
Security Challenges in AuthVO:
Managing Authorization Across
Methods
Jesus Salgado - DSP Session
IVOA Nov 2025, Görlitz

Authentication/Authorisation

As presented by Mark, we have been trying to add support for
authentication/authorisation methods in IVOA through AuthVO

Currently, two methods are supported in the IVOA (headless):

- Basic Authentication (also cookies)
- Certificates

Bearer Tokens are required to have a complete set as it is the more
standard method in new technologies

Basic Authentication (RFC 7617)

Client sends credentials as Authorization: Basic base64(username:password)

IVOA usage:

- Standard ID: ivo://ivoa.net/sso#BasicAA
- Used mainly for legacy or low-security services.
- MUST be used only over HTTPS to avoid credential leakage.

VO extension:

- Some services accept API tokens instead of passwords → username:
token, password: <api-key>

- Simple to script and integrate but lacks scope, expiry, or refresh.

Certificate-based Authentication (TLS with Password)

Client authenticates via X.509 certificates during TLS handshake or sends
password over HTTPS using POST parameters (username, password)

IVOA usage:

- Standard ID: ivo://ivoa.net/sso#tls-with-password
- Historically used for grid or VOSpace services.

Current status:

- Still supported for backward compatibility.
- Being phased out in favor of federated OIDC login and bearer tokens.

Why Tokens?

Aspect Basic / Certificate Authentication Token-based (OAuth2 / OIDC)

Where
credentials are
entered

Directly in the client (e.g., command-line,
application config, or script).

Entered only on a trusted Identity
Provider (IdP) web page.

Credential
exposure risk

High — passwords or private keys can be
stored in plain text or intercepted.

Low — client never sees the password;
only receives a temporary token.

Scope and
lifetime

Full account access, often without expiry. Limited scope (e.g., “read data”),
short-lived access tokens with refresh
support.

Usability Simple but insecure; users must retype or
store passwords.

Slightly more complex initially, but safer
and reusable through refresh tokens.

Federation /
SSO

Difficult — credentials tied to one service or
certificate issuer.

Built-in federation through OIDC
(eduGAIN, ORCID, etc.).

How to exploit the problem: Compromised Client (or evil clients)

Expose it!

A lot easier sharing
scripts/workflows/notebooks between users

Always download TOPCAT from Mark’s
pages!!

Token Support

Token Support: RFC 8628 OAuth 2.0 Device Authorization or "device code flow"

Service
AuthVO: Access a token protected service

Denied. Needs token from issuer = https://ska.issuer

IAM
RFC 7591: Dynamically register client
RFC 8414: Discover IAM metadata

RFC 8628: Grant Device

VO
Client

User Code

Login
&
Grant

(Once Granted) Get Token
Token

Token

Token Support: RFC 8628 OAuth 2.0 Device Authorization or "device code flow"

Evil
Service

AuthVO: Access a token protected service
Denied. Needs token from issuer = https://ska.issuer

IAM
RFC 7591: Dynamically register client
RFC 8414: Discover IAM metadata

RFC 8628: Grant Device

VO
Client

User Code

Login
&
Grant

(Once Granted) Get Token
Token

Token

How to prevent this?

● Obtain, from a trustable source, the services that are allowed to request
tokens from a particular identity provider (or services checked internally)

● Clients should check from this list if the service is inside the list (if not
done in the server)

● Please notice that usually these services are not registered services as
such (it could be, e.g. links inside a DataLink response)

○ Some connections could be done to the original service registered (e.g. TAP) but it is not
guaranteed

● Approaches:
○ Using RFCs (thanks to J. Tocknell, R. Allbery, A. Damian and M. Taylor)
○ A Plan B?

Using RFCs: RFC 9728 - Protected Resources

{"issuer": "https://auth.example.com/", "authorization_endpoint":
"https://auth.example.com/authorize", "token_endpoint":
"https://auth.example.com/token", "userinfo_endpoint":
"https://auth.example.com/userinfo", "jwks_uri":
"https://auth.example.com/.well-known/jwks.json",
"scopes_supported": ["openid", "profile", "email", "read", "write"],
"response_types_supported": ["code", "token", "id_token"],
"grant_types_supported": ["authorization_code", "refresh_token",
"client_credentials"],

"protected_resources": ["https://api.example.com/",
"https://storage.example.com/", "https://compute.example.com/]

}

● RFC 9728 is like an
extension of RFC 8414:
Discover ISS metadata

● It contains (as Optional!) a
list of protected_resources

● This info is the one we need
● However, it is not globally

implemented (quite new)
(and the INFO is in an
optional field)

https://auth.example.com/
https://auth.example.com/authorize
https://auth.example.com/token
https://auth.example.com/userinfo
https://auth.example.com/.well-known/jwks.json
https://api.example.com/
https://storage.example.com/
https://compute.example.com/

RFC 8707: Resource Indicator

RFC 8707: Resource Indicator

You can specify the resource that asked for the token

GET
/as/authorization.oauth2?response_type=token&client_id=example-client&state=XzZaJlcwYew1u0QBrRv_Gw&r
edirect_uri=https://client.example.org/&resource=https://api.example.com/app/ HTTP/1.1

Internally, this is checked against the internal list of resources and also, by the issued token’s
aud claim SHOULD reflect that resource as an extra confirmation

{"iss": "https://auth.example.com/", "aud": "https://api.example.com/app/", "sub":
"user12345", "exp": 1710307200, "iat": 1710303600, "scope":
"read:messages write:messages"}

Finally, we could define a reduced scope (e.g. “voread”) so VO clients could ensure that this
token is only used for VO read access

RFC 9207: Issuer in the token

Finally, using RFC 9207: Issuer
in the token, client can confirm
that the issuer is the one
expected

- If the issuer was the real
one, client can find the
attack verifying the
metadata document from
canonical place

- It the issuer is also evil,
client will find a
discrepancy with the one in
the token (RFC 9207)

{"issuer": "https://evil.com/", "authorization_endpoint":
"https://auth.example.com/authorize", "token_endpoint":
"https://auth.example.com/token", "userinfo_endpoint":
"https://auth.example.com/userinfo", "jwks_uri":
"https://auth.example.com/.well-known/jwks.json",
"scopes_supported": ["openid", "profile", "email", "read", "write"],
"response_types_supported": ["code", "token", "id_token"],
"grant_types_supported": ["authorization_code", "refresh_token",
"client_credentials"],

"protected_resources": ["https://evil.com/"]

}

https://auth.example.com/
https://auth.example.com/authorize
https://auth.example.com/token
https://auth.example.com/userinfo
https://auth.example.com/.well-known/jwks.json
https://api.example.com/

Reduce the scope

- All VO clients will use a
dynamic registration
method

- Either by client request
(assuming a well-behaved
client) or by setting at all
dynamic registered clients,
we can define a reduce
scope (so this token could
be only used temporarily to
access a internal VO
resource access)

{"exp": 1731270341, "iat": 1731266741, "auth_time": 1731266740,"jti":
"b47a0b4f-8b8f-4c5e-bf0e-2a9f8cba0e0a", "iss":
"https://iam.indigi.org/auth/realms/vo", " "sub":
"af36d6c9-3b85-49a3-9fa9-3e8a48f8b95d", "typ": "Bearer","azp":
"dynamic-client-abc123","session_state":
"54e72b1d-0c84-4b17-bc84-01a66f4238b5",

 "scope": "vo.read",

 "client_id": "dynamic-client-abc123", "preferred_username": "user1", }

So, in summary:

We can check if the service is authorised to request a token by:

- RFC 9728 - Protected Resources

We can send information about the service requesting the token to the Token
Issuer by:

- RFC 8707: Resource Indicator

We can verify the issuer in the token by:

- RFC 9207: Issuer in the token

We can reduce the scope

However:

RFC General industry-status Keycloak INDIGO IAM

RFC 9728
(OAuth 2.0
Protected
Resource
Metadata)

Just published in April 2025;
adoption is still nascent. (IETF
Datatracker)

No clear evidence of full
support yet; no official
Keycloak doc says it
implements RFC 9728.

No public documentation
found indicating full support
of RFC 9728 by INDIGO
IAM.

RFC 8707
(Resource
Indicators for
OAuth 2.0)

Well-known spec; some
implementations support parts,
but many gaps remain. (Solo)

Support is not yet complete: there is
ongoing discussion/issue tracking in
Keycloak about implementing RFC
8707. (GitHub)

No specific documentation
found for INDIGO IAM
support of RFC 8707; likely
partial or custom.

RFC 9207
(Authorization
Server Issuer
Identification)

Standardized in 2022; many
implementations support the iss
parameter in OAuth flows. (IETF
Datatracker)

Keycloak does support the iss
parameter as required by RFC 9207
(noted in release/upgrading guides).
(Keycloak)

While not explicitly
documented, given
Keycloak support and
typical OAuth stacks, it is
likely supported or
configurable.

https://datatracker.ietf.org/doc/rfc9728/?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/rfc9728/?utm_source=chatgpt.com
https://www.solo.io/blog/part-two-mcp-authorization-the-hard-way?utm_source=chatgpt.com
https://github.com/keycloak/keycloak/discussions/35743?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc9207?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc9207?utm_source=chatgpt.com
https://www.keycloak.org/docs/latest/upgrading/index.html?utm_source=chatgpt.com

So:

- A very good solution using standards

But

- Unclear roadmap and timeline to use these RFCs
- It depends on implementations on other teams (not related to IVOA)

- Indigo IAM team contacted (CERN/WLCG)
- For other commercial Token Issuers, we do not have roadmap or influence

A Plan B?

The only option that is fully on IVOA hands is to
reimplement protected_resources using our services,
e.g. into the IVOA registry

Create a credentials_issuer new registry type and let
authority managers to update the services

Nobody likes too much this approach but it is the only
option to ensure we have control on the development
roadmap

CredentialsProvider

<ri:Resource
xmlns:ri=http://www.ivoa.net/xml/RegistryInterface/v1.0
xmlns:auth=http://www.ivoa.net/xml/AuthVO/v1.0
xsi:type="auth:CredentialsProvider"
status="active"
updated="2025-10-06">

 <ri:identifier>ivo://ivoa.net/auth/iam.example.org</ri:identifier>
 <ri:curation>

<ri:publisher>Example Credentials Issuer Service</ri:publisher>
<ri:contact>

 <ri:name>Authentication Support</ri:name>
 <ri:email>support@example.org</ri:email>

</ri:contact>
 </ri:curation>
 <!-- Bearer token authentication (OAuth2/OIDC) -->
 <auth:method type="bearer_token">

<auth:issuer>https://iam.example.org/</auth:issuer>
<!-- VO services allowed to advertise this IAM in their challenges -->
<auth:allowedServices>

 <auth:service>https://data.example.org/tap</auth:service>
 <auth:service>https://data.example.org/datalink</auth:service>
 <auth:service>https://archive.example.org/soda</auth:service>

</auth:allowedServices>
 </auth:method>
</ri:Resource>

That would imply:

- Control on the registration of
elements of this type

- Control on the registry
content

- Control on the registry
records dissemination

- TLS?

Current main approach:

- Evaluate, if possible, when
support to required RFC will
be obtained in Token Issuers

http://www.ivoa.net/xml/RegistryInterface/v1.0
http://www.ivoa.net/xml/AuthVO/v1.0
https://iam.example.org/%3c/auth:issuer
https://data.example.org/tap%3c/auth:service
https://data.example.org/datalink%3c/auth:service
https://archive.example.org/soda%3c/auth:service

Summary

- Current accepted authentication methods could be hacked using
compromised clients

- Bearer tokens are more secured at client level but we need to mitigate
possible “evil” clients

- A solution has been solved using standard (emerging) RFCs
- Only alternative under IVOA control is using VO resources (like registry)
- Current approach is to evaluate when those RFCs will be implemented and

compare with roadmap of astronomical missions

