is indicated by a line (shown in green in Figure 9), with
an arrow pointing to the object being referenced. The reference relation is
much looser than composition, the container has no ownership of the target,
but merely holds a pointer, or other indirect connection to it. The attribute
name is annotated at the destination of the relation (e.g. "+ proposal").
This is typically a lower-cased version of the destination class name, but
may be another name indicating the role that the class is playing in this
context.

B.7 Multiplicity

All attributes and relations have a multiplicity associated with them. For at-
tributes, the multiplicity is contained within brackets just after the attribute
name. If no bracket is displayed, this is equivalent to ’[1]’.

• 1 = one and only one value must be provided.

• 0..1 = zero or one value may be provided.

• * = zero or more values may be provided (open ended).

40

Appendix C Data Types

C.1 Base Data Types

Provides a set of standardized primitive data types as well as types for rep-
resenting quantities (values with associated units). We provide a diagram
of the model here, and refer the reader to Section 5 of the VO-DML mod-
eling specification document (Lemson and Laurino et al., 2018) for more
information.

Figure 10: Base Data Types

C.1.1 Units

This model requires the use of the IVOA VOUnits Standard (Derriere and
Gray et al., 2014) for representing units of physical quantities. This standard
reconciles common practices and current standards for use within the IVOA
community.

C.1.2 Dates

The ’datetime’ datatype is for expressing date-time values. The string rep-
resentation of a datetime value should follow the FITS convention for repre-
senting dates. The FITS standard is effectively ISO8601 format without the
"Z" tag to indicate UTC (YYYY-MM-DDThh:mm:ss). Values are nominally
expressed in UTC.

41

List of Figures

1 Example graph of provenance discovery 5
2 Architecture diagram for the Provenance Data Model 10
3 Overview class diagram of the IVOA Provenance Data Model 12
4 Core classes and relations . 14
5 Partial class diagram focused on description classes. 21
6 Partial class diagram focused on specific types of Entity classes. 26
7 Partial class diagram focused on the ActivityConfiguration

package. 30
8 Full class diagram of the IVOA Provenance Data Model . . . 34
9 Notation example diagram . 39
10 Base Data Types . 41

List of Tables

1 Attributes of the Entity class 15
2 Attributes of the Activity class. 15
3 Attributes of the Used relation class 16
4 Attributes of the WasGeneratedBy relation class 16
5 Attributes of the Agent class 18
6 Enumeration of Agent types. 19
7 Attributes of WasAssociatedWith relation class 19
8 Attributes of WasAttributedTo relation class 20
9 Terms applicable as agent roles. 20
10 Attributes of the ActivityDescription class 22
11 Terms applicable as activity types. 22
12 Attributes of the EntityDescription class 23
13 Attributes of the UsageDescription class 24
14 Attributes of the GenerationDescription class 24
15 Terms applicable as usage or generation type. 25
16 Attributes of the DatasetDescription class 27
17 Attributes of the ValueEntity class 27
18 Attributes of the ValueDescription class 28
19 Attributes of the Parameter class 30
20 Attributes of the ParameterDescription class 31
21 Attributes of the ConfigFile class 32
22 Attributes of the ConfigFileDescription class 32
23 Attributes of the WasConfiguredBy class 33

42

Bibliography

Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y.,
Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J., Sahoo,
S. and Tilmes, C. (2013), ‘PROV-DM: The prov data model’, W3C Rec-
ommendation.
https://www.w3.org/TR/2013/REC-prov-dm-20130430/

Bonnarel, F. and the IVOA Data Model Working Group (2016), ‘Prove-
nance data model legacy’, Webpage.
http://wiki.ivoa.net/twiki/bin/view/IVOA/
ProvenanceDataModelLegacy

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Derriere, S., Gray, N., Demleitner, M., Louys, M. and Ochsenbein, F. (2014),
‘Units in the VO Version 1.0’, IVOA Recommendation 23 May 2014,
arXiv:1509.07267.
http://doi.org/10.5479/ADS/bib/2014ivoa.spec.0523D

Graham, M., Demleitner, M., Dowler, P., Fernique, P., Laurino, O., Lem-
son, G., Louys, M. and Salgado, J. (2013), ‘UTypes: current usages and
practices in the IVOA’, IVOA Note.
http://www.ivoa.net/documents/Notes/UTypesUsage

IVOA Data Model Working Group (2005), ‘Data model for observation,
version 1.00’, IVOA Note.
http://www.ivoa.net/documents/latest/DMObs.html

Lemson, G., Laurino, O., Bourges, L., Cresitello-Dittmar, M., Demleitner,
M., Donaldson, T., Dowler, P., Graham, M., Gray, N., Michel, L. and
Salgado, J. (2018), ‘VO-DML: a consistent modeling language for IVOA
data models Version 1.0’, IVOA Recommendation 10 September 2018.
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0910L

Louys, M., Richards, A., Bonnarel, F., Micol, A., Chilingarian, I., McDow-
ell, J. and IVOA Data Model Working Group (2008), ‘Data Model for
Astronomical DataSet Characterisation Version 1.13’, IVOA Recommen-
dation 25 March 2008, arXiv:1111.2281.
http://doi.org/10.5479/ADS/bib/2008ivoa.spec.0325L

Louys, M., Tody, D., Dowler, P., Durand, D., Michel, L., Bonnarel, F.,
Micol, A. and IVOA DataModel Working Group (2017), ‘Observation
Data Model Core Components, its Implementation in the Table Access

43

https://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvenanceDataModelLegacy
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvenanceDataModelLegacy
http://www.ietf.org/rfc/rfc2119.txt
http://doi.org/10.5479/ADS/bib/2014ivoa.spec.0523D
http://www.ivoa.net/documents/Notes/UTypesUsage
http://www.ivoa.net/documents/latest/DMObs.html
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0910L
http://doi.org/10.5479/ADS/bib/2008ivoa.spec.0325L

Protocol Version 1.1’, IVOA Recommendation 09 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L

Martinez, A. P., Louys, M., Cecconi, B., Derriere, S., Ochsenbein, F. and
IVOA Semantic Working Group (2018), ‘The UCD1+ controlled vocabu-
lary Version 1.3 Version 1.3’, IVOA Recommendation 27 May 2018.
http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0527M

McDowell, J., Tody, D., Budavari, T., Dolensky, M., Kamp, I., McCusker,
K., Protopapas, P., Rots, A., Thompson, R., Valdes, F., Skoda, P., IVOA
Data Access Layer and Data Model Working Groups (2007), ‘IVOA Spec-
tral Data Model Version 1.03’, IVOA Recommendation 29 October 2007.
http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1029M

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwas-
nikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y.,
Stephan, E. and den Bussche, J. V. (2010), ‘The open provenance model
core specification (v1.1)’, Future Generation Computer Systems, 27, (6),
743-756. (doi:10.1016/j.future.2010.07.005), University of Southampton.
http://openprovenance.org/;http://eprints.soton.ac.uk/
271449/

Servillat, M., Riebe, K., Bonnarel, F., Louys, M., Sanguillon, M. and the
IVOA Data Model Working Group (2017), ‘Ivoa provenance data model
implementation: Strategies and examples’, IVOA Note.
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/
ProvDM/implementation-note/

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Du-
mon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A.,
Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen,
P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone,
M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M.,
van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T.,
Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulli-
gen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K.,
Zhao, J. and Mons, B. (2016), ‘The fair guiding principles for scientific
data management and stewardship’, Scientific Data 3, 160018 EP –.
http://dx.doi.org/10.1038/sdata.2016.18

44

http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L
http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0527M
http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1029M
http://openprovenance.org/; http://eprints.soton.ac.uk/271449/
http://openprovenance.org/; http://eprints.soton.ac.uk/271449/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/ProvDM/implementation-note/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/ProvDM/implementation-note/
http://dx.doi.org/10.1038/sdata.2016.18

	Introduction
	Goal of the provenance model
	Requirements and best practices
	Model requirements
	Best practices

	Role within the VO architecture
	Previous efforts

	The IVOA Provenance data model
	Overview and class diagram
	Entity and Activity classes
	Entity and Collection classes
	Activity class

	Entity-Activity relations
	Used class
	WasGeneratedBy class
	Roles in Entity-Activity relations
	WasDerivedFrom relation
	WasInformedBy relation

	Agent and relations to Agent
	Agent class
	WasAssociatedWith class
	WasAttributedTo class
	Agent roles

	Description classes
	ActivityDescription class
	EntityDescription class
	UsageDescription and GenerationDescription classes
	Types of Usage and Generation

	Specific types of Entity classes
	DatasetEntity and DatasetDescription classes
	ValueEntity and ValueDescription classes

	Activity configuration
	Overview of the ActivityConfiguration package
	Parameter and ParameterDescription classes
	ConfigFile and ConfigFileDescription classes
	Relations with Activity class

	Full class diagram
	Appendices
	Appendix Changes from Previous Versions
	Changes from PR-ProvenanceDM-1.0-20181015
	Changes from WD-ProvenanceDM-1.0-20180530
	Changes from WD-ProvenanceDM-1.0-20170921
	Changes from WD-ProvenanceDM-1.0-20161121

	Appendix Modeling Conventions
	Class
	DataType
	Enumerations
	Generalization
	Composition
	Reference
	Multiplicity

	Appendix Data Types
	Base Data Types
	Units
	Dates

	List of Figures
	List of Tables
	Bibliography

