
 1

 International

 Virtual

 Observatory

Alliance

IVOA Registry Interfaces
Version 1.0
IVOA Proposed Recommendation 2009 May 22

This version:

http://www.ivoa.net/Documents/ReR/RegistryInterface-20090522.pdf
Latest version:

http://www.ivoa.net/Documents/latest/RegistryInterface.pdf
Previous versions:

http://www.ivoa.net/Documents/ReR/RegistryInterface-20090519.pdf
http://www.ivoa.net/Documents/ReR/RegistryInterface-20080929.pdf
http://www.ivoa.net/Documents/WD/ReR/RegistryInterface-20061107.pdf

Authors:
Kevin Benson, Ray Plante, Elizabeth Auden, Matthew Graham, Gretchen Greene, Martin
Hill, Tony Linde, Dave Morris, Wil O’Mullane, Guy Rixon, Kona Andrews

Abstract

Registries provide a mechanism with which VO applications can discover and
select resources—e.g. data and services—that are relevant for a particular
scientific problem. This specification defines the interfaces that support
interactions between applications and registries as well as between the registries
themselves. It is based on a general, distributed model composed of so-called
searchable and publishing registries. The specification has two main
components: an interface for searching and an interface for harvesting. All
interfaces are defined by a standard Web Service Description Language (WSDL)
document; however, harvesting is also supported through the existing Open
Archives Initiative Protocol for Metadata Harvesting, defined as an HTTP REST
interface. Finally, this specification details the metadata used to describe
registries themselves as resources using an extension of the VOResource
metadata schema.

 2

Status of This Document

This is a Proposed Recommendation. The first release of this document was
2006 October 15. Note that the previous version of this document featured the
version number 1.01 in compliance with IVOA Document Standards v1.0
[STDv1.0]. This version, v1.0, adopts the recommendation for version
numbering of IVOA Document Standards v1.2 [STDv1.2].
This is an IVOA Proposed Recommendation made available for public review. It
is appropriate to reference this document only as a recommended standard that
is under review and which may be changed before it is accepted as a full
recommendation.
A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements

This document has been developed with support from the National Science
Foundation's Information Technology Research Program under Cooperative
Agreement AST0122449 with The Johns Hopkins University, from the UK
Particle Physics and Astronomy Research Council (PPARC), and from the
European Commission's Sixth Framework Program via the Optical Infrared
Coordination Network (OPTICON).

Conformance-related definitions

The words "MUST ", "SHOULD", "MAY", "RECOMMENDED", and "OPTIONAL"
(in upper or lower case) used in this document are to be interpreted as described
in IETF standard, RFC 2119 [RFC 2119].

The Virtual Observatory (VO) is a general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

A Web Service (when capitalized as it is here) refers to a service that is in
actuality described by a Web Service Description Language (WSDL) [WSDLv1.1]
document.

Note:
Boxed comments labeled “Note,” such as this one, are intended to provide tips and further
explanation of how the standard is expected to be used or implemented. Their contents are
informative, rather than normative―that is, they are not technically part of the standard
specification.

 3

Contents

Abstract ... 1
Status of This Document... 2
Acknowledgements... 2
Conformance-related definitions .. 2
Contents .. 3
1 Introduction... 4

1.1 Registry Architecture and Definitions .. 4
1.2 Specification Summary... 6

2 Searching... 8
2.1 Required Search Operations ... 9

2.1.1 Output Format... 9
2.1.2 Constraint-based Search Query... 13
2.1.3 Keyword Search Query... 17

2.2 Resolve Operations ... 19
2.2.1 Output Format... 19
2.2.2 Identifier Resolution ... 20
2.2.3 Identity Query ... 20

2.3 XQuery Search.. 21
3 Harvesting... 22

3.1 Harvesting Interface.. 22
3.1.1 A Summary of the OAI Interface.. 23
3.1.2 Metadata Formats for Resource Descriptions... 25
3.1.3 Identifiers in OAI Messages ... 26
3.1.4 Required Records.. 26
3.1.5 The Identify Operation.. 27
3.1.6 IVOA Supported Sets ... 27

3.2 Harvesters ... 28
4 Registering Registries ... 29

4.1 The Schema Namespace and Location ... 29
4.2 The Authority Resource Extension and the Publishing Process....................... 30
4.3 Describing Registries with the Registry Resource Extension........................... 31

4.3.1 The Searching Capability.. 32
4.3.2 The Harvesting Capability .. 34

Appendix A.1 WSDL Document for Search Interface .. 37
Appendix A.2 WSDL Document for the Harvesting Interface.. 43
Appendix A.3 VORegistry: the VOResource Extension Schema for Registering
Registries... 49
Appendix A.4 IVOA Recommended Prefix’s .. 55

 4

1 Introduction

In the Virtual Observatory (VO), registries provide a means for discovering useful
data and services. To make discovery efficient, a registry typically represents to
some extent a centralized warehouse of resource descriptions; however, the
source of this information—the resources themselves and the data providers that
maintain them—are distributed. Furthermore, there need not be a single registry
that serves the entire international VO community. Given the inherent distributed
nature of the information used for resource discovery, there is clearly a need for
common mechanisms for registry communication and interaction.

This document describes the standard interfaces that enable interoperable
registries. These interfaces are based in large part on a Web Service definition
in the form of a WSDL document [WSDLv1.1], which is included in this
specification. Through these interfaces, registry builders have a common way of
sharing resource descriptions with users, applications, and other registries.
Client applications can be built according to this specification and be able to
discover and retrieve descriptions from any compliant registry.

This specification does not preclude a registry builder from providing additional
value-added interfaces and capabilities. In particular, they are free to build
interactive, end-user interfaces in any way that best serves their target
community. In a similar spirit, this specification does not intend to enforce
completely identical behavior of required operations across all compliant
implementations. In particular, this specification does not require that identical
search queries sent to different compliant registries return identical results.
Implementations are free to support different strategies for evaluating an
ambiguous query (such as a keyword search) and ordering the results in a way
that best serves the target community.

1.1 Registry Architecture and Definitions

A registry is first a repository of structured descriptions of resources. In the VO,
a resource is defined by the IVOA Recommendation, “Resource Metadata for
the Virtual Observatory” (RM) [Hanisch 2004]:

A resource is a general term referring to a VO element that can be
described in terms of who curates or maintains it and which can be
given a name and a unique identifier. Just about anything can be a
resource: it can be an abstract idea, such as sky coverage or an
instrumental setup, or it can be fairly concrete, like an organization
or a data collection.

 5

Organizations, data collections, and services can be considered as classes of
resources. The most important type of resource to applications is a service that
actually does something. What is available at a particular resource is described
through the content of metadata, whereas the service metadata describes how to
access it. The RM describes a registry, then, as “a service for which the
response is a structured description of resources” [Hanisch 2004]. Each
resource description it returns is referred to as a resource record.

This specification is based on the general IVOA model for registries [Plante
2003], which builds on the RM model for resources. In the registry model, the
VO environment features different types of registries that serve different
functions. The primary distinction is between publishing registries and
searchable ones. A secondary distinction is full versus local.

A searchable registry is one that allows users and client applications to search
for resource records using selection criteria against the metadata contained in
the records. The purpose of this type of registry is to aggregate descriptions of
many resources distributed across the network. By providing a single place to
locate data and services, applications are saved from having to visit many
different sites to just to determine which ones are relevant to the scientific
problem at hand. A searchable registry gathers its descriptions from across the
network through a process called harvesting.

A publishing registry is one that simply exposes its resource descriptions to the
VO environment in a way that allows those descriptions to be harvested. The
contents of these registries tend to be limited to resources maintained by one or
a few providers and thus are local in nature; for example, a data center will run its
own publishing registry to expose all the resources it maintains to the VO
environment. Since the purpose is simply publishing and not to serve users and
applications directly, it is not necessary to support full searching capabilities. This
simplifies the requirements for a publishing registry: not only does it not need to
support the general search interface, the storage and management of the
records can be simpler. While a searchable registry in practice will necessitate
the use of a database system, a publishing registry can easily store its records as
flat files on disk.

Note that some registries can play both roles; that is, a searchable registry may
also publish its own resource descriptions.

A secondary distinction is full versus local. A full registry is one that attempts to
contain records of all resources known to the VO. In practice, this attribute is
associated only with searchable registries, as in the so-called full searchable
registry. It is expected that there will be several such registries available,
perhaps each run by a major VO project; this not only avoids the single point of
failure, but also allows some specialization to serve the particular needs of the
project that maintains it. A local registry, on the other hand, contains only a

 6

subset of known resources. In practice, all publishing registries are local;
however, we expect that there may be local searchable registries that
specialize in particular types of resources, perhaps oriented toward a scientific
topic.

As mentioned above, harvesting is the mechanism by which a registry can
collect resource records from other registries. This mechanism is used by full
searchable registries to aggregate resource records from many publishing
registries. It can also be used to synchronize two registries to ensure that they
have the same contents. Harvesting, in this specification, is modeled as a “pull”
operation between two registries. The harvester refers to the registry that
wishes to receive records (usually a searchable registry); it sends its request to
the harvestee (usually the publishing registry), which responds with the records.
Harvesting is intended to be a much simpler process than search and retrieval;
nevertheless, there are at least two kinds of filtering that a harvestee needs to
support:

• Filtering by date: this allows the harvester to return to the harvestee
periodically to retrieve only new and updated records.

• Filtering by ownership: harvesting only those records that originated
with the harvestee (as opposed to those that may have been harvested
from other registries) prevents a harvester from receiving duplicate
records from multiple registries.

Other kinds of filtering can be useful as well (such as filtering on resource type).
Note, however, that filtering is not intended to be an equivalent to arbitrary
searching; rather, it is a gross selection that can be easily implemented without
having to process the contents of each record.

1.2 Specification Summary

The purpose of the registry is to be used by other applications to provide access
to various types of resources. At the programmatic level, connectivity between
the registry and other applications is ensured through the registry interface as
defined by this document. Much of the interface is defined as a SOAP-based
Web Service and is described the WSDL documents included in Appendix A.1;
however, the harvesting interface (section 3) is specifically defined by the Open
Archives Initiative standard called the Protocol for Metadata Harvesting (OAI-
PMH) [OAI]. To define the registry interface, this document includes the
following definitions:

⎯ The meaning and behavior of four required searching operations, one
optional search operation, and six required harvesting operations.

⎯ The required input arguments for each operation.
⎯ The XML Schema used to encode response messages.
⎯ The meaning of the output for each operation.

 7

The registry interface is composed of two independent parts. The harvesting
interface provides the mechanism for registries to talk to each other and share
information. The searching interface is used by clients that want to discover
resources to use as part of a VO application. A registry may implement either
interface or both, depending on the roles it intends to play.

The searching interface can return XML descriptions of resources, or resource
records, and it consists of four required operations, described in more detail in
section 2:

• Search returns active resource records that match a specific set of
constraints.

• KeywordSearch returns active resource records containing specified
keywords.

• GetResource returns a single resource records identified by its unique
IVOA identifier.

• GetIdentity returns the resource record describing the searchable registry
itself.

The searching interface also includes an optional, alternative search option
based on XQuery.

The harvesting interface, which allows one registry to collect resource records
from other registries, leverages the OAI-PMH standard [OAI]. Described in more
detail in section 3, the OAI-PMH interface is composed of six operations. The
most commonly used harvesting operation is the ListRecords, which can return
the descriptions of the resources of a particular category, or set, that have been
created or updated since a specified date. Normally the harvester will request
records from the set that originate from that registry (as opposed to those
harvested from another registry). This set is said to be managed by the registry.
The complete list of OAI-PMH harvesting operations is:

 Identify returns the resource record describing the harvestable registry
itself.

 ListIdentifiers lists the identifiers of records that have changed since a
given date

 ListRecords lists the full descriptions of resources that have changed
since a given date.

 GetRecord returns a single record identified by its identifier.
 ListMetadataFormats lists the available output description formats.
 ListSets lists the categories of records that can be requested.

The searching and harvesting operations that return resource descriptions do so
using the VOResource XML Schema and any of its legal extensions
[VOResource].

 8

An IVOA-compliant registry can itself be described in a registry using the
Registry VOResource extension described in section 4. To be considered an
IVOA-compliant searchable registry, the registry must support the search
interface (section 2). An IVOA-compliant publishing registry must support the
harvesting interface (section 3). To be considered an IVOA-compliant registry in
general, the registry must support the search interface or the harvesting interface
or both.

2 Searching

The four required operations that make up the searching interface fall into two
groups: search and resolve. The search operations—Search and
KeywordSearch—return a list of one or more resource descriptions held by the
registry that matches the input selection criteria. The Search operation supports
constraint-based searching for resources by means of a query using the
Astronomical Data Query Language (ADQL) [Appendix A.5], KeywordSearch
provides keyword-based searching for resources whose descriptions contain
words in an input string.

The resolve operations---GetResource and GetIdentity---each return one and
only one resource description. The GetResource resolves a unique IVOA
Identifier [Identifier] to the description of the associated resource. The
GetIdentity returns the resource record of the searchable registry itself.

Note:
It is important to note that search operations do not support resource harvesting described in
section 3. Normally, an end-user would use search to retrieve resource descriptions, but not to
selectively harvest information between registries.

These four operations are defined by the WSDL document given in Appendix
A.1. Searchable registries must implement all four operations.

The searchable interface allows additional, optional search operations.
Currently, this specification defines only one optional operation. XQuerySearch
returns selected information extracted from resource descriptions that match a
set of constraints expressed using the XQuery syntax [XQuery].

These operations are implemented to accept input parameters and return output
results as SOAP messages in compliance with the WSDL document given in
Appendix A.1. Compliant searchable registries must return a copy of the WSDL
document whenever a client invokes the service endpoint URL with the “?wsdl”
argument appended to it. The returned WSDL may contain additional operations
beyond those specified in this section; however, the original searching
operations, their arguments and their outputs must not be altered.

 9

2.1 Required Search Operations

The two search operations—Search and KeywordSearch—return resource
records that match a set of selection criteria.

2.1.1 Output Format

The two search operations share a common output format for the resource
records that match the search criteria. The response is a SOAP message in
compliance with the WSDL document given in Appendix A.1. This message is
defined to have a single part: a SearchResponse element from the
http://www.ivoa.net/wsdl/RegistrySearch/v1.0 namespace. This element in turn
wraps a single VOResources element from the
http://www.ivoa.net/xml/RegistryInterface/v1.0 namespace (from now on referred
to using the “ri:” prefix) that contains each of the matching records and
conforms to the following XML Schema definition:

VOResources and Resource Element Definitions
<xs:element name="VOResources">
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element ref=”ri:Resource”
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="identifier" type="vr:IdentifierURI"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="from" type="xs:positiveInteger"
 use="required" />
 <xs:attribute name="numberReturned" type="xs:positiveInteger"
 use="required" />
 <xs:attribute name="more" type="xs:boolean" use="required" />
 </xs:complexType>
</xs:element>

<xs:element name="Resource" type="vr:Resource"/>

The required ri:VOResources attributes allow the results of the query to be
“paged” over several calls that can be controlled via the operation input
parameters, from and max (see sections 2.1.2 and 2.1.3). They assume that
over some limited amount of time multiple calls to a search operation on a single
registry with the same search constraints returns the same results and in the
same order. If the client does not request paging via the from and max
parameters, the service may choose to return partial results (setting the
appropriate attributes) if the results exceed the service’s own internal limits.

 10

VOResources Attributes
Attribute Definition

Value Type: Integer
Semantic Meaning: the 1-relative position of the first record

returned among the total set of
matched elements.

from

Occurrences: required
Value Type: Integer
Semantic Meaning: the number of records returned in this

response.

numberReturned

Occurrences: required
Value Type: Boolean
Semantic Meaning: If true, additional results are available

beginning with a position of from +
numberReturned. If false, no more
results are available beyond this set.

more

Occurrences: required

If all records matched by the query are returned in a single response, the value of
more must be set to false and from must be set to 1.

The contents of the ri:VOResources element depends on the value of the
operation input parameter, identifiersOnly. If this parameter is set to true, then
the ri:VOResources element must contain a list of identifier elements that
contain the IVOA identifiers of resources that match the input query. If
identifiersOnly is false, then the ri:VOResources element must contain a list
of ri:Resource elements containing the full VOResource descriptions of
resources that matches the query. Each child ri:Resource element is of type
Resource from the VOResource XML Schema (having the namespace,
http://www.ivoa.net/xml/VOResource/v1.0, from now on referred to using the
“vr:” prefix), or a legal extension of the vr:Resource type. If the type of the

Example:
<ri:VOResource from="100" numberReturned="200" more="true"
 xmlns:ri=”http://www.ivoa.net/xml/RegistryInterface/v1.0”
...
</ri:VOResourced>

 11

Resource element is actually an extension of the vr:Resource type, then the
Resource element MUST specify the specific type using an xsi:type attribute
(where the xsi prefix refers to the http://www.w3.org/2001/XMLSchema-instance
namespace) in compliance with the XML Schema standard [Schema].
The search responses must include only active resource records—that is,
records in which the vr:Resource element’s status attribute is set to the
value, “active”. Thus, clients do not have to explicitly in include a search
constraint to avoid deleted or inactive records. (GetResource and
XQuerySearch operations, on the other hand, may return inactive or deleted
resources.)
The search responses must include the xsi:schemaLocation attribute
(regardless of the value of identifiersOnly) in compliance with the XML Schema
standard [Schema] to indicate a URL location for the VOResource schema and
all of the legal extensions of VOResource that are employed in the response.
This xsi:schemaLocation attribute must appear either as an attribute of the
ri:VOResources element or as an attribute of each child ri:Resource
element (when identifiersOnly is false) or both. When xsi:schemaLocation
appears as an attribute of ri:Resource, locations need only be given for the
schemas employed within that resource. The URL location for the VOResource
core schema (http://www.ivoa.net/xml/VOResource/v1.0) must be set to
“http://www.ivoa.net/xml/VOResource/v1.0”. For those legal extensions that are
standard schemas recognized by the IVOA, the location should be set to the
standard location in the IVOA Document repository whose URL begins with
“http://www.ivoa.net/xml/”.

Example: This illustrates the use of xsi:type and xsi:schemaLocation attributes
in the search output results. the xsi:schemaLocation attribute contains pairs of
values where the first value is the schema namespace and the second value is the
URL location of that schema. For IVOA standard schemas, the namespace can be
used as the URL location.

<ri:VOResources
 xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.0"
 xmlns:vg="http://www.ivoa.net/xml/Registry/v1.0"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/SIA/v1.0
 http://www.ivoa.net/xml/SIA/v1.0
 http://www.ivoa.net/xml/Registry/v1.0
 http://www.ivoa.net/xml/Registry/v1.0">

 <ri:Resource xsi:type="vs:CatalogService" status="active" …>
 …
 </ri:Resource>

 <ri:Resource xsi:type="vs:Registry" status="active" …>
 …
 </ri:Resource>
</ri:VOResources>

 12

Example: In this example, the xsi:schemaLocation attribute is attached to each
Resource element.

<ri:VOResources
 xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 xsi:schemaLocation="http://www.ivoa.net/xml/RegistryInterface/v1.0
 http://www.ivoa.net/xml/RegistryInterface/v1.0">

 <ri:Resource xsi:type="vs:CatalogService"
 xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.0"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/VODataService/v1.0
 http://www.ivoa.net/xml/SIA/v1.0
 http://www.ivoa.net/xml/SIA/v1.0"
 status="active" …>
 …
 </ri:Resource>
 <ri:Resource xsi:type="vs:Registry"
 xmlns:vg="http://www.ivoa.net/xml/Registry/v1.0"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/Registry/v1.0
 http://www.ivoa.net/xml/Registry/v1.0"
 status="active" …>
 …
 </ri:Resource>
</ri:VOResources>

If a legal search query does not match any resource records, the
ri:VOResources element must contain no ri:Resource elements. If the
input search query is illegal in its syntax or the operation encounters any other
error that prevents returning the requested records, the operation must return an
ErrorResponse fault, represented by an ErrorResponse element:

An ErrorResponse element must include a human-oriented error message
describing the nature of the error.

ErrorResponse Element Definition
<xs:element name="ErrorResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

 13

2.1.2 Constraint-based Search Query

The Search operation allows clients to retrieve a list of resource descriptions that
match constraints of values corresponding to specific metadata from the
VOResource schema (and its legal extensions). The operation’s input message
is defined to have a single part, a Search element, which contains four child
elements that serve as the four input parameters:

Search Element Definition
<xs:element name="Search">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Where" minOccurs="1" maxOccurs="1" />
 <xs:element name="from" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="max" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="identifiersOnly" type="xs:boolean"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Search Parameter Elements
Element Definition

Value Type: an ADQL/x Where clause
Semantic Meaning: the constraints to use for selecting

matched resource records

Where

Occurrences: required
Value Type: integer
Semantic Meaning: the minimum position in the complete

set of matched records of the range of
records to be returned

from

Occurrences: optional; default: 1
Value Type: integer
Semantic Meaning: the maximum number of matched

records to return. The service may
choose to return fewer.

max

Occurrences: optional; default: the maximum that
the service can deliver

Value Type: boolean
Semantic Meaning: If true, return the results as a list of

identifiers; if false, return as a list of
complete resource descriptions.

identifiersOnly

Occurrences: optional; default: false

 14

The one required parameter, the Where element, is of type whereType from the
ADQL XML Schema [Appendix A.5] (having the namespace,
http://www.ivoa.net/xml/ADQL/v1.0, from now on referred to using the “adql:”
prefix; see Appendix A.1) which contains the constraints that specific
components of the resource metadata must satisfy.

The specific components are named within search constraints (represented by
adql:Condition elements) using adql:Arg elements subject to the following
restrictions:

• The Table attribute, which is required by the ADQL Schema, should be
set to an empty string and must be ignored by the Search method
implementation.

• The Name attribute, which is required by the ADQL Schema, may be set to
an empty string or to a short name to serve as an alias for the resource
metadata referred to. This value must be ignored by the Search method.

• The xpathName attribute must be set to a restricted XPath string, subject
to the rules in section 2.2.1. This XPath string identifies the specific
VOResource element (or legal extension) within the resource record that
is to be constrained.

Example: a Search SOAP request message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>

 <rs:Search xmlns="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"
 xmlns:rs="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"
 xmlns:adql="http://www.ivoa.net/xml/ADQL/v1.0">
 <rs:Where>
 <adql:Condition xsi:type="adql:likePredType">
 <adql:Arg Table="" xsi:type="adql:columnReferenceType"
 name="description"
 xpathName="content/description"/>
 <adql:Pattern xsi:type="adql:atomType">
 <adql:Literal Value="%quasar%" xsi:type="adql:stringType"/>
 </adql:Pattern>
 </adql:Condition>
 </rs:Where>
 <max xmlns="">500</max>
 <identifiersOnly xmlns="">false</identifiersOnly>
 </rs:Search>

 </soapenv:Body>
</soapenv:Envelope>

 15

The Search implementation must implicitly add the constraint that the status
attribute on the ri:Resource element be equal to “active”; deleted and inactive
records, therefore, should not be returned.

Matched resource records are encoded using the VOResource XML Schema
(and its legal extensions) according to the specifications given in the Search
WSDL and described in Section 2, and they should include all information
available to the registry that is compliant with the VOResources definitions.

2.1.2.1 Restrictions on the use of XPath in ADQL

The value of the xpathName attribute in any adql:Arg element used within the
input to the Search method must be a legal XPath [XPath] string that is restricted
in form by the following rules:

• The path points to an element or attribute value within a resource
description encoded with the VOResource schema and/or any of its legal
extensions.

• When the path points to a specific element, that element must be of a
simple type as defined by the XML Schema standard [Schema]

• The path is relative and assumes that the context node is the element that
forms the parent of a single resource description (e.g. a Resource
element) and is of type vr:Resource or one of its legal extensions.

• The path must be composed only of location steps with child axes
expressed using the abbreviated syntax for child elements and attributes:
elements are referred to simply by their name, and attributes are referred
to by their name preceded by an ‘@’ character. Unabbreviated location
steps—i.e., those that require the double colon (‘::’) syntax—are not
allowed. All other types of abbreviated axes, including use of double
slashes (‘//’), single and double periods (‘.’ and ‘..’), and wildcards (‘*’), are
not allowed.

• The path must not include any predicates (i.e., qualifiers expressed using
square brackets, ‘[…]’).

• When “xsi” is used as an attribute prefix, it is implicitly assumed to refer to
the http://www.w3.org/2001/XMLSchema-instance namespace.

Legal Examples:
curation/publisher the resource publisher’s name
curation/publisher/@ivo-id the publisher’s IVOA identifier
@xsi:type the specific type of resource
capability/interface/@xsi:type the specific type of interface

Illegal Examples:

Resource/title wrong context node
content not an element with a simple type
curation/child::publisher “child::” syntax not allowed
curation//@ivo-id “//” syntax not allowed
capability[@xsi-type="vg:Harvest"]/accessURL “[…]” syntax not allowed

 16

This restricted form of XPath is intended to make it straight forward to transform
the ADQL Where clause to a string-based query—namely SQL and XQuery—
through a static mapping from an XPath to an attribute in a local database
without parsing the internal content of the path.

Note:
Because VOResource schema and its legal extensions set elementFormDefault and
attributeFormDefault to both be ‘unqualified’, prefixes are not normally required to
qualify elements and attributes. xsi:type is an exception because it is technically a global
attribute, and attributeFormDefault does not apply; thus, the prefix would be required
in a standard XPath, which is why the last rule is needed. A known exception at this time is the
case of the Space-Time Coordinates schema (STC, http://www.ivoa.net/xml/STC/stc-
v1.30.xsd), which defines many global elements; thus, technically, these elements would
require prefixes, too. This document does not address the problem of querying against these
elements because it specifies no additional rules for understanding the mapping of other
prefixes used in the context of an ADQL query. Because of the complexity of STC, it is not
likely that normal ADQL (or XQuery) queries will be particularly useful. Thus, the problems
of invoking other prefixes within ADQL and generally querying against STC are left to be
solved in a future version of this document.

Note:
It is important to note that search operations do not support resource harvesting described in
section 3. Normally, an end-user would use search to retrieve resource descriptions, but not to
selectively harvest information between registries.

Note:
Because this specification does not provide any rules for understanding the prefixes that might
appear in an XPath used in an ADQL where clause (apart from xsi), it is not obvious how best
to query against the values of xsi:type attributes. Section 3.1.2 strongly recommends that
publishing registries export VOResource records using the prefixes listed in Appendix 4 where
appropriate. This allows a client to be explicit about a desired xsi:type value, as in this
constraint expressed in ADQL/s:

capability/@xsi:type = 'cs:ConeSearch' Select services supporting the ConeSearch
capability.

For when a registry does not follow this recommendation (or a client does not wish to trust that
it does), here are some recommended techniques for matching the xsi:type:

capability/@xsi:type like '%:ConeSearch' Select services supporting the ConeSearch
capability.

@xsi:type like '%:Service' Select generic Service resources only
@xsi:type like '%Service' Select any resource with “Service” in its

name, including “Service,” “DataService”,
and “CatalogService.”

 17

2.1.3 Keyword Search Query

The purpose of the KeywordSearch operation is to provide a simple way to
select resources based on the string values in their resource descriptions. The
operation only queries for active resources noted by status=’active’. The
operation’s input message is defined to have a single part, a KeywordSearch
element, which contains five child elements that serve as the five input
parameters:

KeywordSearch Element Definition
<xs:element name="KeywordSearch">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="keywords" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="orValues" type="xs:boolean"
 minOccurs="0" maxOccurs="1" default="true"/>
 <xs:element name="from" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="max" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="identifiersOnly" type="xs:boolean"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

The meaning of the last three parameters above and their effect on the output is
the same as for the Search operation.

The keywords parameter is a string that consists of one or more words
separated by whitespace characters. The characters that qualify as whitespace
are the same as in XML: space (x20), tab (x9), line feed (xA), and carriage return
(xD). A phrase is a portion of keywords parameter that is enclosed in double
quotation marks (e.g. “black hole”). Words and phrases are extracted from the
keywords parameter as a list of tokens to be used in the search. When a
phrase is extracted from the parameter, the quotation marks are removed.

The KeywordSearch implementation forms a query by, in effect, creating a
search constraint for each word or phrase in this parameter. For each active or
inactive resource record, each word or phrase is compared against every value
for a selected set of resource metadata that includes at minimum the following
(drawn from the VOResource schema):

• identifier: the resource’s IVOA identifier
• content/description: the descriptive summary of the resource
• title: the resource title

 18

• @xsi:type: the specific type of resource specified as an extension of the
Resource type

• content/subject: the subject topics associated with the resource
• content/type: the general type of resource

KeywordSearch Parameter Elements
Element Definition

Value Type: text string
Semantic Meaning: the list of words or phrases to search

for within resource descriptions

keywords

Occurrences: Required
Value Type: Boolean
Semantic Meaning: if true, apply multiple word/phrase

constraints with a logical OR; if false,
apply with a logical AND

orValues

Occurrences: Required
Value Type: Integer
Semantic Meaning: the minimum position in the complete

set of matched records of the range of
records to be returned

from

Occurrences: Optional; default: 1
Value Type: Integer
Semantic Meaning: the maximum number of matched

records to return. The service may
choose to return fewer.

max

Occurrences: optional; default: the maximum that
the service can deliver

Value Type: Boolean
Semantic Meaning: If true, return the results as a list of

identifiers; if false, return as a list of
complete resource descriptions.

identifiersOnly

Occurrences: Optional; default: false

The implementer may include additional metadata values in the comparison as
they choose (which may include non-string values). It is legal to compare the
word with all simple type values in the record. If the word or phrase is contained
within one of the selected set of resource metadata values, the constraint
evaluates as TRUE. It is up to the implementer to decide what it means for a
word to be considered “contained;” for example, the implementation may also
test for related forms of the word. It is also up to the implementer to determine
how to match a phrase—in particular, how to match the separation between
words (e.g. whether spaces are strictly matched). The implementer may further

 19

parse the phrase into words and include comparison constraints on those
individual words.

The results of all of the constraint tests (one for each word) are combined
logically according to the value of orValues: if orValues is TRUE, then the
resource record is returned when any of the constraints are TRUE, and if it
FALSE, then all constraints must be TRUE in order for the record to be returned.

Matched resource records are then encoded using the VOResource XML
Schema (and its legal extensions) and should include all information available to
the registry that complies with the VOResource standard.

Note:
This specification provides wide latitude in how the KeywordSearch is implemented; thus,
different registries may return different results to the same set of input keywords. If precision
and consistency in results is important regardless of which registry is queried, users should
favor the Search or XQuerySearch operations.

2.2 Resolve Operations

The two resolve operations—GetResource and GetIdentity—each select and
return a single resource record.

2.2.1 Output Format

The two resolve operations share a common output format for returning a single
resource record. The response is a SOAP message in compliance with the
WSDL document given in Appendix A.1. This message is defined to have a
single part: a ResolveResponse element from the
http://www.ivoa.net/wsdl/RegistrySearch/v1.0 namespace. This element in turn
wraps an ri:Resource element of type vr:Resource or one of its legal
extensions. As in with the search operations when the type of the ri:Resource
element is actually an extension of the vr:Resource type, then the
ri:Resource element MUST specify the specific type using an xsi:type
attribute.

The Resource element must include a xsi:schemaLocation attribute in
compliance with the XML Schema standard [Schema] to indicate a URL location
for the VOResource schema and all of the legal extensions of VOResource that
are employed in the response. As with the search operation responses, the URL
location for the VOResource core schema
(http://www.ivoa.net/xml/VOResource/v1.0) must be set to
“http://www.ivoa.net/xml/VOResource/v1.0”. For those legal extensions that are
standard schemas recognized by the IVOA, the location should be set to the
standard location in the IVOA Document repository whose URL begins with
“http://www.ivoa.net/xml/”.

 20

2.2.2 Identifier Resolution

The purpose of the GetResource operation is to provide a simple way to resolve
a unique IVOA Identifier to a full resource description. The input message is
defined to have a single part, a GetResource element. This element contains
the operation’s one input parameter, identifier, of type
vr:IdentifierURI, encodes an IVOA identifier. The output message
contains a single VOResource record whose identifier element matches the
input identifier.

If the registry does not have a resource record (or otherwise cannot access one)
with an identifier matching the input parameter, the GetResource operation
should return a NotFound fault message, represented by a NotFound element:

NotFound Element Definition
<xs:element name="NotFound">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Including an error message in the fault response is optional but recommended.

If the operation encounters any error that prevents it from determining whether
the identifier can be resolved to a description or otherwise prevents the delivery
of that description, the operation must return an ErrorResponse fault as
described in section 2.1.1.

2.2.3 Identity Query

The purpose of the GetIdentity operation is to provide a simple way to get the
VOResource record that describes the implementing registry itself. A client may
then inspect this VOResource record to discover various information about the
implemented registry (See section 2.7).

The GetIdentity operation takes no parameters. The result is a single
VOResource record whose format conforms to the format described in section
2.2.1; however, with this operation, the ri: Resource element must include an
xsi:type attribute set to indicate the Registry resource extension type from
the VORegistry extension schema (having the namespace
http://www.ivoa.net/xml/VORegistry/v1.0, from now on referred to using the “vg:”
prefix). The recommended value to express this type is “vg:Registry”. The

 21

VORegistry schema is described in section 4; see Appendix A.3 for the full XML
Schema definition.

2.3 XQuery Search

XQuerySearch is an optional operation of the searching interface that allows
clients to form constraint-based queries with greater control than the required
Search operation. It also allows the client to control the format of the query
output; in particular, the client can obtain only the metadata needed rather than
the full Resource record. The client can determine if a searchable registry
supports this operation by consulting the registry’s resource description (see
Section 4).

The operation’s input message is defined to have a single part, an
XQuerySearch element. This element contains the operation’s one input string
parameter, xquery:

XQuerySearch Element Definition
<xs:element name="XQuerySearch">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="xquery" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

The value of the xquery element is a string that states the query and must
conform to the XQuery syntax [XQuery]. The XPath strings [XPath] used in the
query must be written as if each resource record is stored as a separate
document under a root element called RootResource. The operation
implementation may translate the XPath as necessary to reflect the actual
storage of the records within the registry.

The operation’s output message is also defined to have a single part, an
XQuerySearchResponse element having the following definition:

XQuerySearchResponse Element Definition
<xs:element name="XQuerySearchResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

 22

The specific XML content of the XQuerySearchResponse must comply with the
format requested by the XQuery input query.

If a registry does not support XQuery–based queries, the XQuerySearch
operation must be implemented to always return an UnsupportedOperation
fault message. This message has a single part in the form of an
UnsupportedOperation element:

UnsupportedOperation Element Definition
<xs:element name="UnsupportedOperation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Including an error message in the fault response is optional but recommended.

All other error conditions encountered by the implementation that prevent the
return of the query results should be handled by returning an ErrorResponse
fault as described in section 2.1.1.

3 Harvesting

Harvesting is the mechanism by which a registry can collect resource
descriptions from other registries. This mechanism is used by full searchable
registries to aggregate resource descriptions from many publishing registries. It
can also be used to synchronize two registries to ensure that they have the same
contents. This section defines the IVOA Harvesting Interface. Client
applications that make use of this interface are referred to as harvesters. Those
registries that declare themselves as harvestable (section 4) must comply with
the specification described in this section.

3.1 Harvesting Interface

This specification defines two variants of the harvesting interface, both built on
the standard Protocol for Metadata Harvesting developed by Open Archives
Initiative (OAI-PMH) [OAI]. The first variant is one that is fully compliant with the
OAI-PMH version 2.0 standard; harvestable registries must support this variant.
Compliance with this base standard allows IVOA registries to be accessed by
applications from outside the IVOA community. The second variant, a Web
Service version of the OAI interface (in which the input and outputs are
transported as SOAP messages), is also defined as an optional alternative. In

 23

addition to basic OAI-PMH compliance, this specification defines an additional
set of OAI-PMH-compliant requirements and recommendations that are
described in sections 3.1.1 through 3.1.6 below. These apply to both variants of
the harvesting interface.

3.1.1 A Summary of the OAI Interface

The required variant of the interface is defined by the OAI-PMH v2.0 specification
[OAI], which itself defines:

• the meaning and behavior of the six harvesting operations, referred to as
“verbs”,

• the meaning of the input arguments for each operation, and
• the XML Schema used to encode response messages.

The optional Web Service variant of the interface maps the meaning, behavior,
and schema of the OAI-PMH specification into a Web Service Definition
Language (WSDL) document (see Appendix A.2); this WSDL defines:

• the six “verbs” defined as Web Service operations
• SOAP encoding of the operation input arguments and response

messages, based on the OAI-PMH XML Schema.

In summary, the OAI-PMH standard defines six operations:

Identify: provides a description of the registry
ListIdentifiers: returns a list of identifiers for the resource records held by

the registry.
ListRecords: returns all Resource records in the registry. Registries may

use the set “ivo_managed” to get Resource records managed by
this particular registry.

GetRecord: returns a single resource description matching a given
identifier.

ListMetadataFormats: returns a list of supported formats that the registry
can use to encode resource descriptions upon a harvester’s
request.

ListSets: return a list of category names supported by the registry that
harvesters can request in order to get back a subset of the
descriptions held by the registry.

The ListRecords and GetRecord operations return the actual resource
description records held by the registry. These descriptions are encoded in XML
and wrapped in a general-purpose envelope defined by the OAI-PMH XML
Schema (with the namespace http://www.openarchives.org/OAI/2.0).

 24

Through the operations’ arguments, OAI-PMH provides a number of useful
features:

• Support for multiple return formats. As suggested by the
ListMetadataFormats operation, a harvester can request the formats
available for encoding returned resource descriptions.

• Harvesting by date. The ListIdentifiers and ListRecords operations both
support “from” and “until” date arguments. The “from” argument can be
used to retrieve records that have changed since the last harvest.

• Harvesting by category. The ListIdentifiers and ListRecords operations
both support a “set” argument for retrieving resources that are grouped in
a particular category. Resource records may belong to multiple groups.

• Marking records as deleted. Registries may mark records as deleted so
that harvesters may remove access to them from their applications.
Registries may permanently remove deleted resources that have been
marked deleted for more than six months.

• Support for resumption tokens. If a request results in returning a very
large number of records, the registry can choose to split the results over
several calls; this is done by passing a resumption token back to the
harvester. The harvester uses it to retrieve the next set of matching
results.

• Harvesting with no date. Deleted resource records may not be returned
when no “from” or “until” is specified.

Note:
The Web Service version of the OAI-PMH protocol has been designed to match the behavior
and functionality of the original version as much as possible. One reason for this is to make it
as straightforward as possible to build bridges between implementations of both types and to
build off the existing OAI software.

Note:
It is important to note that the OAI-PMH interface is not intended to be a general search
interface. The filtering capabilities described above are just enough to support intelligent
harvesting between registries. Most end-user applications will use the search interface
described in sections 3 and 4 to retrieve resource descriptions.

The Web Service or SOAP version of OAI-PMH augments the original
specification with a standard Web Service Definition Language (WSDL)
document, which is listed in Appendix A.2. Harvestable registries complying to
the SOAP version of OAI-PMH must emit a copy of the WSDL document, with a
service element appropriate for the local endpoint URL added in, in response to a
call to the Web Service URL with the standard “?wsdl” argument. All six of the
standard operations must be implemented. Additional, non-standard operations
may be added; however, the definition of the six standard operations, along with
the definition of their inputs and outputs, must not be altered. The interface is

 25

recognized as the OAI-PMH standard when the default namespace for the WSDL
matches “http://www.ivoa.net/wsdl/RegistryHarvest/v1.0” exactly.

The subsequent sections below describe how the standard OAI-PMH features
are used to support IVOA-specific functionality.

3.1.2 Metadata Formats for Resource Descriptions

All IVOA registries that support the Harvesting Interface must support two
standard metadata formats: the OAI Dublin Core format (mandated by the base
OAI-PMH standard) and the IVOA VOResource metadata format [VOResource].

The VOResource metadata format will have the metadata prefix name “ivo_vor”
which can be used wherever an OAI-PMH metadata prefix name is supported
(see OAI standard, section 3.4, “metadataPrefix and Metadata Schema”). The
format uses the VOResource core XML Schema with the namespace
http://www.ivoa.net/xml/VOResource/v1.0 (referred hereto with the namespace
prefix “vr”) along with any legal extension of this schema to encode the resource
descriptions within the OAI-PMH metadata tag from the OAI XML Schema
(namespace http://www.openarchives.org/OAI/2.0, hereto referred by the
namespace prefix “oai”). The format is specifically represented by an element
called Resource from the http://www.ivoa.net/xml/RegistryInterface/v1.0
namespace (from now on referred to using the “ri:” prefix) as the sole child of
the oai:metadata element. The ri:Resource element must include an
xsi:type attribute that assigns the element’s type to vr:Resource or one of
its legal extensions.

Note:
If and when the VOResource schema evolves to a new version, this standard must be updated
accordingly. Thus, this definition is locked to particular version of the VOResource, so saying
that a registry is compliant with vX.X of this document implies a specific version of
VOResource.

It is strongly recommended that all QName values of xsi:type attributes within
the VOResource record use namespace prefixes drawn from the recommended
list given in Appendix A.4 when appropriate. When the type is drawn from an
IVOA standard extension schema not listed in A.4, the prefix recommended by
the standard itself should be used. It is also strongly recommended these
prefixes be used for storage in the registry to facilitate easier searching in the
search interface (see Note at the end of section 2.1.2).

The OAI Dublin Core format, with the metadata prefix of “oai_dc”, is defined by
the OAI-PMH base standard and must be supported by all OAI-PMH compliant
registries. This document does not specify how a record in the VOResource
format maps into the OAI Dublin Core format; however, the IVOA Registry

 26

Working Group may recommend such a mapping based on the IVOA Resource
Metadata standard.

Harvestable registries may support other metadata formats. The
ListMetadataFormats must list all names for formats supported by the registry;
this list must include “ivo_vor” and “oai_dc”.

3.1.3 Identifiers in OAI Messages

In accordance with the OAI-PMH standard, an OAI-PMH XML envelope that
contains a resource description must include a globally unique URI that identifies
that resource record. This identifier must be the IVOA identifier used to identify
the resource being described and cited as the value of the vr:identifier
resource metadata.

Note:
This specification does not follow the recommendation of the OAI-PMH standard with regard
to record identifiers. OAI-PMH makes a distinction between the resource record containing
resource metadata and the resource itself; thus, it recommends that the identifier in the OAI
envelope be different from the resource identifier. In particular, the former is the choice of the
publishing registry. This allows one to distinguish resource descriptions of the same resource
from different registries, which in principle could be different.

In the VO, because it is intended that resource descriptions of the same resource from different
registries should not differ (apart from their validationLevel [VOResource]), there is not
a strong need to distinguish between the resource and the resource description. By making the
resource and resource record identifiers the same, it makes it much easier to retrieve the record
for a single resource via GetRecord, regardless of which registry is being queried.
Otherwise—when the registry chooses the record identifier—a client will not a priori know the
record identifier for a particular resource, and so it is left to call ListRecords and search
through the metadata of all the records itself to find the one of interest. In contrast, IVOA
identifiers are intended to be a cross-application way of referring to a resource, and thus when a
client wants only a single specific resource record, it is very likely that it would know the
resource identifier when making a call to the GetRecord operation.

3.1.4 Required Records

This section describes the records that a harvestable IVOA Registry must include
among those it emits via the OAI-PMH operations.

The harvestable registry must return one record that describes the registry itself
as a whole, and the “ivo_vor” format must be supported for this record. This
record is included in the Identify operation response (see section 3.1.5). When
encoded using the “ivo_vor” format, the returned ri:Resource element must be
of the type Registry from the VORegistry schema (namespace
http://www.ivoa.net/xml/VORegistry/v1.0; hereto referred by the “vg” namespace
prefix). The record must include a vg:managedAuthority for every Authority
Identifier [Identifiers] that originated at that registry. The registry may contain

 27

other registry records for other registries it knows about; use of a vr:Resource
extension type other than vg:Registry to describe these other registries is
strongly discouraged.

The harvestable registry must return exactly one record in “ivo_vor” format for
each Authority Identifier listed as a vg:managedAuthority in the
vg:Registry record that describes that registry. When encoded in the
“ivo_vor” format, the type of ri:Resource must be vg:Authority.

3.1.5 The Identify Operation

The Identify operation describes the harvestable registry as a whole. The
response from this operation must include all information required by the OAI-
PMH standard. In particular, it must include an oai:baseURL element that must
refer to the base URL to the harvesting interface endpoint. When the Identify
operation is called through the Web Service variant, the oai:baseURL element
value must be the endpoint of the Web Service itself (i.e. the URL used to
retrieve the WSDL document via the standard URL suffix, “?wsdl”).

The Identify response must include an oai:description element containing
a single Resource element with an xsi:type attribute that sets the element’s
type to vg:Registry. The content of vg:Registry type must be the registry
description of the harvestable registry itself.

3.1.6 IVOA Supported Sets

Sets, as defined in the OAI-PMH standard, “[are] an optional construct for
grouping items for the purpose of selective harvesting” (see the OAI-PMH
standard, section 2.6). Harvestable IVOA registries are free to define any
number of custom sets for categorizing records. The OAI-PMH standard allows
a record to be a member of multiple sets. This specification defines one
reserved set name with a special meaning; future versions of this specification
may define additional set names. These reserved set names will all start with the
characters “ivo_”; implementers should not define their own set names that begin
with this string. While support for sets is optional to be compliant with the OAI-
PMH standard, a harvestable registry must support the set with the reserved
name “ivo_managed” to be compliant with this specification.

The “ivo_managed” set refers to all records that originate from the queried
registry. That is, those records that were harvested from other registries are
excluded. The IVOA Resource identifiers given in the records must have an
Authority Identifier that matches on one of the vg:managedAuthority values
in the vg:Registry record for that registry. Full searchable registries may use
this set to avoid getting duplicate records when harvesting from many registries.

 28

All sets that are supported by the harvestable registry, including the one required
set, must be listed in the response to the ListSets operation in compliance with
the OAI-PMH standard.

3.2 Harvesters

A registry that collects resource descriptions from other registries through the
Harvesting Interface defined above in section 3.1 is referred to as a harvester.
A full registry attempts to establish a complete collection of all resource
descriptions known to the VO either by replicating the contents of another full
registry, or—more commonly—by selectively harvesting from all known
publishing registries. Typically in the latter case, the harvester periodically
engages the ListRecords operation of each know publishing registry with the
metadataPrefix parameter set to “ivo_vor”, the set parameter set to
“ivo_managed”, and the from parameter set to the time of the last successful
harvest for that publishing registry.

Any registry that claims to be a full registry (see vg:full metadata defined in
Section 4) must accept all records it harvests that are compliant with the
VOResource metadata standard [VOResource], even if the resource type is not
one that is recognized by the registry. Whenever any registry (full or not) exports
a harvested record—through either the searching or the harvesting interface—it
must return the complete record in its original format. The only change in the
informational content allowed between harvesting and subsequent export is in
the addition or removal of vr:validationLevel elements; more specifically,
the registry may remove any or all of the vr:validationLevel elements in the
record received via harvesting, and it may add vr:validationLevel elements
in compliance with VOResource metadata standard and with a validatedBy
attribute set to the registry’s IVOA Identifier.

Note:
It is not intended that “original format” to mean a byte-for-byte copy; rather, it means that the
descriptions are equivalent (apart from the vr:validationLevel elements) in an XML sense after
discarding all ignorable whitespace.

Note:
The vr:validationLevel element provides a mechanism for a registry to rate the quality of a
resource description and it’s adherence to relevant standards. Its usage is covered in the
VOResource standard [VOResource].

In the case of registry replication, the harvester can harvest from just the registry
it is trying to replicate; the ListRecords operation can be used in much the same
way except that the set parameter is not provided in order to get all records from
that registry.

 29

Note:
This document does not specify how a registry obtains the complete list of publishing registries,
nor does it specify how a new publishing registry should make itself known to harvesters as
both these issues are considered outside the scope of this specification.

As of this writing, the IVOA Registry Working Group has established a mechanism for
discovering publishing registries in the form of a so-called, “Registry of Registries” [RofR].
Hosted by IVOA, it provides a browser-based interface for registering a publishing registry.
The RofR implements the harvesting interface; thus harvesters can regularly consult this
registry via OAI-PMH to retrieve the vg:Registry records of available harvestees.

Harvesters can determine how to harvest from a registry by consulting its
VOResource description. Section 4 describes the VOResource extension used
to describe a registry and the interfaces it supports along with an example.

4 Registering Registries

This specification defines a VOResource extension schema called VORegistry
that can be used to specifically describe a registry and its support for the registry
interface described in this document. These descriptions can be stored as
resource records in registries. The schema is also used to register a naming
authority—a publisher who claims ownership of an authority identifier from which
IVOA identifiers may be created [Identifiers]. A publishing registry is said to
exclusively manage a naming authority on behalf of the owning publisher; this
means that only that registry may publish records with IVOA identifiers using that
authority identifier.

The full VORegistry syntax definition expressed in XML Schema is listed in
Appendix A.3.

4.1 The Schema Namespace and Location

The VORegistry schema namespace is "http://www.ivoa.net/xml/VORegistry/v1.0".
As with the core VOResource Schema, the namespace URI has been chosen to
allow it to be resolved as a URL to the XML Schema document that defines the
VORegistry schema. Applications may assume that the namespace URI is so
resolvable. In particular, it is recommended the namespace URI be given as the
location for the VORegistry schema within the xsi:schemaLocation attribute.

The namespace prefix, vg, is used by convention to represent the VORegistry
schema. Registries and other applications are encouraged to follow this
convention.

 30

4.2 The Authority Resource Extension and the Publishing
Process

The vg:Authority type extends the core vr:Resource type to specifically
describe the ownership of an authority identifier [Identifiers] by a publishing
organisation.

vg:Authority Type Schema Definition
<xs:complexType name="Authority">
 <xs:complexContent>
 <xs:extension base="vr:Resource">
 <xs:sequence>
 <xs:element name="managingOrg" type="vr:ResourceName"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The IVOA identifier of a vg:Authority record provided via the
vr:identifier element must have an empty resource key component
[Identifiers]. The authority identifier component of the record’s identifier is the
one that is the subject of the record itself.

The vg:Authority type adds only one required item beyond the core
VOResource metadata:

vg:Registry Extension Elements
Element Definition

Value Type: string with optional ID attribute:
vr:ResourceName

Semantic Meaning: the organisation that owns or manages
this authority identifier

Occurrences: required

managingOrg

Comments: This is almost always the organisation
listed as the publisher of this Authority.

The meaning of a vg:Authority record is that the organisation referenced in
the vg:managingOrg element has the sole right to create (in collaboration with
a publishing registry) and register resource descriptions using the authority
identifier given by the vr:identifier element.

Before a publisher can create resource descriptions using a new authority
identifier, it must first register its claim to the authority identifier by creating a
vg:Authority record. Before the publishing registry commits the record for
export, it must first search a full registry to determine if a vg:Authority with

 31

this identifier already exists; if it does, the publishing of the new vg:Authority
record must fail. When a registry creates a vg:Authority record, it is said that
the registry manages the associated authority identifier (on behalf of the owning
publisher) because only that registry may create records with identifiers using
that authority identifier.

4.3 Describing Registries with the Registry Resource Extension

The vg:Registry type extends the core vr:Service type to specifically
describe registries that are compliant with this standard.

vg:Registry Type Schema Definition
<xs:complexType name="Registry">
 <xs:complexContent>
 <xs:extension base="vr:Service">
 <xs:sequence>
 <xs:element name="full" type="xs:boolean"/>
 <xs:element name="managedAuthority" type="vr:AuthorityID"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

vg:Registry Extension Metadata Elements
Element Definition

Value Type: boolean
Semantic Meaning: If true, this registry attempts to collect

all resource records known to the
IVOA

Full

Occurrences: required
Value Type: an authority identifier:

vr:AuthorityID
Semantic Meaning: an authority identifier that is managed

by the registry

managedAuthority

Occurrences: optional; multiple occurrences
allowed

If the vg:full element is set to true, the registry is obligated to accept all valid
resource records it harvests from other registries in accordance with Section 4 of
this specification.

The vg:managedAuthority element applies specifically to registries in their
role as publishers of records. When a publishing registry claims to manage an

 32

authority identifier [Identifiers], it has created a vg:Authority resource record
for that authority identifier (see section 4.2).

As a subclass of vr:Service, the vg:Registry type uses vr:capability
elements to describe its support for the interfaces described in this specification.
In particular, the VORegistry schema defines two extensions of the
VOResource’s vr:Capability type—one to describe the support for the
searching interface and one to describe the harvesting interface—according to
the recommendations for extension in the VOResource standard [VOResource,
section 2.3.2]. Both extension types extension types extend from an
intermediate restriction on vr:Capability called vg:RegCapRestriction to
force the value of the standardID attribute to be “ivo://ivoa.net/std/Registry”:

vg:RegCapRestriction Type Schema Definition
<xs:complexType name="RegCapRestriction" abstract="true">
 <xs:complexContent>
 <xs:restriction base="vg:Capability">
 <xs:sequence>
 <xs:element name="validationLevel" type="vr:Validation"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="description" type="xs:token"
 minOccurs="0"/>
 <xs:element name="interface" type="vr:Interface"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="standardID" type="vr:IdentifierURI"
 use="required"
 fixed="ivo://ivoa.net/std/Registry"/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

As an abstract type, the vg:RegCapRestriction type cannot be used directly
on its own within a resource description; one of the non-abstract extensions of
this intermediate type must be used instead.

The vr:Capability extension types are invoked by applying the xsi:type
attribute to the vr:capability element [VOResource, section 2.2.2]. If a
registry supports both the searching and harvesting interfaces, the
vg:Registry record should contain at least two vr:capability elements,
one for each interface.

4.3.1 The Searching Capability

A registry declares itself to be a searchable registry by including a
vr:capability element with an xsi:type attribute set to vg:Search.

 33

vg:Search Type Schema Definition
<xs:complexType name="Search">
 <xs:complexContent>
 <xs:extension base="vg:RegCapRestriction">
 <xs:sequence>
 <xs:element name="maxRecords" type="xs:int"/>
 <xs:element name="extensionSearchSupport"
 type="vg:ExtensionSearchSupport">
 <xs:element name="optionalProtocol"
 type="vg:OptionalProtocol"
 minOccurs="0" maxOccurs="unbounded">
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

vg:Search Capability Metadata Elements
Element Definition

Value Type: integer: xsd:int
Semantic
Meaning:

The largest number of records that
the registry search method will
return. A value of zero or less
indicates that there is no explicit
limit.

maxRecords

Occurrences: required
Value Type: String with controlled vocabulary
Semantic
Meaning:

the level of support provided for
searching against metadata defined
in a legal VOResource extension
schema.

Occurrences: required

extensionSearchSupport

Allowed
Values:

core Only searches against
the core VOResource
metadata are
supported.

partial Searches against
some VOResource
extension metadata
are supported but not
necessarily all that
exist in the registry.

full Searches against all
VOResource
extension metadata
contained in the
registry are supported.

 34

vg:Search Capability Metadata Elements (con’t)
Element Definition

Value Type: string with controlled vocabulary
Semantic
Meaning:

the name of an optional advanced
search protocol supported.

Occurrences: optional

optionalProtocol

Allowed
Values:

XQuery the XQuery protocol as
defined in section 2.3

A vr:capability element of type vg:Search must include at least one
vr:interface element with an xsi:type attribute set to vg:WebService
and the role attribute set to “std”. If the vr:capability element is used to
simultaneously describe support for other versions of this Registry Interface
standard, then the vr:interface element describing support for this version
must include the version attribute set to “1.0”. The vr:accessURL element
must be set to the endpoint URL for the Web Service interface that complies with
section 2 of this specification.

Note:
The requirement that a vg:WebService interface appear within a vg:Registry record not
enforced by the XML Schema document. This requirement necessitates additional validation as
described in the preface to the VOResource standard.

4.3.2 The Harvesting Capability

A registry declares itself to be a harvestable registry by including a
vr:capability element with an xsi:type attribute set to vg:Harvest.

vg:Harvest Type Schema Definition
<xs:complexType name="Harvest">
 <xs:complexContent>
 <xs:extension base="vg:RegCapRestriction">
 <xs:sequence>
 <xs:element name="maxRecords" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

 35

vg:Harvest Capability Metadata Elements
Element Definition

Value Type: integer: xsd:int
Semantic Meaning: The largest number of records

returned. A value greater than one
implies that an OAI continuation token
will be provided when the limit is
reached. A value of zero or less
indicates that there is no explicit limit
and thus, continuation tokens are not
supported.

maxRecords

Occurrences: Required

The VORegistry schema defines two special extensions of the vr:Interface
type that are used to indicate support for the OAI-PMH interface:

vr:Interface Extension Types for OAI-PMH: Schema Definition
<xs:complexType name="OAIHTTP">
 <xs:complexContent>
 <xs:extension base="vr:Interface">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="OAISOAP">
 <xs:complexContent>
 <xs:extension base="vr:WebService">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

A vr:capability element of type vg:Harvest must include at least one
vr:interface element with an xsi:type attribute set to vg:OAIHTTP and
the role attribute set to “std”. If the vr:capability element is used to
simultaneously describe support for other versions of this Registry Interface
standard, then the vr:interface element describing support for this version
must include the version attribute set to “1.0”. The vr:accessURL element
must be set to the base URL for the OAI-PMH interface that complies with
section 3 of this specification.

If the SOAP web service variant of OAI-PMH is supported, the record should
include an additional vr:interface element with its type set to vg:OAISOAP
and the role attribute set to “std:SOAP”. If other versions of the SOAP
harvesting interface are described in this same URL, the version attribute for
OAI-SOAP interface must b set to “1.0”.

 36

Registry Sample Instance Document
<ri:Resource xsi:type="vg:Registry" xmlns=""
 xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
 xmlns:vg="http://www.ivoa.net/xml/VORegistry/v1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VOResource/v1.0
 http://www.ivoa.net/xml/VORegistry/v1.0
 http://www.ivoa.net/xml/VORegistry/v1.0
 http://www.ivoa.net/xml/RegistryInterface/v1.0
 http://www.ivoa.net/xml/RegistryInterface/v1.0">
 <title>IVOA Registry of Registries sample entry</title>
 <shortName>RofR</shortName>
 <identifier>ivo://ivoa/registry</identifier>
 <curation>
 <publisher>
 IVOA
 </publisher>
 <creator>
 <name>Ray Plante</name>
 </creator>
 <date>2006-08-08</date>
 <contact>
 <name>Ray Plante</name>
 <email>rplante@ncsa.uiuc.edu</email>
 </contact>
 </curation>
 <content>
 <subject>registry repositories</subject>
 <description>
 This registry provides information regarding other registries.
 </description>
 <referenceURL>http://www.ivoa.net</referenceURL>
 <type>Registry</type>
 <contentLevel>Research</contentLevel>
 </content>
 <capability xsi:type="vg:Harvest"
 standardID="ivo://ivoa.net/std/Registry">
 <interface xsi:type="vg:OAIHTTPGet" role="std">
 <accessURL>
 http://www.ivoa.net/cgi-bin/rofr/oai.pl
 </accessURL>
 </interface>
 <interface xsi:type="vg:OAISOAP" role="std">
 <accessURL>
 http://www.ivoa.net/rofr/RegistryHarvest
 </accessURL>
 </interface>
 <maxRecords>100</maxRecords>
 </capability>

 <capability xsi:type="vg:Search"
 standardID="ivo://ivoa.net/std/Registry">

 <interface xsi:type="vr:WebService" role="std">

 37

 <accessURL>
 http://nvo.ncsa.uiuc.edu/cgi-bin/nvo/search.pl
 </accessURL>
 </interface>
 <optionalProtocol>XQuery</optionalProtocol>
 <maxRecords>0</maxRecords>
 </capability>

 <full>false</full>
 <managedAuthority>ivoa</managedAuthority>
 <managedAuthority>ivoa.net</managedAuthority>
</ri:Resource>

Appendix A.1 WSDL Document for Search Interface

Both WSDL documents for the search and harvest interfaces import the Registry
Interface schema that contains some common definitions; see the schema listing
after the WSDL listing below.

RegistrySearch Interface WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="IVOARegistrySearch"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:adql="http://www.ivoa.net/xml/ADQL/v1.0"
 xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 xmlns:tns="http://www.ivoa.net/wsdl/RegistrySearch/v1.0
 targetNamespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0">
 <types>
 <xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"
 targetNamespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0">

 <xs:import namespace="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 schemaLocation="http://www.ivoa.net/xml/RegistryInterface/v1.0"/>
 <xs:import namespace="http://www.ivoa.net/xml/ADQL/v1.0"
 schemaLocation="http://www.ivoa.net/xml/ADQL/v1.0" />

 <xs:element name="Where" type="adql:whereType" />

 <xs:element name="Search">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Where" minOccurs="1" maxOccurs="1" />
 <xs:element name="from" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="max" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="identifiersOnly" type="xs:boolean"
 minOccurs="0" maxOccurs="1" />

 38

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="SearchResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ri:VOResources" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetResource">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="identifier" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ResolveResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ri:Resource"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetIdentity" />

 <xs:element name="XQuerySearch">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="xquery" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="XQuerySearchResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="KeywordSearch">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="keywords" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="orValues" type="xs:boolean"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="from" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="max" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="identifiersOnly" type="xs:boolean"
 minOccurs="0" maxOccurs="1" />

 39

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ErrorResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="UnsupportedOperation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="NotFound">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:schema>
 </types>

 <message name="empty"/>

 <message name="ErrorResp">
 <part name="ErrorResp" element="tns:ErrorResponse"/>
 </message>

 <message name="SearchReq">
 <part name="Search" element="tns:Search" />
 </message>

 <message name="SearchResp">
 <part name="VOResources" element="tns:SearchResponse" />
 </message>

 <message name="GetResourceReq">
 <part name="GetResource" element="tns:GetResource" />
 </message>

 <message name="GetIdentityReq">
 <part name="GetIdentity" element="tns:GetIdentity" />
 </message>

 <message name="KeywordSearchReq">
 <part name="KeywordSearch" element="tns:KeywordSearch" />
 </message>

 <message name="XQuerySearchReq">
 <part name="XQuerySearch" element="tns:XQuerySearch" />

 40

 </message>

 <message name="XQuerySearchResp">
 <part name="XQuerySearchResp" element="tns:XQuerySearchResponse" />
 </message>

 <message name="OpUnsupportedResp">
 <part name="OpUnsupportedResp" element="tns:UnsupportedOperation"/>
 </message>

 <message name="NotFoundResp">
 <part name="NotFoundResp" element="tns:NotFound"/>
 </message>

 <message name="ResolveResp">
 <part name="Resource" element="tns:ResolveResponse" />
 </message>

 <portType name="RegistrySearchPortType">
 <operation name="Search">
 <input message="tns:SearchReq" />
 <output message="tns:SearchResp" />
 <fault name="SearchError" message="tns:ErrorResp"/>
 </operation>
 <operation name="KeywordSearch">
 <input message="tns:KeywordSearchReq" />
 <output message="tns:SearchResp" />
 <fault name="KeywordSearchError" message="tns:ErrorResp"/>
 </operation>

 <operation name="GetResource">
 <input message="tns:GetResourceReq" />
 <output message="tns:ResolveResp" />
 <fault name="GetResourceError" message="tns:ErrorResp"/>
 <fault name="NotFound" message="tns:NotFoundResp"/>
 </operation>

 <operation name="GetIdentity">
 <input message="tns:GetIdentityReq" />
 <output message="tns:ResolveResp" />
 <fault name="GetIdentityError" message="tns:ErrorResp"/>
 </operation>

 <operation name="XQuerySearch">
 <input message="tns:XQuerySearchReq" />
 <output message="tns:XQuerySearchResp" />
 <fault name="XQuerySearchError" message="tns:ErrorResp"/>
 <fault name="OpUnsupported" message="tns:OpUnsupportedResp"/>
 </operation>
 </portType>

 <binding name="RegistrySearchSOAP" type="tns:RegistrySearchPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Search">
 <soap:operation style="document"
 soapAction="http://www.ivoa.net/wsdl/RegistrySearch/v1.0#Search"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </input>

 41

 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0" />
 </output>
 <fault name="SearchError">
 <soap:fault name="SearchError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 </operation>

 <operation name="KeywordSearch">
 <soap:operation style="document"
 soapAction=
 "http://www.ivoa.net/wsdl/RegistrySearch/v1.0#KeywordSearch"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </output>
 <fault name="KeywordSearchError">
 <soap:fault name="KeywordSearchError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 </operation>

 <operation name="GetResource">
 <soap:operation style="document"
 soapAction=
 "http://www.ivoa.net/wsdl/RegistrySearch/v1.0#GetResource" />
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </output>
 <fault name="GetResourceError">
 <soap:fault name="GetResourceError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 <fault name="NotFound">
 <soap:fault name="NotFound" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 </operation>

 <operation name="GetIdentity">
 <soap:operation style="document"
 soapAction=
 "http://www.ivoa.net/wsdl/RegistrySearch/v1.0#GetIdentity" />
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </output>

 42

 <fault name="GetIdentityError">
 <soap:fault name="GetIdentityError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 </operation>

 <operation name="XQuerySearch">
 <soap:operation style="document"
 soapAction=
 "http://www.ivoa.net/wsdl/RegistrySearch/v1.0#XQuerySearch"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0" />
 </output>
 <fault name="XQuerySearchError">
 <soap:fault name="XQuerySearchError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 <fault name="OpUnsupported">
 <soap:fault name="OpUnsupported" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistrySearch/v1.0"/>
 </fault>
 </operation>

 </binding>
</definitions>

RegistryInterface Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.ivoa.net/xml/RegistryInterface/v1.0"
 xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
 elementFormDefault="qualified"
 version="1.0"

 <xs:import namespace="http://www.ivoa.net/xml/VOResource/v1.0"
 schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0"/>

 <xs:element name="VOResources">
 <xs:annotation>
 <xs:documentation>
 a container for one or more resource descriptions or
 identifier references to resources.
 </xs:documentation>
 <xs:documentation>
 This is used to transmitting multiple resource descriptions
 resulting from a query.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType>

 43

 <xs:sequence>
 <xs:choice>
 <xs:element ref="ri:Resource"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="identifier" type="vr:IdentifierURI"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="from" type="xs:positiveInteger" use="required" />
 <xs:attribute name="numberReturned" type="xs:positiveInteger"
 use="required" />
 <xs:attribute name="more" type="xs:boolean" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Resource" type="vr:Resource">
 <xs:annotation>
 <xs:documentation>
 a description of a single resource
 </xs:documentation>
 </xs:annotation>
 </xs:element>

</xs:schema>

Appendix A.2 WSDL Document for the Harvesting
Interface

The RegistryHarvest interface includes the RegistryInterface schema which is
defined by the listing given in Appendix A.1.

RegistryHarvest Interface WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="OAI-PMH"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:oai="http://www.openarchives.org/OAI/2.0/"
 xmlns:tns="http://www.ivoa.net/wsdl/RegistryHarvest/v1.0
 targetNamespace="http://www.ivoa.net/wsdl/RegistryHarvest/v1.0"

 <types>
 <xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.ivoa.net/wsdl/RegistryHarvest/v1.0"
 targetNamespace="http://www.ivoa.net/wsdl/RegistryHarvest/v1.0">

 <xs:import namespace="http://www.openarchives.org/OAI/2.0/"
 schemaLocation="OAI.xsd"/>

 <xs:element name="resumptionToken" type="xs:string"/>

 44

 <xs:element name="Identify" />

 <xs:element name="IdentifyResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ErrorResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListMetadataFormats">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="identifier" type="xs:anyURI"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListMetadataFormatsResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListSets">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:resumptionToken" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListSetsResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetRecord">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="identifier" type="xs:anyURI" />
 <xs:element name="metadataPrefix" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetRecordResponse">
 <xs:complexType>

 45

 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListIdentifiers">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="tns_schema:exclusiveArgs"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListIdentifiersResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListRecords">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="tns_schema:exclusiveArgs"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ListRecordsResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="oai:OAI-PMH"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:group name="exclusiveArgs">
 <xs:choice>
 <xs:element ref="tns_schema:resumptionToken"/>
 <xs:sequence>
 <xs:element name="from" type="oai:UTCdatetimeType"
 minOccurs="0"/>
 <xs:element name="until" type="oai:UTCdatetimeType"
 minOccurs="0"/>
 <xs:element name="set" type="oai:setSpecType" minOccurs="0"/>
 <xs:element name="metadataPrefix"
 type="oai:metadataPrefixType"/>
 </xs:sequence>
 </xs:choice>
 </xs:group>
 </xs:schema>
 </types>

 <message name="ErrorResp">
 <part name="ErrorResp" element="tns:ErrorResponse"/>
 </message>

 <message name="IdentifyResp">
 <part name="IdentifyResponse" element="tns:IdentifyResponse"/>
 </message>

 46

 <message name="ListMetadataFormatsResp">
 <part name="ListMetadataFormatsResponse"
 element="tns:ListMetadataFormatsResponse"/>
 </message>

 <!-- ListSets verb -->
 <!-- the ListSets operations take no inputs -->

 <message name="ListSetsResp">
 <part name="ListSetsResponse" element="tns:ListSetsResponse"/>
 </message>

 <message name="ListIdentifiersResp">
 <part name="ListIdentifiersResponse"
 element="tns:ListIdentifiersResponse"/>
 </message>

 <!-- GetRecord verb -->
 <message name="GetRecordReq">
 <part name="GetRecord" element="tns:GetRecord" />
 </message>

 <message name="GetRecordResp">
 <part name="GetRecordResponse" element="tns:GetRecordResponse"/>
 </message>

 <!-- ListIdentifiers verb -->
 <message name="ListIdentifiersReq">
 <part name="ListIdentifiers" element="tns:ListIdentifiers" />
 </message>

 <!-- ListRecords verb -->
 <message name="ListRecordsReq">
 <part name="ListRecords" element="tns:ListRecords" />
 </message>

 <message name="ListRecordsResp">
 <part name="ListRecordsResponse" element="tns:ListRecords"/>
 </message>

 <message name="ListSetsReq">
 <part name="ListSets" element="tns:ListSets" />
 </message>

 <message name="IdentifyReq">
 <part name="ListSets" element="tns:Identify" />
 </message>

 <message name="ListMetadataFormatsReq">
 <part name="ListMetadataFormats" element="tns:ListMetadataFormats" />
 </message>

 <portType name="RegistryHarvestPortType">

 <!-- Identify verb -->
 <operation name="Identify">
 <input message="tns:IdentifyReq"/>
 <output message="tns:IdentifyResp"/>
 <fault name="IdentifyError" message="tns:ErrorResp"/>
 </operation>

 47

 <!-- ListMetadataFormats verb -->
 <operation name="ListMetadataFormats">
 <input message="tns:ListMetadataFormatsReq"/>
 <output message="tns:ListMetadataFormatsResp"/>
 <fault name="ListMetadataFormatsError" message="tns:ErrorResp"/>
 </operation>

 <!-- ListSets verb (with resume version) -->
 <operation name="ListSets">
 <input message="tns:ListSetsReq"/>
 <output message="tns:ListSetsResp"/>
 <fault name="ListSetsError" message="tns:ErrorResp"/>
 </operation>

 <!-- GetRecord verb -->
 <operation name="GetRecord">
 <input message="tns:GetRecordReq"/>
 <output message="tns:GetRecordResp"/>
 <fault name="GetRecordError" message="tns:ErrorResp"/>
 </operation>

 <!-- ListIdentifiers verb (with resume version) -->
 <operation name="ListIdentifiers">
 <input message="tns:ListIdentifiersReq"/>
 <output message="tns:ListIdentifiersResp"/>
 <fault name="ListIdentifiersError" message="tns:ErrorResp"/>
 </operation>

 <!-- ListRecords verb (with resume version) -->
 <operation name="ListRecords">
 <input message="tns:ListRecordsReq"/>
 <output message="tns:ListRecordsResp"/>
 <fault name="ListRecordsError" message="tns:ErrorResp"/>
 </operation>

 </portType>

 <binding name="RegistryHarvestSOAP" type="tns:RegistryHarvestPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <!-- Identify verb -->
 <operation name="Identify">
 <soap:operation
 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#Identify"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </output>
 <fault name="IdentifyError">
 <soap:fault name="IdentifyError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 <!-- ListMetadataFormats verb -->
 <operation name="ListMetadataFormats">
 <soap:operation

 48

 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#ListMetadataFormats"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </output>
 <fault name="ListMetadataFormatsError">
 <soap:fault name="ListMetadataFormatsError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 <!-- ListSets verb (with resume version) -->
 <operation name="ListSets">
 <soap:operation
 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#ListSets"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </output>
 <fault name="ListSetsError">
 <soap:fault name="ListSetsError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 <!-- GetRecord verb -->
 <operation name="GetRecord">
 <soap:operation
 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#GetRecord"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </output>
 <fault name="GetRecordError">
 <soap:fault name="GetRecordError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 <!-- ListIdentifiers verb (with resume version) -->
 <operation name="ListIdentifiers">
 <soap:operation
 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#ListIdentifiers"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>

 49

 </output>
 <fault name="ListIdentifiersError">
 <soap:fault name="ListIdentifiersError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 <!-- ListRecords verb (with resume version) -->
 <operation name="ListRecords">
 <soap:operation
 soapAction="http://www.ivoa.net/wsdl/RegistryInterface#ListRecords"/>
 <input>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </output>
 <fault name="ListRecordsError">
 <soap:fault name="ListRecordsError" use="literal"
 namespace="http://www.ivoa.net/wsdl/RegistryInterface"/>
 </fault>
 </operation>

 </binding>
</definitions>

Appendix A.3 VORegistry: the VOResource Extension
Schema for Registering Registries

VORegistry Extension Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.ivoa.net/xml/VORegistry/v1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
 xmlns:vg="http://www.ivoa.net/xml/VORegistry/v1.0"
 xmlns:vm="http://www.ivoa.net/xml/VOMetadata/v0.1"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0">

 <xs:import namespace="http://www.ivoa.net/xml/VOResource/v1.0"
 schemaLocation="http://www.ivoa.net/xml/VOResource/v1.0"/>

 <xs:complexType name="Registry">
 <xs:annotation>
 <xs:documentation>
 a service that provides access to descriptions of resources.
 </xs:documentation>
 <xs:documentation>
 A registry is considered a publishing registry if it
 contains a capability element with xsi:type="vg:Harvest".

 50

 It is considered a searchable registry if it contains a
 capability element with xsi:type="vg:Search".
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="vr:Service">
 <xs:sequence>
 <xs:element name="full" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>
 If true, this registry attempts to collect all
 resource records known to the IVOA.
 </xs:documentation>
 <xs:documentation>
 A registry typically collects everything by
 harvesting from all registries listed in the
 IVOA Registry of Registries.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="managedAuthority"
 type="vr:AuthorityID"
 minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 an authority identifier managed by the registry.
 </xs:documentation>
 <xs:documentation>
 Typically, this means the AuthorityIDs that
 originated (i.e. were first published by) this
 registry. Currently, only one registry can lay
 claim to an AuthorityID via this element at a
 time.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="RegCapRestriction" abstract="true">
 <xs:annotation>
 <xs:documentation>
 an abstract capability that fixes the standardID to the
 IVOA ID for the Registry standard.
 </xs:documentation>
 <xs:documentation>
 See vr:Capability for documentation on inherited children.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="vr:Capability">
 <xs:sequence>

 51

 <xs:element name="validationLevel" type="vr:Validation"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="description" type="xs:token"
 minOccurs="0"/>
 <xs:element name="interface" type="vr:Interface"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="standardID" type="vr:IdentifierURI"
 use="required"
 fixed="ivo://ivoa.net/std/Registry"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Harvest">
 <xs:annotation>
 <xs:documentation>
 The capabilities of the Registry Harvest implementation.
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="vg:RegCapRestriction">
 <xs:sequence>

 <xs:element name="maxRecords" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 The largest number of records that the registry
 search method will return. A value greater
 than one implies that an OAI continuation token
 will be provided when the limit is reached. A
 value of zero or less indicates that there is
 no explicit limit and thus, continuation tokens
 are not supported.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Search">
 <xs:annotation>
 <xs:documentation>
 The capabilities of the Registry Search implementation.
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="vg:RegCapRestriction">
 <xs:sequence>

 <xs:element name="maxRecords" type="xs:int">

 52

 <xs:annotation>
 <xs:documentation>
 The largest number of records that the registry
 search method will return. A value of zero or
 less indicates that there is no explicit limit.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="extensionSearchSupport"
 type="vg:ExtensionSearchSupport">
 <xs:annotation>
 <xs:documentation>
 the level of support provided for searching
 against metadata defined in a legal VOResource
 extension schema.
 </xs:documentation>
 <xs:documentation>
 A legal VOResource extension schema is one that
 imports and extends the VOResource core schema
 in compliance with the VOResource standard.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="optionalProtocol"
 type="vg:OptionalProtocol"
 minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 the name of an optional advanced search
 protocol supported.
 </xs:documentation>
 <xs:documentation>
 Only one optional protocol is currently allowed
 (XQuery). It is assumed that the required
 protocols (simple keyword search and ADQL) are
 supported.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="ExtensionSearchSupport">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="core">
 <xs:annotation>
 <xs:documentation>
 Only searches against the core VOResource metadata are
 supported.
 </xs:documentation>
 </xs:annotation>

 53

 </xs:enumeration>
 <xs:enumeration value="partial">
 <xs:annotation>
 <xs:documentation>
 Searches against some VOResource extension metadata
 are supported but not necessarily all that exist in
 the registry.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="full">
 <xs:annotation>
 <xs:documentation>
 Searches against all VOResource extension metadata
 contained in the registry are supported.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="OptionalProtocol">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="XQuery">
 <xs:annotation>
 <xs:documentation>
 the XQuery (http://www.w3.org/TR/xquery/) protocol as
 defined in the VO Registry Interface standard.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="OAIHTTP">
 <xs:annotation>
 <xs:documentation>
 a description of the standard OAI PMH interface using HTTP
 (GET or POST) queries.
 </xs:documentation>
 <xs:documentation>
 the accessURL child element is the base URL for the OAI
 service as defined in section 3.1.1 of the OAI PMH
 standard.
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="vr:Interface">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="OAISOAP">

 54

 <xs:annotation>
 <xs:documentation>
 a description of the standard OAI PMH interface using a SOAP
 Web Service interface.
 </xs:documentation>
 <xs:documentation>
 the accessURL child element is the service port location URL
 for the OAI SOAP Web Service.
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="vr:WebService">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="Authority">
 <xs:annotation>
 <xs:documentation>
 a naming authority; an assertion of control over a
 namespace represented by an authority identifier.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="vr:Resource">
 <xs:sequence>

 <xs:element name="managingOrg" type="vr:ResourceName">
 <xs:annotation>
 <xs:documentation>
 the organization that manages or owns this
 authority.
 </xs:documentation>
 <xs:documentation>
 In most cases, this will be the same as the
 Publisher.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

 55

Appendix A.4 IVOA Recommended Extension Prefixes

Section 3.1.2 strongly recommends the consistent use of namespace prefixes
across all compliant registries. The table below provides the recommend list of
prefixes for the schemas that are commonly used in VOResource records as of
this writing. For IVOA standard schemas not listed here, the prefix
recommended by the standard defining the schema should be used.

Prefix Namespace
sia http://www.ivoa.net/xml/SIA/v###
cs http://www.ivoa.net/xml/ConeSearch/v###
vs http://www.ivoa.net/xml/VODataService/v###
ssa http://www.ivoa.net/xml/SSA/v###
vg http://www.ivoa.net/xml/VORegistry/v###
vstd http://www.ivoa.net/xml/VOStandard/v###
va http://www.ivoa.net/xml/VOApplication/v###
cea http://www.ivoa.net/xml/CEA/v###
stc http://www.ivoa.net/xml/STC/###
sn http://www.ivoa.net/xml/SkyNode/v###

Note:
Schemas found at the http://www.ivoa.net/xml/ will have annotations indicating the
recommended prefix. The recommended prefix can also be found in VOResource record
describing the standard in the Registry of Registries [RofR].

Appendix A.5 ADQL for Querying Registries

When the registry search interface was first developed for standardization, it was
intended that it would build on an existing standard for ADQL. In particular, the
search interface was based on ADQL v1.01 [ADQL]. This ADQL specification
never evolved out of the Working Draft status. It was eventually superseded by
v2.0 which was sufficiently different from v1.01 that RI could not be revised
easily. Instead, RI continues to be based on ADQL v1.01.

In lieu of a reference to an actual IVOA Recommendation for ADQL, this
appendix excerpts the relevant sections of the ADQL v1.01 working draft [ADQL].

A.5.1 Introduction

The Astronomical Data Query Language (ADQL) is the language used by the
International Virtual Observatory Alliance (IVOA) to represent astronomy queries
posted to VO data services (SkyNodes). IVOA has developed several
standardized protocols to access astronomical databases, e.g., SIAP for image
data and SSAP for spectral data. Current ADQL (ADQL 1.0) is designed to

 56

access astronomical catalog data only through the SkyNode Interfaces. The work
to integrate SIAP, SSAP and ADQL is under progress toward the future version
of ADQL.

ADQL 1.0 is based on Structured Query Language (SQL), especially on SQL92.
The VO has a number of tabular data sets and many of them are stored in
relational databases (RDBs), making SQL a convenient access means.

A.5.2 Astronomical Data Query Language (ADQL)

ADQL is based on a subset of SQL which has been extended to support queries
which are specific to astronomy.

ADQL has two forms or representations:

• ADQL/s : A String form based on SQL92 and conforming to the ADQL
grammar in Appendix A.5.6. Some non standard SQL extensions have
been added to support distributed astronomical queries; and

• ADQL/x : An XML document conforming to the ADQL schema (XSD)
included in Section 4. The XML document is the mechanism used to pass
a query to the SkyNode Web service Interface.

ADQL/s and ADQL/x are translatable to each other without loss of information.

Since ADQL is similar in semantics to SQL, the requirements below list
differences or special considerations only.

A.5.2.1 Restrictions on SQL92

The formal notation for syntax of computing languages is often expressed in the
"Backus Naur Form" BNF. BNF is used by popular tools such as LEX and
YACC2 for producing parsers for a given syntax. Appendix A.5.6 provides the
YACC type grammar for ADQL/s.

The BNF exactly defines the form of SQL92 which is ADQL/s. In essence this is
any valid SQL statement. However ADQL has restrictions described below:

• In ADQL built-in functions which are defined on the server system may be
called.

• INTO is supported for future interoperability with VOSpace.
• ADQL/s comments will only be supported using the /* */ syntax to delimit

comments.

Note:
None of these restrictions are directly relevant to the use of ADQL in RI.

 57

A.5.2.2 Extensions to SQL92

This specification adds requirements on top of SQL92. ADQL SHALL support the
extension described below.

• All table names in ADQL MUST have an alias.
• ADQL adds a keyword REGION to be used in the WHERE clause to

specify search constraints.
• JDBC mathematical functions shall be allowed in ADQL.
• The XMATCH function implies cross-match between two or more

astronomical catalogues.
• To support XQuery as well as SQL, and since some of our data formats

are described as XSD, it will be possible to express selections and
selection criteria as a simple XPath. Square brackets ([,]) and standard
operators such as parent are NOT supported.

• ADQL supports the TOP syntax to return only the first N records from a
query.

• ADQL allows units for all constant values specified in the query. These are
optional.

• ADQL supports the use of `[]` to enclose literal names which may
otherwise cause parse error.

• ADQL/s shall support the region keyword.

Note:
Except for the one regarding XPath identifiers, all the above-mentioned extensions are
made irrelevant to RI by the restrictions enumerated in section 2.1.2.1.

A.5.2.3 Version Information

ADQL/x documents SHALL contain a version identifier for the version of ADQL.
This will start as 1.0. The version number is a dot separated string of numbers.
The version number is included in the document solely so the receiving node
may decide if it wishes to deal with the document or thrown an exception.

A.5.3 ADQL Example

An ADQL/s might be as follows:

ADQL/s example
SELECT a.objid, a.ra, a.dec
FROM SDSSDR2:Photoprimary a
WHERE Region('CIRCLE J2000 181.3 -0.76 6.5')

This would be represented in ADQL/x as follows:

 58

ADQL/x example
<?xml version="1.0" encoding="utf-8"?>
<Select xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.ivoa.net/xml/ADQL/v1.0">
 <SelectionList>
 <Item xsi:type="columnReferenceType" Table="a" Name="objid" />
 <Item xsi:type="columnReferenceType" Table="a" Name="ra" />
 </SelectionList>
 <From>
 <Table xsi:type="archiveTableType" Archive="SDSSDR2"
 Name="Photoprimary" Alias="a" />
 </From>
 <Where>
 <Condition xsi:type="regionSearchType">
 <Region xmlns:stc="http://www.ivoa.net/xml/STC/STCregion/v1.10"
 xsi:type="stc:circleType" unit="deg">
 <stc:Center>181.3 -0.76</stc:Center>
 <stc:Radius>6.5</stc:Radius>
 </Region>
 </Condition>
 </Where>
</Select>

A.5.4 ADQL Grammar

This section provides an abridged version of the ADQL grammar in BNF form.
Parts of the grammar that are irrelevant to RI have been left out for brevity.

ADQL/s Grammar
sql : selectStatement (SEMICOLON)? EOF;
selectStatement : queryExpression (computeClause)? (forClause)?
(optionClause)?;
queryExpression : subQueryExpression
 (unionOperator subQueryExpression)* orderByClause)?;
subQueryExpression : querySpecification
 | LPAREN queryExpression RPAREN;
querySpecification :
 selectClause (fromClause)? (whereClause)? (groupByClause)?
 (havingClause)? ;
selectClause :SELECT (all_distinct)? (restrictClause)? selectList;
whereClause : WHERE searchCondition;
searchCondition :
 subSearchCondition ((AND | OR) subSearchCondition)*;
subSearchCondition :
 (NOT)? (
 (LPAREN searchCondition RPAREN) => LPAREN searchCondition RPAREN
 | predicate | xMatch | region
);
predicate :

 59

 (
 expression
 (
 // expression comparisonOperator expression
 comparisonOperator (expression)
 | IS (NOT)? NULL
 | (NOT)? (
 LIKE expression
 | BETWEEN expression AND expression
)
)
);
region: REGION LPAREN regionClause RPAREN;
regionClause: QuotedIdentifier;
xMatch: XMATCH LPAREN xAlias (COMMA xAlias)* (
 (COMMA xSigma RPAREN) |
 (RPAREN LESSTHAN xSigma)
);
xSigma: number;
selectList : selectItem (COMMA selectItem)*;
selectItem : (STAR // "*, *" is a valid select list
| (
 // starts with: "alias = column_name"
 (alias2) => (
 (alias2 dbObject COMMA) => alias2 column
 | (alias2 dbObject (binaryOperator | LPAREN)) => alias2 expression
 | (alias2 column) => alias2 column
 | (alias2 expression) => alias2 expression
)
 // all table columns: "table.*"
 | (tableColumns) => tableColumns
 | (explicitFunction) => explicitFunction
 | (function) => function
 // some shortcuts:
 | (dbObject (alias1)? COMMA) => column (alias1)?
 | (dbObject (binaryOperator | LPAREN)) => expression (alias1)?
 | (column) => column (alias1)?
 | (expression) => expression (alias1)?
)
);
fromClause : FROM tableSource (COMMA tableSource)*;
tableSource : subTableSource (joinedTable)*;
subTableSource :
 (
 LPAREN (
 (joinedTables) => joinedTables RPAREN
 | (queryExpression) => queryExpression RPAREN alias1
)
 | (function) => function (alias1)?
 | (archiveTable)? dbObject (alias1)?
 ((WITH)? LPAREN tableHint (COMMA tableHint)* RPAREN)?
 | Variable (alias1)?
 | COLON COLON function (alias1)? // built-in function
);
dbObject : (identifier | IDENTITYCOL | ROWGUIDCOL
 | keywordAsIdentifier)

 60

 (
 DOT (identifier | IDENTITYCOL | ROWGUIDCOL | keywordAsIdentifier)
 | (DOT DOT) => DOT DOT (identifier | IDENTITYCOL | ROWGUIDCOL
| keywordAsIdentifier)
)*;
stringLiteral : UnicodeStringLiteral | ASCIIStringLiteral;
identifier: NonQuotedIdentifier | QuotedIdentifier;
constant : Integer | Real | NULL | stringLiteral | HexLiteral
 | Currency | ODBCDateTime | systemVariable;
unaryOperator : PLUS | MINUS | TILDE;
binaryOperator : arithmeticOperator | bitwiseOperator;
arithmeticOperator : (PLUS | MINUS | STAR | DIVIDE | MOD);
bitwiseOperator : AMPERSAND | TILDE | BITWISEOR | BITWISEXOR;
comparisonOperator :
 (
 ASSIGNEQUAL | NOTEQUAL1 | NOTEQUAL2 | LESSTHANOREQUALTO1
 | LESSTHANOREQUALTO2 | LESSTHAN | GREATERTHANOREQUALTO1
 | GREATERTHANOREQUALTO2 |GREATERTHAN
);
logicalOperator : ALL | AND | ANY | BETWEEN | EXISTS | IN | LIKE
 | NOT | OR | SOME;
unionOperator : UNION (ALL)?;
number: (SIGN)? Number;
DOT: '.';
COLON : ':' ;
COMMA : ',' ;
SEMICOLON : ';' ;
LPAREN : '(' ;
RPAREN : ')' ;
ASSIGNEQUAL : '=' ;
NOTEQUAL1 : "<>" ;
NOTEQUAL2 : "!=" ;
LESSTHANOREQUALTO1 : "<=" ;
LESSTHANOREQUALTO2 : "!>" ;
LESSTHAN : "<" ;
GREATERTHANOREQUALTO1 : ">=" ;
GREATERTHANOREQUALTO2 : "!<" ;
GREATERTHAN : ">" ;
DIVIDE : '/' ;
PLUS : '+' ;
MINUS : '-' ;
STAR : '*' ;
MOD : '%' ;
AMPERSAND : '&' ;
TILDE : '~' ;
BITWISEOR : '|' ;
BITWISEXOR : '^' ;
DOT_STAR : ".*" ;
NOT : '!';
QUESTIONMARK : '?';
Whitespace : (' ' | '\t' | '\n' | '\r');
Letter : 'a'..'z' | '_' | '#' | '@' | '\u0080'..'\ufffe';
Digit : '0'..'9';
Integer :;
Real :;
Exponent : 'e' (Sign)? (Digit)+ ;

 61

Sign : (PLUS | MINUS);
Number :
 ((Digit)+ ('.' | 'e')) =>
 (Digit)+ ('.' (Digit)* (Exponent)? | Exponent)
 | '.' { _ttype = DOT; } ((Digit)+ (Exponent)?)?
 | (Digit)+ { _ttype = Integer; }
 | "0x" ('a'..'f' | Digit)* ;

A.5.5 ADQL XSD

The XML schema for ADQL/x is found at http://www.ivoa.net/xml/ADQL/ADQL-
v1.0.xsd. The data model for this schema is based on the ADIL Grammar
presented in Appendix A.5.4.

References

[STDv1.0] Hanisch, R. J. & Linde, T. (eds) 2003, IVOA Documentation
Standards v1.0, IVOA Recommendation,
http://www.ivoa.net/Documents/DocStd/20031024/

[STDv1.2] Hanisch, R. J. (ed.), Arviset, C., Genova, F., & Rino, B. 2009, IVOA
Documentation Standards v1.2, IVOA Proposed Recommendation,
http://www.ivoa.net/Documents/DocStd/20090302/

 [WSDLv1.1] Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S.
2001, Web Services Description Language v1.1, W3C Note 15 March
2001, http://www.w3.org/TR/wsdl/

[Hanisch 2004] Hanisch, R. (ed.) et al. 2004, Resource Metadata for the Virtual
Observatory, IVOA Recommendation,
http://www.ivoa.net/Documents/latest/RM.html

[Plante 2003] Plante, R., Greene, G., Hanisch, R., McGlynn, T., O'Mullane, W.,
& Williamson, R. 2003, in ASP Conf. Ser., Vol. 314 Astronomical Data
Analysis Software and Systems XIII, eds. F. Ochsenbein, M. Allen, & D.
Egret (San Francisco: ASP), 585,
http://www.adass.org/adass/proceedings/adass03/O7-1

[VOResource] Plante, R. et al. 2006, VOResource: an XML Encoding Schema
for Resource Metadata, v1.00, IVOA Working Draft,
http://www.ivoa.net/Documents/WD/ReR/VOResource-20060530.html

[ADQL] Ohishi, M. et al. 2004, Astronomical Dataset Query Language, IVOA
Working Draft (internal),
http://www.ivoa.net/internal/IVOA/IvoaVOQL/WD_ADQL-0.9.pdf

 62

[XPath] Clark, J. and DeRose, S. 2001, XML Path Language (XPath) Version
1.0, W3C Recommendation 16 November 1999,
http://www.w3.org/TR/xpath/

[Schema] Fallside, D, and Walmsley, P. 2004, XML Schema Part 0: Primer
Second Edition, W3C Recommendation 28 October 2004,
http://www.w3.org/TR/xmlschema-0/

[STC] Rots, A. H. 2007, Space-Time Coordinate Metadata for the Virtual
Observatory, v1.33, IVOA Recommendation,
http://www.ivoa.net/Documents/latest/STC.html

[OAI] http://www.openarchives.org/OAI/openarchivesprotocol.html

[RofR] Plante, R. 2007, The Registry of Registries, v1.00, IVOA Note,
http://www.ivoa.net/Documents/latest/RegistryOfRegistries.html

