BN
Leibniz-Institut fir
AP Astrophysik Potsdam

Provenance Webapp
for RAVE - Recent updates

Provenance Day, Paris, 27th + 28th July 2017
Kristin Riebe

RAVE Provenance

* Using RAVE pipeline (workflow) as example
* 1/2 million sources observed, spectra

* different calibration steps, combining and splitting files,
generating radial velocities, stellar properties, cross-
matching with other
catalogues

* data release: mainly tables with stellar properties

RAVE Provenance webapp

* Django web application (Python)
* Prototype for implementing I[VOA ProvenanceDM

 Features:

* implementation of main classes as Django models

list all instances of a class (Rest API)

show details for a single object (Rest API)

ProvDAL access for retrieving provenance for given id

serialisation of provenance information, IVOA and W3C versions

* visualisation of provenance using javascript

https://github.com/kristinriebe/provenance-rave
https://escience.aip.de/provenance-rave

RAVE Provenance webapp

* Each provenance class implemented as Django model
(Python class), database table generated automatically

* Contains main classes from draft, no description classes (yet)

* Overview of implemented classes (auto-generated):

RAVE Provenance webapp

* ActivityFlow + HadStep:

* could just add flag/attribute to
Activity to mark ActivityFlow

* decided here for extra class,
inherit from Activity

WasinformedBy
id AutoField ActivityFlow
Iinformant ForeignKey (id) activity_ptr OneToOneFleld (id)
Iinformed ForeignKey (id)

* advantage: explicit link to class
ActivityFlow in HadStep

activity (activityFlow)

* no flow-specific attributes needed

CharField

django-prov_vo

* Basic provenance implementation now (mostly) separated
from RAVE-specific attributes etc.

* => reusable package ,django-prov_vo“ (~ abstract classes)

__l
i

| rave ~ cosmosim
- webapp webapp

* => all project specific attributes, extensions can be stored in the main app,
=> common provenance implementation can be the same for each webapp

_______’/-

django-prov_vo

* classes in RAVE webapp inherit from basic classes
* e.g.: class RaveActivity(prov_vo.models.Activity)

* still work in progress

provenance-rave

RaveActivity

prov_vo

Activity

ProvDAL

* Implemented ProvDAL interface for retrieving serialized
provenance description for a given entity/activity,
included in django-prov_vo package

* Parameters (from draft):
* |D (of entity or activity, can occur multiple times)
* STEP (=LAST or ALL)
* FORMAT (=PROV-N or PROV-JSON)
* Additionally:
* option FORMAT=GRAPH

* parameter MODEL (=/VOA or W3C)

interface

« Web form for nice userl__‘___/l

ProvDAL webform

< > C | i Secure | https://escience.aip.de/provenance-rave/provapp/provdalform/

Provenance Data Access Layer (ProvDAL)

Put an identifier of an entity or activity in the field below and submit for
retrieving the provenance record (backwards in time). You can check the list of
available entities and activities for valid ids.

Entity or activity ID rave:20121220 0752m38_089
Please enter the identifier for an entity (e.g. rave:20030411 1507m23_001 or
neW rave. 20121220 _0752m38_089) or an activity (e.g. rave:act_irafReduction)
parameter Step flag Ulast Oal

Specify If just one or all previous steps shall be retrieved

Data model 8 WVOA W3cC

Choose W3C for W3C Prov-DM compliant serialization

Format * PROV-N PROV-JSON Graphics ‘\ add|t|ona|
Format of returned provenance record B 0 pt' On

Automatically generates the ProvDAL GET request URL: https://escience.aip.de/provenance-
rave/provapp/provdal/?ID=rave:20121220 0752m38 089&STEP=LAST&FORMAT=PROV-

N&MODEL=IVOA

ProvDAL questions

» STEP=LAST:
* Interprete as 1 step backwards in time?

* Or just go exactly 1 relation further (in each direction)?

Colecion © Colecion .
C1 E1 Activity A1
~ Entity ~ Entity
1 step only . A step backwards intime N

_______/M-

ProvDAL questions

» STEP=LAST:
* Maybe rename (STEP=ONE)?
* Maybe use integer instead and allow to specify depth?

* STEP=1 (follow 1 relation (=LAST))
* STEP=3 (follow 3 relations)
* STEP=-1 (follow all)

_______/-

Serialisations

 General remarks:
* everything needs to be qualified!
* Need W3C and IVOA serialisations:

e W3C: as defined in W3C ProvDM standards, for
compatibility with the world

* |[VOA: same formats as W3C, + VOTable

* more direct representation of the data model classes
* use ,voprov" as prefix everywhere
* ActivityFlow in W3C

* Several options tried:__‘___/

Serialisations: ActivityFlow as W3C

e Use Bundle?

* But bundles are entities, not activities
* Content of bundle cannot be accessed/linked to directly

* D-PROV: use Plan & wasAssoc.With for workflows,
no agents specified

* But Plan is an entity, not activityFlow
* First approach:
* Create plan for each activityFlow

* Link activities to their activityFlow by linking with its plan via

a wasAssociatedWith-relation without‘eig‘el_v_t_______________

Serialisations: ActivityFlow as W3C

* Final solution: waslnfluencedBy
* = general relation between entities, activities or agents
* Used, WasInformedBY, etc. are special cases of this

* W3C does not define the special case ,HadStep“, so we
just use waslInfluencedBYy instead

_______/-

Tracking provenance

* Recursive functions:
* find_entity
* find_activity

* Recursive, because: do not know, how many steps to go
backwards

* There may be loops (it's a graph, not a tree), so nodes may
be visited more than once

* only backwards in time

* only ,upwards®, i.e. follow to parents of hadStep/hadMember,

but do not follow childre_”_________________-—l—

Open for discussions

	Title Slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Title and Content
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Conclusion

