
Provenance Day, Paris, 27th + 28th July 2017

Kristin Riebe

Provenance Webapp

for RAVE - Recent updates

RAVE Provenance

● Using RAVE pipeline (workflow) as example

● 1/2 million sources observed, spectra

● different calibration steps, combining and splitting files,

generating radial velocities, stellar properties, cross-

matching with other

catalogues

● data release: mainly tables with stellar properties

RAVE Provenance webapp

● Django web application (Python)

● Prototype for implementing IVOA ProvenanceDM

● Features:

● implementation of main classes as Django models

● list all instances of a class (Rest API)

● show details for a single object (Rest API)

● ProvDAL access for retrieving provenance for given id

● serialisation of provenance information, IVOA and W3C versions

● visualisation of provenance using javascript

https://github.com/kristinriebe/provenance-rave
https://escience.aip.de/provenance-rave

RAVE Provenance webapp

● Each provenance class implemented as Django model

(Python class), database table generated automatically

● Contains main classes from draft, no description classes (yet)

● Overview of implemented classes (auto-generated):

RAVE Provenance webapp

● ActivityFlow + HadStep:

● could just add flag/attribute to

Activity to mark ActivityFlow

● decided here for extra class,

inherit from Activity

● advantage: explicit link to class

ActivityFlow in HadStep

● no flow-specific attributes needed so far

django-prov_vo

● Basic provenance implementation now (mostly) separated

from RAVE-specific attributes etc.

● => reusable package „django-prov_vo“ (~ abstract classes)

● => all project specific attributes, extensions can be stored in the main app,

=> common provenance implementation can be the same for each webapp

prov_vo

rave
webapp

cosmosim
webapp

django-prov_vo

● classes in RAVE webapp inherit from basic classes

● e.g.: class RaveActivity(prov_vo.models.Activity)

● still work in progress

Activity RaveActivity

prov_vo
provenance-rave

ProvDAL
● Implemented ProvDAL interface for retrieving serialized

provenance description for a given entity/activity,

included in django-prov_vo package

● Parameters (from draft):

● ID (of entity or activity, can occur multiple times)

● STEP (=LAST or ALL)

● FORMAT (=PROV-N or PROV-JSON)

● Additionally:

● option FORMAT=GRAPH

● parameter MODEL (=IVOA or W3C)

● Web form for nice user interface

ProvDAL webform

Automatically generates the ProvDAL GET request URL: https://escience.aip.de/provenance-
rave/provapp/provdal/?ID=rave:20121220_0752m38_089&STEP=LAST&FORMAT=PROV-
N&MODEL=IVOA

new
parameter

additional
option

ProvDAL questions

● STEP=LAST:

● Interprete as 1 step backwards in time?

● Or just go exactly 1 relation further (in each direction)?

Entity
E1

Collection
C1

Entity
E1

Collection
E1 Activity A1

1 step only 1 step backwards in time

ProvDAL questions

● STEP=LAST:

● Maybe rename (STEP=ONE)?

● Maybe use integer instead and allow to specify depth?

● STEP=1 (follow 1 relation (=LAST))

● STEP=3 (follow 3 relations)

● STEP=-1 (follow all)

Serialisations

● General remarks:

● everything needs to be qualified!

● Need W3C and IVOA serialisations:

● W3C: as defined in W3C ProvDM standards, for

compatibility with the world

● IVOA: same formats as W3C, + VOTable

● more direct representation of the data model classes

● use „voprov“ as prefix everywhere

● ActivityFlow in W3C

● Several options tried:

● ...

Serialisations: ActivityFlow as W3C

● Use Bundle?

● But bundles are entities, not activities

● Content of bundle cannot be accessed/linked to directly

● D-PROV: use Plan & wasAssoc.With for workflows,

no agents specified

● But Plan is an entity, not activityFlow

● First approach:

● Create plan for each activityFlow

● Link activities to their activityFlow by linking with its plan via

a wasAssociatedWith-relation without agent

Serialisations: ActivityFlow as W3C

● Final solution: wasInfluencedBy

● = general relation between entities, activities or agents

● Used, WasInformedBy, etc. are special cases of this

● W3C does not define the special case „HadStep“, so we

just use wasInfluencedBy instead

Tracking provenance

● Recursive functions:

● find_entity

● find_activity

● Recursive, because: do not know, how many steps to go

backwards

● There may be loops (it's a graph, not a tree), so nodes may

be visited more than once

● only backwards in time

● only „upwards“, i.e. follow to parents of hadStep/hadMember,

but do not follow children

Open for discussions

	Title Slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Title and Content
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Conclusion

