DRAFT — please do not distribute

International
Virtual
Observatory

Alliance

IVOA Server-side Operations for Data
Access

Version 1.0

IVOA Recommendation 2017-05-17

Working group
Data Access Layer Working Group

This version
https://www.ivoa.net/documents/SODA /20170517

Latest version
https://www.ivoa.net/documents/SODA

Previous versions
PR-SODA-1.0-20160429
WD-SODA-1.0-20151221
WD-AccessData-1.0-20151021
WD-AccessData-1.0-20140730

WD-AccessData-1.0-20140312
Author(s)

Frangois Bonnarel, Markus Demleitner, Patrick Dowler, Douglas
Tody, James Dempsey
Editor(s)
Frangois Bonnarel, Patrick Dowler
Version Control
Revision 4112, 2017-06-02 18:50:37 +0200 (ven. 02 juin 2017)

https://volute.g-vo.org/svn/trunk/projects/dal/SODA/SODA. tex

https://www.ivoa.net/documents/SODA/20170517
https://www.ivoa.net/documents/SODA
https://volute.g-vo.org/svn/trunk/projects/dal/SODA/SODA.tex

DRAFT - please do not distribute

Abstract

This document describes the Server-side Operations for Data Access
(SODA) web service capability. SODA is a low-level data access capability
or server side data processing that can act upon the data files, perform-
ing various kinds of operations: filtering/subsection, transformations, pixel
operations, and applying functions to the data.

Status of this document

This document has been reviewed by IVOA Members and other inter-
ested parties, and has been endorsed by the IVOA Executive Committee
as an [IVOA Recommendation. It is a stable document and may be used
as reference material or cited as a normative reference from another docu-
ment. IVOA’s role in making the Recommendation is to draw attention to
the specification and to promote its widespread deployment. This enhances
the functionality and interoperability inside the Astronomical Community.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents,/ .

Contents
1 Introduction 4
1.1 The Role in the IVOA Architecture 4
1.1.1 SODA Service in the Registry 5
1.1.2 SODA Service from Data Discovery 5
1.1.3 SODA Service from Datalink 5
1.2 Motivating Use Cases 5
2 Resources 7
2.1 {sync}resource 7
2.2 {async} resource 8
2.3 Examples: DALI-examples 8
2.4 Availability: VOSI-availability 8
2.5 Capabilities: VOSI-capabilities 8
3 Parameters for SODA {sync} and {async} 9
3.1 Parameter multiplicity 0L 10
3.2 Common Parameters L. 10
321 ID .. 10
3.3 Filtering Parameters oL 10
3.3.1 MOC 10

https://www.ivoa.net/documents/

DRAFT - please do not distribute

332 POS 11

333 CIRCLE, 12

3.34 POLYGON, 12

335 BAND 12

3.3.6 TIME 13

337 POL 14

3.4 Filtering parameters and ObsCore data model 14

3.5 Three-Factor Semantics 15

4 Integration of Service Capabilities 16

4.1 SODA Service Descriptor from Data Discovery 18

4.2 SODA Service Descriptor from Dataliink 19

4.3 Finding a SODA Service in the Registry 21

5 {sync} Responses 21

5.1 Successful Requests 21

5.2 FErrors 21

6 {async} Responses 22

A Full SODA Descriptor example 22

B Changes from Previous Versions 23

B.1 Changes from PR-SODA-20160429 23

B.2 Changes from WD-SODA-1.0-20151212. 24

B.3 Changes from WD-SODA-1.0-20151120. 24

B.4 Changes from WD-AccessData-1.0-20151021 24

B.5 Changes from WD-AccessData-1.0-20140730 24

B.6 Changes from WD-AccessData-1.0-20140312 25

References 25
Acknowledgments

The authors would like to thank all the participants in DAL-WG discussions
for their ideas, critical reviews, and contributions to this document.

Frangois Bonnarel acknowledges support from the Astronomy ESFRI and
Research Infrastructure Cluster — ASTERICS project, funded by the Euro-
pean Commission under the Horizon 2020 Programme (GA 653477).

DRAFT - please do not distribute

USERS —
SODA m®» ¢ COMPUTERS
\Qp!‘: InProgress
USER LAYER)
Browser Based Script Based
Apps Desktop Apps Apps
USING
Registry Interface Y
VO Query m
Resource Metadata L anguages =
o
G -m
I s i VO Data L
emantics
s CORE Models
T
R)
Y Formats)
Resource Identifier | | VOTable (m
vosi S
SHARING uws
St C tati
orage RESOURCE LAYER omputation
1%
it (S ey rovons [

Figure 1: SODA in the global VO architecture

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

The SODA web service interface defines a RESTful web service for perform-
ing server-side operations and processing on data before transfer.

1.1 The Role in the IVOA Architecture

Figure 1 shows how SODA fits into the IVOA architecture. SODA services
conform to the Data Access Layer Interface (DALI, Dowler and Demleit-
ner et al. (2013)) specification, including the Virtual Observatory Support
Interfaces (VOSI, Graham and Rixon et al. (2011)) resources.

http://www.ivoa.net

DRAFT - please do not distribute

Within the IVOA architecture, SODA services could be found and used
in several ways. First, a SODA service could be found in the IVOA Registry
and used directly. A description of a SODA service may be found along
with specific dataset metadata at either the data discovery phase using Sim-
ple Image Access (SIA, Dowler, Bonnarel and Tody (2015)) or Table Access
Protocol (TAP, Dowler and Rixon et al. (2010)) and the ObsCore data model
(Tody and Micol et al., 2011) or via a DataLink (Dowler, Bonnarel, Michel
and Demleitner, 2015) service. The service descriptors and three-factor se-
mantics rely on UCDs (Derriere and Preite Martinez et al., 2005) and the
VO Unit specification (Derriere and Gray et al., 2014). Since the discovery
of SODA services makes use of DataLink service descriptor(s) to provide
parameter metadata, the VOSI-capabilities specified in Section 2.5 do not
make use of a registry extension.

1.1.1 SODA Service in the Registry

Resources in the IVOA Registry may include SODA capabilities. In order
to use such services, clients require prior knowledge of suitable identifiers
that are usable with a registered SODA service. This scenario is described
in more detail below in Section 4.3.

1.1.2 SODA Service from Data Discovery

In the simplest case, the identifiers found via data discovery can be used
directly with an associated SODA service. The query response (from SIA or
TAP) would include one or more service descriptor(s) that describe the avail-
able SODA capabilities. This scenario is described in detail in Section 4.1.

1.1.3 SODA Service from DatalLink

In the general case, data discovery responses may direct clients to an associ-
ated Datalink service where access details can be obtained. The Datalink
output will in turn provide service descriptor(s) of the associated SODA
service(s). Service providers may choose this approach for several reasons;
for example, one entry from data discovery may lead to multiple files or
resources, or access via services such as SODA may be considered the pri-
mary access mode and direct download is not available or discouraged. This
scenario is described in detail in Section 4.2.

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the SODA specification. While this is not complete, it helps
to understand the problem area covered by this specification.

DRAFT - please do not distribute

e Retrieve Subsection of a Datacube

Cutout a subsection using coordinate axis values. The input to the
cutout operation will include one or more of the following:

— a region on the sky
— an energy value or range
— a time value or range

— one or more polarization states

The region on the sky should be something simple: a circle, a range of
coordinate values, or a polygon.

Retrieve subsection of a 2D Image

This is a special case of retrieving a subsection of a datacube, where
the cutout is only in the spatial axes.

Retrieve subsection of a Spectrum

This is a special case of retrieving a subsection of a datacube, where

the cutout is only in the spectral axis.

Anticipated Future Use Cases. These use cases were taken into account
in the general design but remain to be developed and supported in later
versions of SODA.

— Provide the data in different formats

Examples are images in PNG, or JPEG instead of FITS and spec-
tra in csv, FITS or VOTable.

— Flatten a Datacube into a 2D Image

— Reduce a Datacube into a 1D Spectrum

— Rebin Data by a Fixed Factor

— Reproject Data onto a Specified Grid

— Compute Aggregate Functions over the Data

Apply Standard Function to Data Values

It could be “denoising” with standard methods or “on the fly”
recalibration.

Apply Arbitrary User-Specified Function to Data Values
Run Arbitrary User-Supplied Code on the Data

DRAFT - please do not distribute

resource type resource name required

{sync} service specific (only one of {sync} or {async} required)
{async} service specific (only one of {sync} or {async} required)
DALI-examples /examples no

VOSI-availability — service specific yes

VOSI-capabilities /capabilities yes

Table 1: Endpoints for SODA services

2 Resources

SODA services are implemented as HT'TP REST (Richardson and Ruby,
2007) web services with a {sync} resource that conforms to the DALI- sync
resource description.

A stand-alone SODA service may have one or both of the {sync} and
{async} resources. For either type, it could have multiple resources (e.g.
to support alternate authentication schemes). The SODA service may also
include other custom or supporting resources.

Either the {sync} or {async} SODA capability may be included as part of
other web services. For example, a single web service could contain the SIA-
2.0 {query} capability, the DataLink-1.0 {links} capability, and the SODA
{sync} capability. Such a service must also have the VOSI-availability and
VOSI-capabilities resources to report on and describe all the implemented
capabilities.

2.1 {sync} resource

The {sync} resource is a synchronous web service resource that conforms
to the DALI-sync description. Implementors are free to name this resource
however they like, except that the name must consist of one URI segment
only (i.e., contain no slash). This is to allow clients, given the access URL,
to reliably find out the URL of the capabilities endpoint. Clients, in turn,
can find the resource path using the VOSI-capabilities resource, but will
in general be provided the access URLs through a previous data discovery
query or through direct user input.

The {sync} resource performs the data access as specified by the input
parameters and returns the data directly in the output stream. Synchronous
data access is suitable when the operations can be quickly performed and the
data stream can be setup and written to (by the service) in a short period
of time (e.g. before any timeouts).

DRAFT - please do not distribute

2.2 {async} resource

The {async} resource is an asynchronous web service resource that conforms
to the DALI-async description. The considerations on naming the resource
given in sect. 2.1 apply here as well.

The {async} resource performs the data access as specified by the input
parameters and either (i) stores the results for later transfer or (ii) pushes the
results to a specified destination (e.g. to a VOSpace location). Asynchronous
data access usually introduces resource constraints on the service (which
may be limited) and usually imposes a higher latency before any results can
be seen because the location of results does not have to be valid until the
data access job is complete. Asynchronous data access is intended for (but
not limited to) use when the operations take considerable time and results
must be staged (e.g. some multi-pass algorithms or operations that result in
multiple outputs).

2.3 Examples: DALI-examples

SODA services should provide a DALI-examples resource with one example
invocation that shows the variety of operations the service can perform.
Example operations using the {sync} resource and that output a small data
stream are preferred, as the examples may be used by automatic validators
doing relatively frequent (of order daily) queries.

Parameters to be passed to the service must be given using the DALI
generic-parameter term.

2.4 Availability: VOSI-availability

A SODA web service must have a VOSI-availability resource as described in
DALL

2.5 Capabilities: VOSI-capabilities

A web service that includes SODA capabilities must have a VOSI-capabilities
resource as described in DALI. The standardID for the {sync} resource is

ivo://ivoa.net/std/S0DA#sync-1.0
The standardID for the {async} resource is
ivo://ivoa.net/std/SODA#async-1.0

All DAL services must implement the /capabilities resource. The
following capabilities document shows the minimal metadata for a stand-
alone SODA service and does not require a registry extension schema:

DRAFT - please do not distribute

<?xml version="1.0"7>

<capabilities
xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/V0ODataService/v1.1">

<capability standardID="ivo://ivoa.net/std/V0SI#capabilities">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">http://example.com/data/capabilities</accessURL>
</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/V0SI#availability">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">
http: //example.com/data/availability
</accessURL>
</interface>
</capability>

<capability standardid="ivo://ivoa.net/std/SODA#sync-1.0">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessURL use="full">
http: //example.com/data/sync
</accessURL>
</interface>
</capability>

<capability standardid="ivo://ivoa.net/std/SODA#async-1.0">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessURL use="full">
http: //example.com/data/async
</accessURL>
</interface>
</capability>
</capabilities>

Note that the {sync} and {async} resources do not have to be named
as shown in the accessURL(s) above. Multiple interface elements within the
{sync} and the {async} capabilities may be included; this is typically used if
they differ in protocol (http vs. https) and/or authentication requirements.

3 Parameters for SODA {sync} and {async}

The {sync} and {async} resources accept the same set of parameters.

DRAFT - please do not distribute

3.1 Parameter multiplicity

Common methods of passing parameters to HT'TP services allow passing the
same parameter multiple times. In the following, we call a parameter that
is specified multiple times in either way as having multiple values.

POL is a special case for multiplicity (see below) For all other parameters,
support for multiple values of parameters is optional. If a request includes
multiple values for a parameter and the service does not support multiple
values for that parameter, the request must fail with the MultiValuedParam-
NotSupported error listed below (5.2). For example, a service may allow only
single values for ID but multiple values for cutout parameters. Supported
multiplicity may also differ between sync and async requests.

In general, services would support multi-valued parameters as they may
be able to provide more efficient access to data files. Clients may attempt to
use multi-valued parameters, but must be prepared to fall back to multiple
requests if the service indicates this is not supported. A future version of
DataLink should provide a mechanism to describe parameter multiplicity.

3.2 Common Parameters
3.2.1 ID

The ID parameter is used to specify the dataset or file to be accessed. The
values for the ID parameter are generally discovered from data discovery
requests. The values must be treated as opaque identifiers that are used as-
is. The DataLink specification describes mechanisms for conveying opaque
parameters and values in service descriptor resources that can be used by
clients to set the ID parameter.

The UCD describing the ID parameter ismeta.ref .url;meta.curation.SODA

3.3 Filtering Parameters

Filtering parameters are used to extract subsets of large datasets or data
files. The extraction uses a best possible match to the requested subset. In
case the parameter values excede the size of the archived dataset the service
operates a reduction of these values to the archived dataset size.

3.3.1 MOC

The MOC parameter defines a subset of space using the moc defined in DALI.
The parameter syntax is defined as in the MOC specification (?)
Examples :

e Extracting cells 1 and 2 at order 1 will read this way MOC = 1/1 2

e Extracting cells 1 at order 1 and cells 1 to 6 at order 2 will read MOC
=1/12/1-6
10

At the time of writing there is no possibility to extend this ascii syntax

to TMOC or STMOC

3.3.2 POS

The POS parameter defines the positional region(s) to be extracted from
the data. The value is made up of a shape keyword followed by coordinate
values. The allowed shapes are given in Table 2.

Shape Coordinate values

CIRCLE <longitude> <latitude> <radius>
RANGE <longitudel> <longitude2> <latitudel> <latitude2>
POLYGON <longitudel> <latitudel> ... (at least 3 pairs)

Table 2: POS Values in Spherical Coordinates

As in DALI intervals, open ranges use -Inf or +Inf as one limit.
Examples for POS values:

e A circle at (12,34) with radius 0.5:
POS=CIRCLE 12 34 0.5

DRAFT - please do not distribute

e A range of [12,14] in longitude and [34,36] in latitude:
POS=RANGE 12 14 34 36

e A polygon from (12,34) to (14,34) to (14,36) to (12,36) and (implicitly)
back to (12,34):

POS=POLYGON 12 34 14 34 14 36 12 36

e A band around the equator:

POS=RANGE 0 360 -2 2

e The north pole:
POS=RANGE 0 360 89 90

All longitude and latitude values (plus the radius of the CIRCLE) are
expressed in degrees in ICRS.!
The UCD describing the POS parameter is pos.outline;obs.

!A future version of this specification may allow the use of other reference systems
(specifically the native system of the data).

11

DRAFT - please do not distribute

Since it is string-valued, POS is unitless; however, the numeric values
contained in the string are all in decimal degrees. In VOTable, the POS
parameter has datatype="char" and arraysize="x".

POS is included in SODA for consistency with the SIA-2.0 query param-
eter of the same name. Note that use of the POS parameter with shape
keyword “CIRCLE” provides the equivalent spatial region as the CIRCLE
parameter and POS with the shape keyword “POLYGON” is equivalent to
the POLYGON parameter. There is no type-specific parameter that is equiv-
alent to the “RANGE” shape keyword. There is no way for a service provider
to declare support for a subset of the POS shape keywords in a DatalLink
service descriptor; either POS is included or not and if included then all
keywords must be supported.

3.3.3 CIRCLE

The CIRCLE parameter defines a spatial region using the circle xtype
defined in DALIL.
Example: a circle at (12,34) with radius 0.5:

CIRCLE=12 34 0.5

The UCD describing the CIRCLE parameter is pos.outline;obs.
CIRCLE is equivalent in functionality to POS=CIRCLE Data type
and unit metadata are unambiguously defined.

3.3.4 POLYGON

The POLYGON parameter defines a spatial region using the polygon xtype
defined in DALI.

Example: a polygon from (12,34) to (14,34) to (14,36) to (12,36) and
(implicitly) back to (12,34):
POLYGON=12 34 14 34 14 36 12 36

The UCD describing the POLYGON parameter is pos.outline;obs.
POLYGON is equivalent in functionality to POS=POLYGON Data
type and unit metadata are unambiguously defined.

3.3.5 BAND

The BAND parameter defines the wavelength interval(s) to be extracted
from the data using a floating point interval (xtype="interval") as defined
in DALI. The value is an open or closed numeric interval with numeric values
interpreted as wavelength(s) in metres. As in DALI, open intervals use -Inf
or +Inf as one limit.

e The closed interval [500,550]:

12

DRAFT - please do not distribute

BAND=500 550

e The open interval (-inf,300]:
BAND=-Inf 300

e The open interval |750,inf):
BAND=750 +Inf

e The scalar value 550, equivalent to [550,550|:
BAND=550 550

Extracting using a scalar value should normally extract a single pixel
along the energy axis of the data; extracting using an interval should extract
one or more pixels.

All energy values are expressed as barycentric wavelength in meters.?

The UCD describing the BAND parameter is em.wl;stat.interval.

3.3.6 TIME

The BAND parameter defines the time interval(s) to be extracted from the
data using a floating point interval (xtype="interval") as defined in DALL
The value is an open or closed interval with numeric values interpreted as
Modified Julian Date(s) in UTC. As in DALI, open intervals use -Inf or +Inf
as one limit.

e An open interval from the MJD 55100.0 and all later times:
TIME= 55100.0 +Inf

e A range of MJD values:
TIME=55123.456 55123.466

e An instant in time using Modified Julian Date:

TIME=55678.123456 55678.123456

The UCD describing the TIME parameter is time. interval ; obs.exposure.

2A future version of this specification may allow the use of other reference systems
(specifically the native system of their data).

13

3.3.7 POL

The POL parameter defines the polarization state(s) (Stokes) to be extracted
from the data.

e Extract the unpolarized intensity:

POL=I

e Extract the standard circular polarization:

POL=V

e Extract only the IQU components:
POL=I

POL=Q
POL-U

As shown in the example above, the POL parameter must support mul-
tiple values for both {sync} and {async} requests. Unlike general filtering
parameters, all values of POL are combined into a single filter; for example,
if the request includes the three values above, the job would generate one
result with some or all of these polarization states (per combination of ID
and other filtering parameters).

DRAFT - please do not distribute

The UCD describing the POL parameter is meta. code; phys.polarization.

3.4 Filtering parameters and ObsCore data model

Filtering parameters drive the generation of virtual datasets. The ObsCore
model is perfectly valid to describe virtual data that SODA is able to gen-
erate. Hence all SODA filtering parameters are coupled with some Obscore
model concepts.

The spatial parameters (CIRCLE, POLYGON and POS) constrain the
spatial support of the output virtual dataset.

The TIME parameter constrains the time bounds of the SODA output
virtual dataset.

The BAND parameter constrains the spectral bounds of the SODA out-
put virtual dataset.

Support and bounds of the output datasets for each parameter are in-
cluded in support and bounds of the archived dataset.

The POL parameter constrain the list of polarization states in the output
virtual dataset. The valid values for this param are included in the list given
by the value of the pol states attribute of the archived dataset.

14

DRAFT - please do not distribute

SODA ObsCore utypes ObsCore
parameters attribute names

pos|circLEPOLYGON Obscore:Char.Spatial Axis.Coverage.Support. Area s_region

BAND obscore:Char.spectral Axis.Coverage. Bounds. Limits
TIME obscore:Char. TimeAxis.Coverage. Bounds.Limits
POL obscore:Char.Polarization Axis.stateList pol _states

Table 3: ObsCore utypes correspondance with standard SODA parameters

3.5 Three-Factor Semantics

Parameters in SODA are uniquely defined by the triple of name, UCD, and
unit. Data services are free to support as many such parameters as is ap-
propriate for their datasets, in addition to supporting standard parameters.
With the three factors, it is unlikely that two service providers will by acci-
dent use the same three factors for parameters of differing semantics.

To identify parameters, clients must use the three factors name, UCD,
and unit. This is true for both the standard parameters defined here and
custom parameters introduced by services. For instance, a BAND parameter
that is missing the em.wl;stat.interval UCD or has a unit that is not meter
must not be treated as the SODA BAND parameter. With standard param-
eters as defined in this document, clients can rely on certain semantics and
exploit that knowledge in the provision of special Uls or APIs. Standard pa-
rameters defined so far are given in table 4. For the time being, instructions
for how to propose additional parameters will be given on the landing page
of the IVOA DAL working group?

Table 5 is an exemple of definition of additional custom non-standard
parameters.

Name UcCD Unit Semantics

1D meta.ref.url;meta.curation cf. sect. 3.2.1
CIRCLE pos.outline;obs deg cf. sect. 3.3.3
POLYGON pos.outline;obs deg cf. sect. 3.3.4
POS pos.outline;obs cf. sect. 3.3.2
BAND em.wl;stat.interval m cf. sect. 3.3.5
TIME time.interval;obs.exposure d cf. sect. 3.3.6
POL meta.code;phys.polarization cf. sect. 3.3.7

Table 4: Three-Factor Semantics for standard SODA parameters

3At the time of writing, this is
http://wiki.ivoa.net/twiki/bin/view/IVOA/DefiningServiceParameters

15

http://wiki.ivoa.net/twiki/bin/view/IVOA/DefiningServiceParameters

DRAFT - please do not distribute

Name ucCbh Unit Semantics

1D meta.ref.url;meta.curation dataset identifier
KERNSIZE phys.size.radius pixel convolution kernel radius
KERNTYPE meta.code.class convolution kernel type

(Gaussian, Airy, etc...)

Table 5: Example three-factor semantics for convolution-related custom pa-
rameters

Both standard and non-standard parameters should follow DALI conven-
tions if at all possible. Roughly, float-valued target fields should be accessed
or constrained via interval-valued parameters (i.e., do not split up minimum
and maximum into separate parameters). Depending on their semantics, in-
teger parameters should either be intervals or enumerated parameters (which
typically can be repeated in the manner of POL). Geometry fields should be
accessed or constrained using geometry values (circle and polygon xtypes
from DALI), following the examples of CIRCLE (3.3.3) and POLYGON
(3.3.4).

Parameter metadata, including three-factor semantics, is conveyed to
clients via DataLink service descriptor(s) as described in Section 4.

4 Integration of Service Capabilities

Finding and using SODA services depends on several other standards; service
providers can follow one or more strategies in integrating a range of standard
and custom services with their SODA implementation. Here we describe
these strategies and show how to use the standards together.

Within the IVOA architecture, SODA services could be found and used
in two ways. First, a SODA service could be found in the IVOA Registry
and used directly. Second, a description of a SODA service may be found
along with specific dataset metadata; this is the primary anticipated usage:
clients discover applicable SODA services while doing data discovery queries.

The DataLink recommendation provides a mechanism to include “a de-
scription of a SODA service” using a standard resource called a service de-
scriptor. The service descriptor can be included in any VOTable (Ochsenbein
and Taylor et al., 2013) output and can describe the parameters for use with
a DALI-sync or DALI-async compliant capability which may be a standard
service or a custom service. Since the service descriptor can describe all
input parameters, it can declare available standard parameters, extensions
(custom parameters in standard services), and parameters for custom ser-
vices. This mechanism is expected to be the primary means for finding and
using a SODA service.

16

DRAFT - please do not distribute

A generic SODA sync service descriptor describing the standard param-
eters (see sect. 3):

<RESOURCE type="meta" ID="soda-sync" utype="adhoc:service">
<PARAM name="standardID" datatype='"char" arraysize="x"
value="ivo://ivoa.net/std/SODA#sync-1.0" >
<DESCRIPTION>service protocol standard id</DESCRIPTION>
</PARAM>
<PARAM name="accessURL" datatype="char" arraysize="x"
value="http://example.com/soda/sync" >
<DESCRIPTION>access url of the service</DESCRIPTION>
</PARAM>
<GROUP name="inputParams">
<PARAM name="ID" ucd="meta.ref.url;meta.curation"
ref="idcolumn-ref"
datatype="char" arraysize="x" value="" >
<DESCRIPTION>The publisher DID of the dataset of interest</DESCRIPTION>
</PARAM>
<PARAM name="P0S" ucd="pos.outline;obs"
datatype="char" arraysize="*" value="" >
<DESCRIPTION>Region to cut out, as Circle, Box, or Polygon</DESCRIPTION>
</PARAM>
<PARAM name="CIRCLE" unit="deg" ucd="pos.outline;obs"
datatype="double" arraysize="3"
xtype="circle" value="" >
<DESCRIPTION>A circle that should be covered by the cutout.</DESCRIPTION>
</PARAM>
<PARAM name="POLYGON" unit="deg" ucd="pos.outline;obs"
datatype="double" arraysize="x"
xtype="polygon" value="" >
<DESCRIPTION>A polygon that should be covered by the cutout.</DESCRIPTION>
</PARAM>
<PARAM name="BAND" unit="m" ucd="em.wl;stat.interval"
datatype="double" arraysize="2"
xtype="interval" value="" >
<DESCRIPTION>The wavelength intervals to be extracted</DESCRIPTION>
</PARAM>
<PARAM name="TIME" ucd="time.interval;obs.exposure" unit="d"
datatype="double" arraysize="2"
xtype="interval" value="" >
<DESCRIPTION>TIME Interval to be extracted in MJD</DESCRIPTION>
</PARAM>
<PARAM name="POL" ucd="meta.code;phys.polarization"

datatype="char" arraysize="x*" value="" >
<DESCRIPTION> Polarization states list to be extracted</DESCRIPTION>
</PARAM>
</GROUP>
</RESOURCE>

This service descriptor is generic because the ID parameter uses a ref

17

DRAFT - please do not distribute

attribute to specify that identifier values come from elsewhere in the docu-
ment (usually this refers to a FIELD element that describes a table column
within another RESOURCE element). Thus, this descriptor can be used
with any ID values in that column.

The PARAM with name="standardID" specifies that this service is a
SODA sync service. The standardID values for SODA are specified in Sec-
tion 2.5.

The GROUP with name="inputParams" shows the standard description
of the standard SODA parameters as defined in Section 3. Services should
only include parameter descriptions for supported parameters; in a generic
service descriptor “supported” means supported by the implementation and
does not imply that use of that parameter is applicable to all data (e.g. to
all possible identifier values).

All PARAMs in the descriptor may include a VALUES subelement. This
element is providing PARAMETER domain limits or list of admitted values. See
section 4.2 for a full description of the usage of this feature.

4.1 SODA Service Descriptor from Data Discovery

In the simplest case, the identifiers found via data discovery (e.g. the
obs_publisher_did in ObsCore) can be used directly with an associated
SODA service. Then the query response from SIAv2 or TAP should include
one or more Dataliink service descriptors that describe the SODA capabili-
ties. These would have a standardID parameter specifying SODA {async}
or SODA {sync} as specified in Section 2.5 and an appropriate accessURL
parameter for the service. If the service is registered, the provider can in-
clude a resourceldentifier parameter which will contain the registered
identifier of the service.

The supported SODA service parameters (standard and custom) would
be declared in the inputParams group of the service descriptor.

The declaration of the ID parameter will specify which column in the data
discovery response contains the suitable identifier; although this is usually
the obs_publisher did from the ObsCore data model, this is not required
and the provider may have the ID parameter reference another (possibly
custom) column.

The data discovery response will in general contain metadata the client
can use to determine the values of SODA filtering parameters that will yield
valid subsets of the data. For example, standard data discovery using either
SIAv2 or TAP and ObsCore will provide metadata for specifying POS, CIR-
CLE, and POLYGON (s_region, s ra, s _dec, s fov), BAND (em min,
em_ max), TIME (t_min, t max), and POL (pol states) parameters.

When a service descriptor for a SODA service is provided in the data
discovery response, it should be a generic descriptor (see above) for use with

18

DRAFT - please do not distribute

multiple ID values. Thus, there will normally be a single service descriptor
for each available service.

4.2 SODA Service Descriptor from DataLink

The alternative scenario has the discovery service return Datalink docu-
ments (see DataLink for the two ways to do that: via the access url or via
a DataLink “service descriptor” in the query response). These Datalink doc-
uments can then contain one or more SODA descriptor(s), most typically
one per dataset described. To allow SODA clients the inference of param-
eter ranges and the presentation of useful user interfaces, data providers
SHOULD communicate the admissable ranges of the parameters in question
using the VOTable VALUES element.

For float-valued intervals (e.g., the standard BAND and TIME parame-
ters), VALUES/MIN and VALUES/MAX should be used to communicate the range
of values for which clients can expect to receive data. Example:

<PARAM name="BAND" unit="m" ucd="em.wl;stat.interval"
datatype="double" arraysize="2"
xtype="interval" value="">
<DESCRIPTION>The wavelength intervals to be extracted</DESCRIPTION>
<VALUES>
<MIN value="3e-7"/>
<MAX value="8e-7"/>
</VALUE>
</PARAM>

Enumerated values, both for integral and textual types, use VALUES/OP-
TION elements unless there are too many possible values. Again, only values
for which nonempty responses can be expected for the described dataset
should be listed. Example:

<PARAM name="POL" ucd="meta.code;phys.polarization"
datatype="char" arraysize="*" value="">
<DESCRIPTION>Polarization states to be extracted.</DESCRIPTION>
<VALUES>
<0PTION>I</0OPTION>
<0OPTION>V</0PTION>
</VALUE>
</PARAM>

In case the option enumeration becomes too large, the description of
the parameter should carefully describe what values are admissable, e.g., by
providing a link to an enumeration in the DESCRIPTION.

Intervals of integers are described analogous to float-valued intervals, i.e.,
using MIN and MAX elements.

Standard VOTable semantics are insufficient for the metadata of the
SODA POLYGON and CIRCLE parameters. We therefore define special

19

DRAFT - please do not distribute

cases for the ztypes circle and polygon at least until such time when a
proper data model for space-time coordinates will define a different way to
communicate such coverages within VOTables.

For CIRCLE, only a MAX is given. It contains three floating point values,
separated by whitespace. These correspond to the RA and Dec of the center
of a spherical circle covering the dataset, and a radius of such a covering
circle. Data providers SHOULD make sure they choose the center and radius
such that the covering circle is close to the minimal one of the dataset.
Example:

<PARAM name="CIRCLE" unit="deg" ucd="pos.outline;obs"
datatype=udouble.. al‘raysiZe="3"
xtype="circle" value="">

<DESCRIPTION>
A spherical circle to be contained by the cutout
</DESCRIPTION>
<VALUES> <MAX value="12.0.,34.0.,0.5"/> </VALUES>
</PARAM>

For POLYGON, again only a MAX is given. It consists of a sequence of
floating-point values, again separated by blanks, describing RA and Dec of
the vertices of a spherical polygon covering the dataset. Data providers are
encouraged to choose a minimal polygon. Example:

<PARAM name="POLYGON" unit="deg" ucd="pos.outline;obs"
datatype="double" arraysize="x"
xtype="polygon" value="">
<DESCRIPTION>A polygon to be contained by the cutout</DESCRIPTION>
<VALUES>
<MAX value="11.5.,33.5,12.5,33.5,12.5,,34.5.,11.5.,34.5"/>
</VALUES>
</PARAM>

Angles in both CIRCLE and POLYGON are in degrees. As in the in-
put, the ICRS reference system is assumed, with no further metadata (e.g.,
reference position) prescribed by this standard. Further metadata should
be given using standard STC annotation when the formalism to do that is
finalised.

For POS, useful metadata cannot be given. Services supporting POS
should therefore provide POLYGON as well, and clients wishing to use POS
should infer sensible values for that parameter from VALUES given for POLY-
GON.

A full example for a dataset-specific datalink descriptor is given in ap-
pendix A.

Providing values in the parameter descriptions of a data-specific service
descriptor implies that the resource generating this has access to the appli-
cable metadata. Depending on system architecture, this may be difficult to

20

DRAFT - please do not distribute

implement.*

4.3 Finding a SODA Service in the Registry

Resources in the IVOA Registry may include SODA capabilities. However,
in order to use such services, clients require prior knowledge of suitable iden-
tifiers that are usable with a registered SODA service. As a result, finding
and using a SODA service via the registry is not expected to be a common
usage pattern.

5 {sync} Responses

All responses from the {sync} resource follow the rules for DALI-sync re-
sources, except that the {sync} response allows for error messages for indi-
vidual input identifier values.

5.1 Successful Requests

Successfully executed requests should result in a response with HT'TP status
code 200 (OK) and a response in the format requested by the client or in
the default format for the service.

If the values specified for cutout parameters do not include any pixels
from the target dataset/file, the service must respond with HTTP status
code 204 (No Content) and no response body, as stated in DALI.

The service should set the following HT'TP headers to the correct values
where possible.

Content-Type media type of the response
Content-Encoding encoding/compression of the response (if applicable)

Since the response is usually dynamically generated, the Content-Length
and Last-Modified headers cannot usually be set.

5.2 Errors

The error handling specified for DALI-sync resources applies to service fail-
ure. Error codes are specified in DALI. Error documents should be text
using the text/plain content-type and the text must begin with one of the
following strings:

4 An “autodescription” mechanism where the SODA service can generate a data-specific
service descriptor of itself may be included in SODA-1.1 or later.

21

DRAFT - please do not distribute

Error Code Description

Error General error (not covered below)
AuthenticationError Not authenticated

AuthorizationError Not authorized to access the resource
ServiceUnavailable Transient error (could succeed with retry)
UsageError Permanent error (retry pointless)

MultiValuedParamNotSupported request included multiple values for a parameter
but the service only supports a single value

Table 6: error messages with their meaning

6 {async} Responses

The {async} resource conforms to the DALI-async resource description,
which means the job is a UWS job with all the job control features available.
All result files are to be listed as children of the UWS results resource. The
service provider is free to name each result.

When multiple values of input parameters are accepted, each combination
of values produces one result. For example, if an {async} job included two
CIRCLE and two BAND values, there must be four results. If a combination
of input parameters does not produce a result (e.g. there is no overlap
between the parameter values and data extent), the job results must contain
a result entry that indicates this. This should be a result URL which returns
a text/plain document with a message starting with one of the error labels
in Section 5.2 above.

A Full SODA Descriptor example

Below is an example illustrating how a SODA descriptor for a dataset as
delivered in a DataLink document might look like (see sect 4.2). Note in
particular how value is used in the declaration of the ID parameter to convey
the fixed value corresponding to the dataset described.

The particular dataset described here is a spectral cube. Therefore no
TIME and POL parameters are defined.

The example also illustrates how a custom parameter (here, KIND) would
be declared.

<RESOURCE ID="referenced" type="meta" utype="adhoc:service">
<GROUP name="inputParams">
<PARAM arraysize="*" datatype="char" name="ID" ucd="meta.id;meta.main"

value="ivo://org.gavo.dc/"7califa/datadr3/COMB/NGC0180.COMB.rscube.fits">

<DESCRIPTION>The publisher DID of the dataset of interest</DESCRIPTION>
</PARAM>
<PARAM arraysize="*" datatype='"char" name="POS" ucd="pos.outline;obs"

22

DRAFT - please do not distribute

value="">
<DESCRIPTION>Region to (approximately) cut out, as Circle, Box,
or Polygon</DESCRIPTION>
</PARAM>
<PARAM arraysize="*" datatype="double" name="POLYGON"
ucd="pos.outline;obs" unit="deg" value="">
<DESCRIPTION>A polygon (as a flattened array of ra, dec pairs) that
should be covered by the cutout.</DESCRIPTION>
<VALUES>
<MAX value="9.499,,8.626_9.499,,8.645.9.478,,8.645,9.478.,8.626"/>
</VALUES>
</PARAM>
<PARAM arraysize="3" datatype="double" name="CIRCLE"
ucd="pos.outline;obs" unit="deg" value="">
<DESCRIPTION>A circle (as a flattened array of ra, dec, radius)
that should be covered by the cutout.</DESCRIPTION>

<VALUES>
<MAX value="9.4889955890,,8.6358711588,,0.0146493214"/>
</VALUES>
</PARAM>
<PARAM arraysize="2" datatype='"double" name="BAND" ucd="em.wl;stat.interval"
unit="m" value="" xtype="interval">
<DESCRIPTION>Vacuum wavelength limits</DESCRIPTION>
<VALUES>

<MIN value="3.701e-07"/>
<MAX value="7.501e-07"/>
</VALUES>
</PARAM>
<PARAM arraysize="*" datatype="char" name="KIND" ucd="" value="">
<DESCRIPTION>Set to HEADER to retrieve just the primary header,
leave empty for data.</DESCRIPTION>
<VALUES>
<OPTION name="Retrieve header only" value="HEADER"/>
<OPTION name="Retrieve the full data, including header (default)"
value="DATA"/>
</VALUES>
</PARAM>
</GROUP>
<PARAM arraysize="*" datatype='"char" name="accessURL" ucd="meta.ref.url"
value="http://dc.g-vo.org/califa/q3/d1/dlget"/>
<PARAM arraysize="*" datatype="char" name="standardID"
value="ivo://ivoa.net/std/SODA#sync-1.0"/>
</RESOURCE>

B Changes from Previous Versions

B.1 Changes from PR-SODA-20160429

e Make multiple values for all parameters optional in both sync and
async requests and introduce a specific error message if multiplicity of
a parameter is not supported.

23

DRAFT - please do not distribute

B.2

B.3

Added section introducing the different usage scenarios for SODA and
how they can interact with other DAL capabilities. Moved the bulk
of the normative text to an integration section so that it follows the
primary specification of SODA resources and parameters.

Re-organised so that UCDs for parameters are only specified once in
the section on three-factor semantics.

Added CIRCLE AND POLYGON “double array” parameters. POS is
retained for consistency with SIA-2.0 query.

Interval xtype as strict arraysize=2 array consistently with DALI 1.1
SODA autodescription is postponed to version 1.1.

VALUES for xtype=interval now use MIN and MAX rather than MAX
alone.

Changes from WD-SODA-1.0-20151212

POS is now unitless
Aligned parameter UCDs with what is in ObsCore

Removed gratuitous xtypes.

Changes from WD-SODA-1.0-20151120

Change the name of the protocol. Suppression of SELECT and COORD.
xtype description are in DALI. Reference to this has been added.

B.4

Changes from WD-AccessData-1.0-20151021

Added general introduction on PARAMETER description to section 3. Mod-
ified SELECT and COORD sections in order to detach them from SimDal.
Added Appendix on xtype description with BNF syntax.

B.5

Changes from WD-AccessData-1.0-20140730

e Removed REQUEST parameter since the DAL-WG decision to not

include it when there is only one value.

e Clarified that ID and filtering parameters are single valued for {sync}

and multi-valued for {async}, with POL being multi-valued but still
being treated as a single filter.

24

DRAFT - please do not distribute

B.6 Changes from WD-AccessData-1.0-20140312

This is the initial document version.

References

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Derriere, S., Gray, N., Demleitner, M., Louys, M. and Ochsenbein, F. (2014),
‘Units in the VO Version 1.0, IVOA Recommendation 23 May 2014,
arXiv:1509.07267.
http://doi.org/10.5479/ADS/bib/2014ivoa.spec.0523D

Derriere, S., Preite Martinez, A., Preite Martinez, A., Derriere, S., Gray, N.,
Mann, R., McDowell, J., Mc Glynn, T., Ochsenbein, F., Osuna, P., Rixon,
G. and Williams, R. (2005), ‘The UCD1+ controlled vocabulary Version
1.11°, IVOA Recommendation 31 December 2005.
http://doi.org/10.5479/ADS/bib/2005ivoa.spec.1231D

Dowler, P., Bonnarel, F., Michel, L. and Demleitner, M. (2015),
‘IVOA DataLink Version 1.0’, IVOA Recommendation 17 June 2015,
arXiv:1509.06152.
http://doi.org/10.5479/ADS/bib/2015ivoa. spec.0617D

Dowler, P., Bonnarel, F. and Tody, D. (2015), ‘IVOA Simple Image Access
Version 2.0’, IVOA Recommendation 23 December 2015.
http://doi.org/10.5479/ADS/bib/2015ivoa.spec.1223D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data Access
Layer Interface Version 1.0°, IVOA Recommendation 29 November 2013,
arXiv:1402.4750.
http://doi.org/10.5479/ADS/bib/2013ivoa.spec.1129D

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0°, IVOA Recommendation 27 March 2010, arXiv:1110.0497.
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D

Graham, M., Rixon, G. and Grid andWeb Services Working Group (2011),
‘IVOA Support Interfaces Version 1.0’, IVOA Recommendation 31 May
2011, arXiv:1110.5825.
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.0531G

Ochsenbein, F., Taylor, M., Williams, R., Davenhall, C., Demleitner, M.,
Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Sza-
lay, A. and Wicenec, A. (2013), ‘VOTable Format Definition Version 1.3’

25

http://www.ietf.org/rfc/rfc2119.txt
http://doi.org/10.5479/ADS/bib/2014ivoa.spec.0523D
http://doi.org/10.5479/ADS/bib/2005ivoa.spec.1231D
http://doi.org/10.5479/ADS/bib/2015ivoa.spec.0617D
http://doi.org/10.5479/ADS/bib/2015ivoa.spec.1223D
http://doi.org/10.5479/ADS/bib/2013ivoa.spec.1129D
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.0531G

DRAFT - please do not distribute

IVOA Recommendation 20 September 2013.
http://doi.org/10.5479/ADS/bib/2013ivoa.spec.09200

Richardson, L. and Ruby, S. (2007), RESTful Web Services, O’Reilly.

Tody, D., Micol, A., Durand, D., Louys, M., Bonnarel, F., Schade, D.,
Dowler, P., Michel, L., Salgado, J., Chilingarian, I., Rino, B., de Dios
Santander, J. and Skoda, P. (2011), ‘Observation Data Model Core Com-
ponents, its Implementation in the Table Access Protocol Version 1.0°,
IVOA Recommendation 28 October 2011, arXiv:1111.1758.
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.1028T

26

http://doi.org/10.5479/ADS/bib/2013ivoa.spec.0920O
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.1028T

	Introduction
	The Role in the IVOA Architecture
	SODA Service in the Registry
	SODA Service from Data Discovery
	SODA Service from DataLink

	Motivating Use Cases

	Resources
	{sync} resource
	{async} resource
	Examples: DALI-examples
	Availability: VOSI-availability
	Capabilities: VOSI-capabilities

	Parameters for SODA {sync} and {async}
	Parameter multiplicity
	Common Parameters
	ID

	Filtering Parameters
	MOC
	POS
	CIRCLE
	POLYGON
	BAND
	TIME
	POL

	Filtering parameters and ObsCore data model
	Three-Factor Semantics

	Integration of Service Capabilities
	SODA Service Descriptor from Data Discovery
	SODA Service Descriptor from DataLink
	Finding a SODA Service in the Registry

	{sync} Responses
	Successful Requests
	Errors

	{async} Responses
	Full SODA Descriptor example
	Changes from Previous Versions
	Changes from PR-SODA-20160429
	Changes from WD-SODA-1.0-20151212
	Changes from WD-SODA-1.0-20151120
	Changes from WD-AccessData-1.0-20151021
	Changes from WD-AccessData-1.0-20140730
	Changes from WD-AccessData-1.0-20140312

	References

