
1

International

 Virtual

 Observatory

Alliance

IVOA Registry Interfaces
Version 0.8.2

IVOA Working Draft 2004 June 16

This version:
0.8.1 http://www.ivoa.net/internal/IVOA/RegistryInterface/IVOARegistryIntervace-
0.8.1.pdf

Latest version:
LatestVersion

Previous versions:
PreviousVersion(s)-YYYYMMDD

Authors:
Kevin Benson, Elizabeth Auden, Matthew Graham, Gretchen Greene, Martin Hill, Tony
Linde, Dave Morris, Wil O’Mullane, Ray Plante, Guy Rixon, Kona Andrews

Abstract

Registries provide a mechanism with which VO applications can discover and
select resources—e.g. data and services—that are relevant for a particular
scientific problem. This specification defines the interfaces that support
interactions between applications and registries as well as between the registries
themselves. It is based on a general, distributed model composed of so-called
searchable and publishing registries. The specification has two main
components: an interface for searching and an interface for harvesting. All
interfaces are defined by a standard Web Service Description Language (WSDL)
document; however, harvesting is also supported through the existing Open
Archives Initiative Protocol for Metadata Harvesting, defined as an HTTP GET
interface. Finally, this specification details the metadata used to describe
registries themselves as resources using an extension of the VOResource
metadata schema.

2

Status of This Document

This is a Working Draft. The first release of this document was 2006 June 14.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than "work in progress.”

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements

This document has been developed with support from the National Science
Foundation's Information Technology Research Program under Cooperative
Agreement AST0122449 with The Johns Hopkins University, from the UK
Particle Physics and Astronomy Research Council (PPARC), and from the
European Commission's Sixth Framework Program via the Optical Infrared
Coordination Network (OPTICON).

Conformance-related definitions

The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and
"OPTIONAL" (in upper or lower case) used in this document are to be interpreted
as described in IETF standard, RFC 2119 [RFC 2119].

The Virtual Observatory (VO) is a general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

A Web Service (when capitalized as it is here) refers to a service that is in
actuality described by a Web Service Description Language (WSDL) [WSDLv1.1]
document.

Editor’s Note:
This document contains two types of boxed comments like this one. Those marked “Editor’s
Note” represents comments intended for the standard editors and for reviewers; these comments
would be removed when the issues they discuss are addressed. Those marked simply as “Note”
are intended for those who will implement the standard, and are intended to provide tips and
further explanation of how the standard is expected to be used. These notes are expected to
remain embedded in the final version of the document

3

Contents

Abstract ... 1
Status of This Document... 2
Acknowledgements... 2
Conformance-related definitions .. 2
Contents .. 3
1 Introduction... 3

1.1 Registry Architecture and Definitions .. 4
1.2 Specification Summary... 6

2 Searching... 7
2.1 Handling large volume of data.. 8

2.1.1 Paginate Scheme ... 9
2.1.2 Identifiers scheme ... 10

2.2 Constraint-based Search Query... 10
2.2.1 Restrictions on the use of XPath in ADQL... 11

2.3 Keyword Search Query... 12
2.4 Single Resource Search Query.. 13
2.5 Xquery Search... 13
2.6 Using Registry Resource for Specific Searching.. 14

3 Harvesting ... 14
3.1 Harvesting Interface.. 14

3.1.1 A Summary of the OAI Web Service Interface .. 15
3.1.2 Metadata Formats for Resource Descriptions... 17
3.1.3 Identifiers in OAI Messages ... 18
3.1.4 Required Records.. 18
3.1.5 The Identify Operation.. 19
3.1.6 IVOA Supported Sets ... 19

3.2 Harvesters ... 20
4 Registering Registries Harvesting... 21

Appendix A.1 Sample extension of vg:Registry.. 21
Appendix A.2 Web Services Definition Language Document for Search Interface ... 22
Appendix A.3.. 22
Appendix A.4 Web Services Definition Language Document for the Harvesters
Interface .. 22

1 Introduction

4

In the Virtual Observatory (VO), registries provide a means for discovering useful
data and services. To make discovery efficient, a registry typically represents to
some extent a centralized warehouse of resource descriptions; however, the
source of this information—the resources themselves and the data providers that
maintain them—are distributed. Furthermore, there need not be a single registry
that serves the entire international VO community. Given the inherent distributed
nature of the information used for resource discovery, there is clearly a need for
common mechanisms for registry communication and interaction.

This document describes the standard interfaces that enable interoperable
registries. These interfaces are based in large part on a Web Service definition
in the form of a WSDL document [WSDLv1.1], which is included in this
specification. Through these interfaces, registry builders have a common way of
sharing resource descriptions with users, applications, and other registries.
Client applications can be built according to this specification and be able to
discover and retrieve descriptions from any compliant registry.

This specification does not preclude a registry builder from providing additional
value-added interfaces and capabilities. In particular, they are free to build
interactive, end-user interfaces in any way that best serves their target
community.

1.1 Registry Architecture and Definitions

A registry is first a repository of structured descriptions of resources, building on
concept of a VO resource defined by the IVOA Recommendation, “Resource
Metadata for the Virtual Observatory” (RM) [Hanisch 2004]:

A resource is a general term referring to a VO element that can be
described in terms of who curates or maintains it and which can be
given a name and a unique identifier. Just about anything can be a
resource: it can be an abstract idea, such as sky coverage or an
instrumental setup, or it can be fairly concrete, like an organization
or a data collection.

Organizations, data collections, and services can be considered as classes of
resources. The most important type of resource to applications is a service that
actually does something. What is available at a particular resource is described
through the content of metadata, whereas the service metadata describes how to
access it. The RM describes a registry, then, as “a service for which the
response is a structured description of resources” [Hanisch 2004]. Each
resource description it returns is referred to as a resource record.

This specification is based on the general IVOA model for registries [Plante et al.
2004], which builds on the RM model for resources. In the registry model, the
VO environment features different types of registries that serve different

5

functions. The primary distinction is between publishing registries and
searchable ones. A secondary distinction is full versus local.

A searchable registry is one that allows users and client applications to search
for resource records using selection criteria against the metadata contained in
the records. The purpose of this type of registry is to aggregate descriptions of
many resources distributed across the network. By providing a single place to
locate data and services, applications are saved from having to visit many
different sites to just to determine which ones are relevant to the scientific
problem at hand. A searchable registry gathers its descriptions from across the
network through a process called harvesting.

A publishing registry is one that simply exposes its resource descriptions to the
VO environment in a way that allows those descriptions to be harvested. The
contents of these registries tend to be limited to resources maintained by one or
a few providers and thus are local in nature; for example, a data center will run its
own publishing registry to expose all the resources it maintains to the VO
environment. Since the purpose is simply publishing and not to serve users and
applications directly, it is not necessary to support full searching capabilities. This
simplifies the requirements for a publishing registry: not only does it not need to
support the general search interface, the storage and management of the
records can be simpler. While a searchable registry in practice will necessitate
the use of a database system, a publishing registry can easily store its records as
flat files on disk.

Note that some registries can play both roles; that is, a searchable registry may
also publish its own resource descriptions.

A secondary distinction is full versus local. A full registry is one that attempts to
contain records of all resources known to the VO. In practice, this attribute is
associated only with searchable registries, as in the so-called full searchable
registry. It is expected that there will be several such registries available,
perhaps each run by a major VO project; this not only avoids the single point of
failure, but allows some specialization to serve the particular needs of the project
that maintains it. A local registry, on the other hand, contains only a subset of
known resources. In practice, all publishing registries are local; however, we
expect that there may be local searchable registries that specialize in particular
types of resources, perhaps oriented toward a scientific topic.

As mentioned above, harvesting is the mechanism by which a registry can
collect resource records from other registries. This mechanism is used by full
searchable registries to aggregate resource records from many publishing
registries. It can also be used to synchronize two registries to ensure that they
have the same contents. Harvesting, in this specification, is modeled as a “pull”
operation between two registries. The harvester refers to the registry that
wishes to receive records (usually a searchable registry); it sends its request to

6

the harvestee (usually the publishing registry), which responds with the records.
Harvesting is intended to be a much simpler process than search and retrieval;
nevertheless, there are at least two kinds of filtering that a harvestee needs to
support:

 Filtering by date: this allows the harvester to return to the harvestee
periodically to retrieve only new and updated records.

 Filtering by ownership: by harvesting only those records that originated
with the harvestee (as opposed to those that may have been harvested
from other registries) prevents a harvester from receiving duplicate
records from multiple registries.

Other kinds of filtering can be useful as well (such as filtering on resource type).
Note, however, that filtering is not intended to be an equivalent to arbitrary
searching; rather, it is a gross selection that can be easily implemented without
having to process the contents of each record.

1.2 Specification Summary

The purpose of the registry is to be used by other applications to provide access
to various types of resources. At the programmatic level, connectivity of the
registry and other applications is ensured through the registry interface as
defined by this document. Much of the interface is defined as a SOAP-based
Web Service and is described the WSDL documents included in Appendix A.1,
while the harvesting interface (section 3) is specifically defined by the OAI-PMH
standard. To define the registry interface, this document includes the following
definitions:

 The meaning and behavior of three types of search and six harvesting
operations.

 The required input arguments for each operation.
 The XML Schema used to encode response messages.
 The meaning of the output for each operation.

The IVOA Registry collects the lists of resource descriptions that match specific
criteria via the search operation. The IVOA Registry Interface consists of three
search operations:

 Search searches the Registry in order to obtain the VO resources.
 KeywordSearch is a helper query based on a set of key words.
 GetResource returns a single resource identified by its unique IVOA.

The registry can collect resource records from other registries using one of six
operations which support resource harvesting. The operations listed below are
described in more detail in 3.1.1. The most important harvesting operation is the
ListRecords, which collects the descriptions of the resource based on

7

constraints such as date and time period. The ListRecords interface provides for
the retrieval of all resources that are managed by its corresponding Registry.
Resources of the type Registry are also harvestable by means of the ListRecords
interface, The complete list of harvesting operations is shown below and their
implementation follows the OAI standards:

 Identify
 ListIdentifiers
 ListRecords
 GetRecords
 ListMetadataFormats
 ListSets

The operations that return resource descriptions do so using the VOResource
XML Schema [Plante et al. 2004] and any of its legal extensions.

2 Searching

The required search operations—Search, KeywordSearch, GetResource —
return a list of one or more resource descriptions held by the registry that
matches the input selection criteria. The three search operations respectively
support three types of searching:

 Constraint-based Searching for resources by means of a query using
the Astronomical Data Query Language (ADQL) [ADQL],

 Keyword-based Searching for resources whose descriptions contain
words in an input string.

 Identifier-based Searching for returning one and only one resource
specified via that resource’s unique identifier.

Note:
It is important to note that search operations do not support resource harvesting described in
section 3. Normally, an end-user would use search to retrieve resource descriptions, but not to
selectively harvest information between registries.

These three operations are defined by the WSDL document given in Appendix
A.1. Searchable registries must implement all the operations.

All the operations share a common output format for the resource records that
match the search criteria. These records are encoded in XML and wrapped in a
root element called VOResources. The resource records are represented as
child Resource elements of type Resource from the VOResource XML
Schema (having the namespace, http://www.ivoa.net/xml/VOResource/v1.0,

8

hitherto referred to using the “vr:” prefix), or a legal extension of the
vr:Resource type. If the type of the Resource element is actually an extension
of the vr:Resource type, then the Resource element MUST specify the
specific type using an xsi:type attribute in compliance with the XML Schema
standard [Schema].

The search responses must include the xsi:schemaLocation attribute in
compliance with the XML Schema standard [Schema] to indicate a URL location
for the VOResource schema and all of the legal extensions of VOResource that
are employed in the response. This xsi:schemaLocation attribute must
appear either as an attribute of the VOResources element or as an attribute of
each child Resource element or both. When xsi:schemaLocation appears
as an attribute of Resource, locations need only be given for the schemas
employed within that resource. The URL location for the VOResource core
schema (http://www.ivoa.net/xml/VOResource/v1.0) must be set to
“http://www.ivoa.net/xml/VOResource/v1.0”. For those legal extensions that are
standard schemas recognized by the IVOA, the location should be set to the
standard location in the IVOA Document repository whose URL begins with
“http://www.ivoa.net/xml/”.

Example: the xsi:schemaLocation attribute contains pairs of values where the first value is the
schema namespace and the second value is the URL location of that schema. For IVOA
standard schemas, the namespace can be used as the URL location.

<VOResources
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/SIA/v1.0
 http://www.ivoa.net/xml/SIA/v1.0">

View Appendix A.1 for the WSDL to see the use of the imported Resource
schema placed inside the root element of VOResources.

The registry interface must implement the three Search operations in order to
comply with communication and interaction standards for a Web Service.
Searchable registries compliant with the augmented SOAP must return a copy of
the WSDL document, with a service element appropriate for the local endpoint
URL appended in response to a call to the Web Service URL with the standard
“?wsdl” argument. Additional operations may be added; however original search
operations and their arguments and outputs must not be altered.

2.1 Handling large volume of data

9

Two of the required search interfaces –Search and KeywordSearch – return a list
of one or more resource descriptions which can comprise large data volumes
depending on the query. These two interface methods can be run with a set of
optional parameters that help reduce the amount of data. These are a paginate
scheme and an identifier scheme.

A client may wish to use none, all, or a mix of these optional parameters.

The optional parameters:

- from – starting point of a returned list of Resources. If not specified, the
default is “1”.

- to – ending point of a list of Resources. If not specified, the default is the
end of the list of Resources, or the registry’s own limit (where relevant),
whichever comes first.

- identifiersOnly – Boolean to indicate “return only identifiers”.

2.1.1 Paginate Scheme

 Clients are allowed to provide the parameter showing the starting number of a
record from the selected set, as well as to supply an ending record number.

The operation is capable of returning query results incrementally. The client can
view the results of an ADQL query or Keyword search in a specified record
number range. The output of resource records identifies the starting and the
ending record numbers displayed on the page, and a Boolean attribute showing
whether more records/result pages are available. The search interface with
incremental result returns resource records in sets identified by the attributes:

from – shows the starting number of the returned resource record shown by the
set

numberReturned – the total number of returned resource records.

more – a Boolean value. True shows that more results are available, false
identifies the end of the returned search results.

Example:
<VOResource from="100" numberReturned="200" more="true">
...
</VOResourced>

The client is given an option of choosing the number of records to be returned;
however, the search service allows for the implementer to establish a default
setting for the result return. Therefore although the client may not specify values

10

of “from” and “to” parameters in the search, the client may get an incremental
records output depending on the implementation.

2.1.2 Identifiers scheme

The Search and KeywordSearch interface now supports an option that allows
returning only the identifiers of the selected records, thereby decreasing the
search time and the output volume. To take advantage of this option the client
must supply a true value to the parameter identifiersOnly.

2.2 Constraint-based Search Query

The Search method allows clients to retrieve a list of resource descriptions that
match constraints of values corresponding to specific metadata in VOResource
schema (and its legal extensions).

IVOA searchable registries must implement the Search interface, which takes
one required parameter, a Where element of type whereType from the ADQL
XML Schema [ADQL] (having the namespace,
http://www.ivoa.net/xml/ADQL/v1.0, hitherto referred to using the “adql:” prefix;
see Appendix A.1) which contains the constraints that specific components of the
resource metadata must satisfy. The specific components are named using
adql:Column elements subject to the following restrictions:

 The Table attribute, which is required by the ADQL Schema, should be
set to an empty string and must be ignored by the Search method
implementation.

 The Name attribute, which is required by the ADQL Schema, may be set to
an empty string or to a short name to serve as an alias for the resource
metadatum referred to. This value must be ignored by the Search
method.

 The xpathName attribute must be set to a restricted XPath string, subject
to the rules in section 2.2.1. This XPath string identifies the specific
VOResource element (or legal extension) within the resource record that
is to be constrained.

The Search implementation selects matching resources as if the ADQL query
were being applied to a single table in which each row is a single resource record
and the columns include the resource metadata components referred by
xpathName XML attributes. Matched resource records are then encoded using
the VOResource XML Schema (and its legal extensions) according to the
specifications given in the Search WSDL and described in Section 2, and they
should include all information available to the registry that is compliant with the
VOResources definitions.

11

2.2.1 Restrictions on the use of XPath in ADQL

The value of the xpathName attribute in any adql:Column element used within
the input to the Search method must be a legal XPath [XPath] string that is
restricted in form by the following rules:

 The path points to an element or attribute value within a resource
description encoded with the VOResource schema and/or any of its legal
extensions.

 When the path points to a specific element, that element must be of a
simple type as defined by the XML Schema standard [Schema]

 The path is relative and assumes that the context node is the element that
forms the parent of a single resource description (e.g. a Resource
element) and is of type vr:Resource or one of its legal extensions.

 The path must be composed only of location steps with child axes
expressed using the abbreviated syntax for child elements and attributes:
elements are referred to simply by their name, and attributes are referred
to by their name preceded by an ‘@’ character. Unabbreviated location
steps—i.e., those that require the double colon (‘::’) syntax—are not
allowed. All other types of abbreviated axes, including use of double
slashes (‘//’), single and double periods (‘.’ and ‘..’), and wildcards (‘*’), are
not allowed.

 The path must not include any predicates (i.e., qualifiers expressed using
square brackets, ‘[…]’).

 Because of the standard use of schemas to define
elementformdefault=’unqualified’. No prefixes are needed in the xpath of
elements or attributes. With the exception of @xsi:type.

This restricted form of XPath is intended to make it straight forward to transform
the ADQL Where clause to a string-based query—namely SQL and XQuery—
through a static mapping from an XPath to an attribute in a local database
without parsing the internal content of the path.

Legal Examples:
curation/publisher the resource publisher’s name
curation/publisher/@ivo-id the publisher’s IVOA identifier
@xsi-type the specific type of resource
interface/@xsi-type the specific type of interface

Illegal Examples:
Resource/title wrong context node
content not an element with a simple type
curation/child::publisher “child::” syntax not allowed
curation//@ivo-id “//” syntax not allowed
Interface[@xsi-type="vs:WebService"]/accessURL “[…]” syntax not allowed

12

2.3 Keyword Search Query

The purpose of the KeywordSearch operation is to provide a simple way to
select resources based on the string values in their resource descriptions. The
output of the operation is a set of matched resource descriptions in the same
format as from the Search operation and specified in section 2.

IVOA searchable registries must implement the KeywordSearch(String words,
Boolean orValue) method, which has two required parameters:

 String words: The first parameter is a parameter of type xs:string that
consists of one or more words separated by whitespace characters. The
characters that qualify as whitespace are the same as in XML: space
(x20), tab (x9), line feed (xA), and carriage return (xD).

 Boolean orValues: The second parameter is of type xs:boolean which
determines the logical operand to be applied. Either an “AND” or an “OR”
operand can be applied when querying with more than one word. If this
parameter has a TRUE value, then any of the words must appear in the
resource description in order for the resource to be returned. If this
parameter is FALSE, then all of the words must appear in the resource
record in order for the record to be returned.

The KeywordSearch implementation forms a query by, in effect, creating a
search constraint for each word in the words parameter. Words are extracted
from the words parameter after a normalization that ignores leading and trailing
whitespaces and treats consecutive whitespaces as a single space. For each
resource record, each word is compared against every value for a selected set of
resource metadata that includes at minimum the following:

 identifier: the resource’s IVOA identifier
 content/ description: the descriptive summary of the resource
 title: the resource title
 @xsi:type: the specific type of resource specified as an extension of the

xs:Resource type
 content/ subject: the subject topics associated with the resource
 content/type: the general type of resource

The implementer may include additional metadata values in the comparison as
they choose (which may include non-string values). It is legal to compare the
word with all simple type values in the record. If the word is contained within one
of the selected set of resource metadatum values, the constraint evaluates as
TRUE. It is up to the implementer to decide what it means for a word to be

13

considered “contained;” for example, the implementation may also test for related
forms of the word. The results of all of the constraint tests (one for each word)
are combined logically according to the value of orValues: if orValues is TRUE,
then the resource record is returned when any of the constraints are TRUE, and
if it FALSE, then all constraints must be TRUE in order for the record to be
returned.

Matched resource records are then encoded using the VOResource XML
Schema (and its legal extensions) and should include all information available to
the registry that complies with the definitions of the VOResources.

2.4 Single Resource Search Query

The purpose of the getResource operation is to provide a simple way to select a
single resource based on the string value of its unique resource identifier. The
output of the operation is a single record matched to the resource identifier.

 IVOA searchable registries can must implement the getResource(String
identifier) method, which has one parameter of type xs:string (the
identifier of the resource record) in order for the record to be returned.

During the search operation the resource record metadata is compared against
the value of the IVOA resource identifier vr:identifier. The result of the single
resource search query is the selected resource metadata.

2.5 Xquery Search

The purpose of the XQuerySearch operation is to provide a more convenient way
of searching the hierarchal xml schema, and to provide the client with a way of
obtaining only the subelement(s) they need (rather than the full Resource
record). The output of this operation is determined by the XQuery input.

To determine if a registry supports the XQuery interface a client must inspect the
WSDL of the searchable registry or the Registry type Resource for the
optionalProtocol “XQuery”; xpath “capability/optionalProtocol”.

IVOA searchable registries may implement the XQuerySearch(String xquery)
method which has one parameter:

- String xquery: The first and only parameter is a string that conforms to
xquery syntax See information on xquery here:
http://www.w3.org/XML/Query

- “//RootResource” word may be located in the xquery string parameter to
denote the root or top element of a VOResource, and should be translated
if necessary to the appropriate root element.

14

2.6 Using Registry Resource for Specific Searching

A client may wish to interrogate the Registry Resource type
“@xsi:type=’vg:Registry” for certain requirements to be used for searching.

- Discovery – All Registries will implement the getRegistration interface from
the “IVOA Support Interface” which returns the VOResource record of the
vg:Registry type for that registry.

- XQuery – As Noted in the above section 2.5, you can discover if the
registry supports XQuery by checking if the optionalProtocol is set to
“XQuery”. Located xpath of “capability/optionalProtocol”

- Full or Not Full – a Boolean to indicate if this registry contains all
VOResource records. Located xpath of “full”.

- Extensions - Registries are required to return all data from a VOResource
record including extensions, but searching on extensions is “not” required.
Check for a Boolean to indicate if a registry can search extensions.
Located xpath of “allowsExtendedSearch”.

3 Harvesting

Harvesting is the mechanism by which a registry can collect resource
descriptions from other registries. This mechanism is used by full searchable
registries to aggregate resource descriptions from many publishing registries. It
can also be used to synchronize two registries to ensure that they have the same
contents. This section defines the IVOA Harvesting Interface. Client
applications that make use of this interface are referred to as harvesters. Those
registries that declare themselves as harvestable (section 3.2) must comply with
the specification described in this section. As Noted in the Abstract Registries
may become harvestable by implementing the HTTP GET interface of OAI as an
alternative to the SOAP Service interface described.

3.1 Harvesting Interface

The harvesting interface builds on the Web Service version of the Open Archives
Initiative Protocol for Metadata Harvesting (OAI-PMH) [OAI]. In particular, all
IVOA Registries that support the Harvesting Interface must be compliant with the
Web Service version of OAI-PMH. Compliance with this base standard allows
IVOA registries to be accessed by applications from outside the IVOA
community.

15

Editor’s Note:
OAI does not currently support an official Web Services version of PMH. One of the purposes
of the development of this standard is to drive the evolution of the OAI standard which has
demonstrated to be a highly effective harvesting protocol across a broad continuum of
communities.

In addition to OAI-PMH compliance, this specification defines an additional set of
OAI-PMH-compliant requirements and recommendations which are described in
sections 3.1.1 through 3.1..6 below.

3.1.1 A Summary of the OAI Web Service Interface

The Web Service version of OAI-PMH is defined by:

 The OAI-PMH v2.0 specification
(http://www.openarchives.org/OAI/openarchivesprotocol.html) which
defines

o the meaning and behavior of the six harvesting operations, referred
to as “verbs”,

o the meaning of the input arguments for each operation, and
o the XML Schema used to encode response messages.

 The OAI-PMH Web Service Definition Language (WSDL) document (see
Appendix A.2) which defines

o the six “verbs” defined as Web Service operations
o SOAP encoding of the operation input arguments and response

messages, based on the OAI-PMH XML Schema.

In summary, the OAI-PMH standard defines six operations:

Identify: provides a description of the registry
ListIdentifiers: returns a list of identifiers for the resource records held by

the registry.
ListRecords: returns all Resource records in the registry. Registries may

use the set “ivo_managed” to get Resource records managed by
this particular registry..

GetRecord: returns a single resource description matching a given
identifier.

ListMetadataFormats: returns a list of supported formats that the registry
can use to encode resource descriptions upon a harvester’s
request.

ListSets: return a list of category names supported by the registry that
harvesters can request in order to get back a subset of the
descriptions held by the registry.

The ListRecords and GetRecord operations return the actual resource
description records held by the registry. These descriptions are encoded in XML

16

and wrapped in a general-purpose envelope defined by the OAI-PMH XML
Schema (namespace http://www.openarchives.org/OAI/2.0).

Through the operations’ arguments, OAI-PMH provides a number of useful
features:

 Support for multiple return formats. As suggested by the
ListMetadataFormats operation, a harvester can request the format
resource descriptions are encoded in.

 Harvesting by date. The ListIdentifiers and ListRecords operations both
support “from” and “until” date arguments. The “from” argument can be
used to retrieve records that have changed since the last harvest.

 Harvesting by category. The ListIdentifiers and ListRecords operations
both support a “set” argument for retrieving resources that are grouped in
a particular category. Resource records may belong to multiple groups.

 Marking records as deleted. Registries may mark records as deleted so
that harvesters may remove access to them from their applications.

 Support for resumption tokens. If a request results in returning a very
large number of records, the registry can choose to split the results over
several calls; this is done by passing a resumption token back to the
harvester. The harvester uses it to retrieve the next set of matching
results.

Editor’s Note:
The Web Service version of the OAI-PMH protocol has been designed to match the behavior
and functionality of the original “HTTP GET”-based version as much as possible. One reason
for this is to make it as straightforward as possible to build bridges between implementations of
both types and to build off the existing OAI software.

Note:
It is important to note that the OAI-PMH interface is not intended to be a general search
interface. The filtering capabilities described above are just enough to support intelligent
harvesting between registries. Most end-user applications will use the search interface
described in sections 3 and 4 to retrieve resource descriptions.

The Web Service or SOAP version of OAI-PMH augments the original
specification with a standard Web Service Definition Language (WSDL)
document which is listed in H.2. Harvestable registries complying to the SOAP
version of OAI-PMH must emit a copy of the WSDL document, with a service
element appropriate for the local endpoint URL added in, in response to a call to
the Web Service URL with the standard “?wsdl” argument. All six of the standard
operations must be implemented. Additional, non-standard operations may be
added; however, the definition of the six standard operations, along with the
definition of their inputs and outputs, must not be altered. The interface is

17

recognized as the OAI-PMH standard when the default namespace for the WSDL
matches “http://www.ivoa.net/wsdl/oai.wsdl” exactly.

Editor’s Note:
The namespace for the WSDL would presumably be changed to something like
http://www.openarchives.org/OAI-WS/1.0/ if and when it is accepted by the OAI community.

The subsequent sections below describe how the standard OAI-PMH features
are used to support IVOA-specific functionality.

3.1.2 Metadata Formats for Resource Descriptions

All IVOA registries that support the Harvesting Interface must support two
standard metadata formats: the OAI Dublin Core format (mandated by the base
OAI-PMH standard) and the IVOA VOResource metadata format [
http://www.ivoa.net/xml/VOResource/v1.0].

The VOResource metadata format will have the metadata prefix name “ivo_vor”
which can be used wherever an OAI-PMH metadata prefix name is supported
(see OAI standard, section 3.4, “metadataPrefix and Metadata Schema”). The
format uses the VOResource core XML Schema with the namespace
http://www.ivoa.net/xml/VOResource/v1.0 (referred hereto with the namespace
prefix “vr”) along with any legal extension of this schema (including the IVOA
standard extensions) to encode the resource descriptions within the OAI-PMH
metadata tag from the OAI XML Schema (namespace
http://www.openarchives.org/OAI/2.0, hereto referred by the namespace prefix
“oai”). The format is specifically defined as a vr: Resource element as the sole
child of the oai:metadata element. In compliance with the VOResource schema
and any legal extensions.

Editor’s Note:
If and when the VOResource schema evolves to a new version, this standard must be updated
accordingly. Thus, this definition is locked to particular version of the VOResource, so saying
that a registry is compliant with vX.X of this document implies a specific version of
VOResource.

Note:
It is possible that the vr:Resource extension returned is unrecognized by the harvester. The
harvester must deal with this possible outcome by handling and storing of extensions or by
ignoring vr:Resource metadata.

Editor’s Note:
A “standard resource extension” will be defined as a type of vr:Resource in a schema that has

18

been approved as an IVOA Recommendation. At this writing, no VOResource schemas have
reached this state, so for the purposes of prototyping, a “standard resource extension” will refer
to any vr:Resource type from the following schemas:

 VOResource: http://www.ivoa.net/xml/VOResource/v1.0
 VORegistry: http://www.ivoa.net/xml/VORegistry/v1.0
 VODataService: http://www.ivoa.net/xml/VODataService/v1.0
 ConeSearch: http://www.ivoa.net/xml/ConeSearch/v1.0
 SIA: http://www.ivoa.net/xml/SIA/v1.0

The OAI Dublin Core format, with the metadata prefix of “oai_dc”, is defined by
the OAI-PMH base standard and must be supported by all OAI-PMH compliant
registries. This document does not specify how a record in the VOResource
format maps into the OAI Dublin Core format; however, the IVOA Registry
Working Group may recommend such a mapping based on the IVOA Resource
Metadata standard [ref].

Harvestable registries may support other metadata formats. The
ListMetadataFormats must list all names for formats supported by the registry;
this list must include “ivo_vor” and “oai_dc”.

3.1.3 Identifiers in OAI Messages

In accordance with the OAI-PMH standard, an OAI-PMH XML envelope that
contains a resource description must include a globally unique URI that identifies
that resource record. This identifier must be the IVOA identifier used to identify
the resource being described and cited as the value of the vr:identifier
resource metadatum.

Note:
This specification does not follow the recommendation of the OAI-PMH standard with regard
to record identifiers. OAI-PMH makes a distinction between the resource record containing
resource metadata and the resource itself; thus, it recommends that the identifier in the OAI
envelope be different from the resource identifier. In particular, the former is the choice of the
publishing registry. This allows one to distinguish resource descriptions of the same resource
from different registries, which in principle could be different.

In the VO, because it is intended that resource descriptions of the same resource from different
registries should not differ, there is not a strong need to distinguish between the resource and
the resource description. By making the resource and resource record identifiers the same, it
makes it much easier to retrieve the record for a single resource via GetRecord, regardless of
which registry is being queried. Otherwise—when the registry chooses the record identifier—a
client will not a priori know the record identifier for a particular resource, and so it is left to call
ListRecords and search through the metadata of all the records itself to find the one of interest.
In contrast, IVOA identifiers are intended to be a cross-application way of referring to a
resource, and thus when a client wants only a single specific resource record, it is very likely
that it would know the resource identifier when making a call to the GetRecord operation.

3.1.4 Required Records

19

This section describes the records that a harvestable IVOA Registry must include
among those it emits via the OAI-PMH operations.

The harvestable registry must return one record that describes the registry itself
as a whole, and the “ivo_vor” format must be supported for this record. This
record is included in the Identify operation response (see section 3.1.5). When
encoded using the “ivo_vor” format, the vr:Resource returned must be of an
extension of vg:Registry from the VORegistry schema (namespace
http://www.ivoa.net/xml/VORegistry/v1.0; hereto referred by the “vg” namespace
prefix). The record must include a vg:managedAuthority for every Authority
Identifier [ref IVOA Identifiers] that originated at that registry. The registry may
contain other registry records for other registries it knows about; use of
vr:Resource elements other than vg:Registry to describe these other registries
is strongly discouraged.

The harvestable registry must return exactly one record in “ivo_vor” format for
each Authority Identifer listed as a vg:managedAuthority in the vg:Registry
record that describes that registry. When encoded in the “ivo_vor” format, the
type of vr: Resource must be an vg:Authority type.

3.1.5 The Identify Operation

The Identify operation describes the harvestable registry as a whole. The
response from this operation must include all information required by the OAI-
PMH standard. In particular, it must include a oai:baseURL element which must
refer to the base URL to the Web Service endpoint (i.e. the URL used to retrieve
the WSDL document via the standard URL suffix, “?wsdl”) unless the HTTP-GET
is implemented by the Registry see below note.

Note:
A traditional “HTTP GET” implementation of OAI-PMH that serves as a bridge to Web
Service implementation must transform the value of the oai:baseURL element to refer to itself
rather than the delegate Web Service.

The Identify response must include a oai:description element containing a
single vr:Resource of type vg:Registry. The content of vg:Registry type must
be the registry description of the harvestable registry itself..

3.1.6 IVOA Supported Sets

Sets, as defined in the OAI-PMH standard, “[are] an optional construct for
grouping items for the purpose of selective harvesting” (see the OAI-PMH
standard, section 2.6). Harvestable IVOA registries are free to define any
number of custom sets for categorizing records. The OAI-PMH standard allows
a record to be a member of multiple sets. This document defines a set of
reserved set names with special meanings. Their names all start with the

20

characters “ivo_”; implementers must not define their own set names that begin
with this string. Support for one of the reserved sets, “ivo_managed,” is required
by this specification; thus, when applied to IVOA-compliant harvestable
registries, support for sets is not optional.

This specification optionally defines a set for each of the IVOA standard
extensions to the vr:Resource as well as the vr:Resource element itself. The set
name is formed by prepending “ivo_” to the local element name for the resource
extension. (For example, a set defined for vg:Registry is named “ivo_Registry”.)
A request for records in such a set will return records whose “ivo_vor” rendering
features the associated resource extension. (For example, requesting the
“ivo_Registry” set will return all records whose “ivo_vor” form has a vg:Registry
type of the vr:VOResource element.) Requests for the “ivo_Resource” set (if
supported) should return records whose “ivo_vor” form has a vr:Resource with
no type extension hence no xsi:type defined.. Harvesting registries should
support all sets associated with IVOA standard Resource extensions. Requests
for these sets that are not supported should return an error (in accordance with
the OAI-PMH standard), even if such records exist.

The “ivo_standard” optional set refers to all of the IVOA reserved sets that
correspond to IVOA standard Resource extensions that are supported by the
registry. Harvesters may request this set to guarantee getting back records it
can fully parse. Harvesting registries must support this set.

The “ivo_managed” required set refers to all records that originate from the
queried registry. That is, those records that were harvested from other registries
are excluded. The IVOA Resource identifiers given in the records must have an
Authority Identifier that matches on one of the vg:managedAuthority values in
the vg:Registry record for that registry. Full searchable registries may use this
set to avoid getting duplicate records when harvesting from many registries.

All sets that are supported by the harvestable registry, including the one required
set, must be listed in the response to the ListSets operation in compliance with
the OAI-PMH standard. Appendix A.3 lists the recommended set descriptions
which can be returned by the ListSets operation for the IVOA reserved set
names.

3.2 Harvesters

A registry that collects resource descriptions from other registries through the
Harvesting Interface defined above in section 3.1 is referred to as a harvester
registry. See Section 4 for sample vg:Registry extension for deterimination of
interface URL and method to which to call the registry such as HTTP-GET or
SOAP. Harvesters ‘must’ be able to harvest via SOAP or HTTP-GET interface.
If both SOAP and HTTP-GET interfaces are defined in the vg:Registry extension
then the harvester has an option of which interface to call.

21

Note:
The Registry of Registries is hosted by IVOA for the discovery of other Registry types
“vg:Registry” records. The Registry of Registries known as RofR only stores vg:Registry
records and implements the Harvesting interface only. Full Registries should harvest RofR for
discovery of new and/or updated Registries. See IVOA Note section on more detailed
description of RofR.

4 Registering Registries

[Points to cover:

 VORegistry used to register registries
 Definition of extension metadata: managedAuthority
 Restrictions on describing capabilities
 Example record

]

<resource xsi:type="vg:Registry"
 xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
 xmlns:vg="http://www.ivoa.net/xml/VORegistry/v1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 VOResource-v1.0.xsd
 http://www.ivoa.net/xml/VORegistry/v1.0
 VORegistry-v1.0.xsd">
 <title>IVOA Registry of Registries sample entry</title>
 <shortName>RofR</shortName>
 <identifier>ivo://ivoa/registry</identifier>
 <curation>
 <publisher>
 IVOA
 </publisher>
 <creator>
 <name>Ray Plante</name>http://www.ivoa.net/
 </creator>
 <date>2006-08-08</date>
 <contact>
 <name>Ray Plante</name>
 <email>rplante@ncsa.uiuc.edu</email>
 </contact>
 </curation>
 <content>
 <subject>registry repositories</subject>
 <description>
 This registry provides information regarding other registries.
 </description>
 <referenceURL>http://www.ivoa.net</referenceURL>
 <type>Registry</type>
 <contentLevel>Research</contentLevel>
 </content>

22

 <capability xsi:type="vg:Harvest"
 standardID="ivo://ivoa.net/std/Registry">
 <interface xsi:type="vg:OAIHTTPGet" role="std">
 <accessURL> http://www.ivoa.net/cgi-bin/rofr/oai.pl
</accessURL>
 </interface>
 <interface xsi:type="vg:OAISOAP" role="std">
 <accessURL> http://www.ivoa.net/rofr/RegistryHarvest
</accessURL>
 </interface>
 <maxRecords>100</maxRecords>
 </capability>
 <!-- Uncomment this section for the Search Interface
 <capability xsi:type="vg:Search"
 standardID="ivo://ivoa.net/std/Registry">

 <interface xsi:type="vr:WebService" role="std">
 <accessURL> http://nvo.ncsa.uiuc.edu/cgi-bin/nvo/search.pl
</accessURL>
 </interface>
 <optionalProtocol>XQuery</optionalProtocol>
 <maxRecords>0</maxRecords>
 </capability>
 -->
 <full>false</full>
 <managedAuthority>ivoa</managedAuthority>
 <managedAuthority>ivoa.net</managedAuthority>
</resource>

Appendix A.1 Web Services Definition Language Document for
Search Interface

Currently See: http://www.ivoa.net/twiki/bin/view/IVOA/RegistryInterface

Appendix A.2 Web Services Definition Language Document for
the Harvesting Interface

Currently See: http://www.ivoa.net/twiki/bin/view/IVOA/RegistryInterface

Appendix A.3 VORegistry: the VOResource Extension Schema
for Registering Registries

Currently See: http://www.ivoa.net/twiki/bin/view/IVOA/RegistryInterface

References

23

[WSDLv1.1] Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S.
2001, Web Services Description Language v1.1, W3C Note 15 March
2001, http://www.w3.org/TR/wsdl/

[Hanisch 2004] Hanisch, R. (ed.) et al. 2004, Resource Metadata for the Virtual
Observatory, IVOA Recommendation,
http://www.ivoa.net/Documents/latest/RM.html

[ADQL] Ohishi, M. et al. 2004, Astronomical Dataset Query Language, IVOA
Working Draft (internal),
http://www.ivoa.net/internal/IVOA/IvoaVOQL/WD_ADQL-0.9.pdf

[XPath] Clark, J. and DeRose, S. 2001, XML Path Language (XPath) Version
1.0, W3C Recommendation 16 November 1999,
http://www.w3.org/TR/xpath/

[Schema] Fallside, D, and Walmsley, P. 2004, XML Schema Part 0: Primer
Second Edition, W3C Recommendation 28 October 2004,
http://www.w3.org/TR/xmlschema-0/

[OAI] http://www.openarchives.org/OAI/openarchivesprotocol.html

