
- 1 -

Simple Image Access Version 2.0

International

Virtual

Observatory

Alliance

Simple Image Access Protocol

Version 2.0 (draft Nov09)
IVOA Working Draft 2009 November 4

This version:
Draft November 4, 2009

Latest version:
Draft November 4, 2009

Previous versions:
http://www.ivoa.net/Documents/cover/SIA-20090521.html (SIA V1.0)

Draft September 21, 2009

Editors:

D. Tody, F. Bonnarel

Authors:
F. Bonnarel, D. Durand, A. Micol, A. Richards, J. Salgado, D. Tody

- 2 -

Simple Image Access Version 2.0

Abstract
This is a draft-in-progress of version 2.0 of the Simple Image Access (SIA) proto-
col. SIA provides capabilities for both discovery and access to image data in the
VO. Herein an image is defined as a regular array of sample values with associ-
ated metadata. Both two-dimensional images and multi-dimensional image cubes
(hypercubes) containing some combination of spatial, spectral, time, and polariza-
tion axes are supported.

Status of This Document
This is an internal Working Draft. The document is incomplete at this point, and is
intended only for discussion within the author group.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by oth-
er documents at any time. It is inappropriate to use IVOA Working Drafts as refer-
ence materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents
1 Introduction 5

2 Interface Concepts (informative) 5

2.1 Images and Image Cubes 5

2.2 Virtual Data 6

2.3 Region Of Interest (ROI) 6

2.4 Data Derivation 7

2.4.1 Data Source 7

2.4.2 Creation Type 7

2.5 Service Type 8

2.6 Data Cube Access 9

3 Interface Overview (informative) 9

http://www.ivoa.net/Documents/

- 3 -

Simple Image Access Version 2.0

3.1 Request Format 9

3.1.1 Parameters 10

3.1.2 Parameter Values 10

3.1.3 Error Response 10

3.2 Synchronous and Asynchronous Requests 11

3.3 Interface Summary 11

3.4 Request Examples 12

4 Requirements for Compliance 13

4.1 Mandatory Capabilities 13

4.2 Advanced Capabilities 13

5 Service Operations 14

5.1 QueryData 14

5.1.1 Use of Parameters as Query Constraints 14

5.1.2 Mandatory Query Parameters 15

5.1.2.1 POS 15

5.1.2.2 SIZE 16

5.1.2.3 REGION (optional) 18

5.1.2.4 INTERSECT (optional) 18

5.1.2.5 BAND 19

5.1.2.6 TIME 19

5.1.2.7 POL 19

5.1.2.8 FORMAT 20

5.1.3 Recommended and Optional Query Parameters 20

5.1.3.1 SPECRES/RP 21

5.1.3.2 SPATRES 21

5.1.3.3 TIMERES 21

5.1.3.4 FLUXLIMIT 21

5.1.3.5 TARGETNAME 22

5.1.3.6 TARGETCLASS 22

5.1.3.7 ASTCALIB 22

5.1.3.8 WAVECALIB 22

5.1.3.9 FLUXCALIB 22

5.1.3.10 PUBDID 22

5.1.3.11 CREATORDID 23

5.1.3.12 COLLECTION 23

- 4 -

Simple Image Access Version 2.0

5.1.3.13 TOP 23

5.1.3.14 MAXREC 24

5.1.3.15 MTIME 24

5.1.3.16 COMPRESS 24

5.1.3.17 RUNID 24

5.1.4 Service-Defined Parameters 25

5.2 Query Response 25

5.2.1 Query Response Metadata 26

5.2.2 Types of Metadata 27

5.2.3 Query Metadata 29

5.2.3.1 Query.Score 29

5.2.4 Association Metadata 29

5.2.4.1 MultiFormat Association 30

5.2.4.2 Association.Type 30

5.2.4.3 Association.ID 30

5.2.4.4 Association.Key 31

5.2.5 Access Metadata 31

5.2.5.1 Access Reference 31

5.2.5.2 Output Format 32

5.2.5.3 Dataset Size Estimate 32

5.2.5.4 Access Parameters: 32

5.2.6 Data Model Metadata 33

5.2.6.1 General Dataset Metadata 33

5.2.6.2 Dataset Identification and Provenance Metadata 33

5.2.6.3 Curation Metadata 35

5.2.6.4 Astronomical Target Metadata 35

5.2.6.5 Coordinate System Metadata 36

5.2.6.6 Dataset Characterization Axis Metadata 36

5.2.6.7 Characterization Coverage Metadata 37

5.2.6.8 Characterization Resolution and Sampling Metadata 38

5.2.6.9 Characterization Accuracy and Error Metadata 38

5.2.7 Mapping Metadata 39

5.2.8 Additional Service-Defined Metadata 40

5.2.9 Metadata Extension Mechanism 41

5.3 Image Retrieval 41

5.3.1 Successful Output 42

- 5 -

Simple Image Access Version 2.0

5.3.2 Error Response 42

5.4 AccessData 42

5.4.1 Logical Access Model (informative) 43

5.4.2 Input Parameters 45

5.4.2.1 Introduction 45

5.4.2.2 Input Dataset 46

5.4.2.3 Filter Parameters 46

5.4.2.4 Image Geometry and WCS 47

5.4.2.5 Image Section 48

5.4.2.6 Functions 48

5.4.2.7 Other Parameters 48

5.4.3 Request Response 49

5.5 StageData (optional) 49

5.5.1 Input Parameters 49

5.5.2 Request Response 49

5.6 GetCapabilities (mandatory) 49

5.7 GetAvailability (mandatory) 49

6 Basic Service Elements 49

7 Service Registration 50

8 Service Metadata 50

Appendix A: “Appendix Title” 50

References 50

1 Introduction
To be added. Describe scope of SIAV2.

2 Interface Concepts (informative)

2.1 Images and Image Cubes
An image in SIA is a multidimensional array of sample values (pixels or voxels)
with associated metadata, consistent with the “image” concept as used within as-
tronomy (e.g., image as in the sense of a FITS image, although graphics images
are possible as well). Sample values are typically physical measurements having
an integer, floating, or complex flux value of some sort.

In principle images may be of any dimension. SIA deals primarily with two-dimen-
sional (2D) images or with image “cubes” (images of at most three or four dimen-

- 6 -

Simple Image Access Version 2.0

sions, also sometimes referred to as hypercubes). In general when we refer to an
“image” object we may mean either a 2D image or a multidimensional cube.
Cubes typically have a spatial coordinate system on the first two image axes, and
a spectral, time, or polarization coordinate system on the third or possibly fourth
image axis. 2D images typically have two spatial axes although other combina-
tions are possible, for example a longslit spectrum is a 2D image with one spatial
and one spectral axis. In general any variation is possible which can be described
with the associated world coordinate system (WCS). While the WCS described
here are the most common ones for observational astronomy, more specialized
WCS are possible, e.g., for solar and planetary data or for synthetic data from the-
oretical models.

Although a 1D image is also possible, usage of 1D images within astronomy is
rare except for spectra, which have explicit support within VO via the SSA (simple
spectral access) interface.

2.2 Virtual Data
A virtual dataset is a data object which can be described in a data query, but
which may not physically exist until it is accessed, at which time it is created on
the fly by the service. A typical example is a “cutout” (subset) of an image. Image
access in the VO often deals with virtual data to offload computation to the service
as well as to minimize the amount of data that has to be transferred over the net-
work. In some cases this can make a tremendous difference, for example a data
cube may be hundreds of gigabytes in size, but a client may require only a small
region for analysis. Other services may generate images on the fly from more fun-
damental data, e.g., visibility or event data.

2.3 Region Of Interest (ROI)
Although SIA can be used to find and download entire images, often the client is
only interested in a specific region of the space sampled by the individual image
or data collection. We call this the region of interest (ROI). The ROI is defined
by the spatial, spectral, and temporal boundaries of the region required by the cli-
ent for analysis. In some cases the type of polarization desired is specified as
well. While the ROI is commonly specified this does not have to be the case for
data discovery queries: any element of the ROI may be omitted, or the entire ROI
may be omitted so long as a valid query is posed (in particular the spatial region
no longer needs to be specified as was the case in SIA version 1.0).

The specified ROI can be a simple search region (for a service which returns “ar-
chival” images), but in general it specifies the ideal image desired by the client.
Often in data analysis scenarios the client application needs image data in a
specified region of the sky. Ideally images will be available which exactly match
the ROI. Delivering the “ideal image” may be possible when an image is com-
puted on the fly by the service.

- 7 -

Simple Image Access Version 2.0

2.4 Data Derivation
Data can come from a variety of sources, and may go through various types of
processing, including by the data access service itself, before being delivered to a
client analysis application. It is important for analysis to understand the origin of
the data and what processing it has undergone. To address this issue we intro-
duce two new concepts, data source and creation type.

2.4.1 Data Source
The data source specifies where the data originally came from, that is, the data
collection to which the service provides access. The following values are currently
defined:

survey A survey dataset, which typically covers some region of ob-
servational parameter space in a uniform fashion, with as
complete as possible coverage in the region of parameter
space observed.

pointed A pointed observation of a particular astronomical object or
field. Typically these are instrumental observations taken as
part of some PI observing program. The data quality and
characteristics may be variable, but the observations of a
particular object or field may be more extensive than for a
survey.

custom Data which has been custom processed, e.g., as part of a
specific research project.

theory Theory data, or any data generated from a theoretical model,
for example a synthetic image or spectrum.

artificial Artificial or simulated data. This is similar to theory data
but need not be based on a physical model, and is often used
for testing purposes.

2.4.2 Creation Type
The creation type describes the process used to produce the dataset as returned
by the service, from the data source. Typically this describes only the processing
performed by the data service, but it could describe some additional earlier proc-
essing as well, e.g., if data is partially precomputed. The creation type is espe-
cially important for virtual data and for data which is derived from the parent data
set by some complex form of processing. The following values are currently de-
fined:

archival The entire archival or project dataset is returned. Transfor-
mations such as metadata or data model mediation or for-
mat conversions may take place, but the content of the da-

- 8 -

Simple Image Access Version 2.0

taset is not substantially modified (e.g., all the data is re-
turned and the sample values are not modified).

cutout The dataset is subsetted in some region of parameter space
to produce a subset dataset. Sample values are not modi-
fied, e.g., cutouts could be recombined to reconstitute the
original dataset.

filtered The data is filtered in some fashion to exclude or alter por-
tions of the dataset, e.g., passing only data in selected re-
gions along a measurement axis, or processing the data in a
way which recomputes the sample values, e.g., due to in-
terpolation or flux transformation. Filtering is often com-
bined with other forms of processing, e.g., projection.

mosaic Data from multiple non- or partially-overlapping datasets
are combined to produce a new dataset.

projection Data is geometrically warped or dimensionally reduced by
projecting through a multidimensional dataset.

imageExtraction Extraction of an image from another dataset, e.g., on-the-
fly generation of an image from more fundamental non-
image data (as opposed to a cutout or projection of an exis-
ting image).

spectralExtraction Extraction of a spectrum from another dataset, e.g., extrac-
tion of a spectrum from a spectral data cube through a si-
mulated aperture (not relevant for SIA).

catalogExtraction Extraction of a catalog of some form from another dataset,
e.g., extraction of a source catalog from an image, or ex-
traction of a line list catalog from a spectrum (not valid for
a SIA service).

The full creation type may involve more than one of these operations, for example,
both projection and filtered, or both image extraction and filtered.

This list is by no means complete in general astronomical data processing terms,
but is intended to express only the types of operations which might take place dur-
ing VO data access, where subsetting, filtering, projection, image extraction, etc.,
are all defined operations. Other values may be added in the future. The creation
type is not intended to describe the processing done to produce the data collec-
tion itself, which the service is used to access.

2.5 Service Type
Not all SIA services are of the same type: services are further classified by their
subtype, indicating how they generate the image returned by the service. The sub-
type of a SIA service is similar to the dataset creation type as described in section

- 9 -

Simple Image Access Version 2.0

2.4.2; usually the creation type and the SIA service subtype are the same, but this
is not always the case. A simple service which returns only entire archival images
is an “archival” SIA service. A service which can return a subregion of a larger
image is a “cutout” service. A SIA service which can combine multiple input im-
ages is a “mosaic” service (a mosaic service could also do cutouts if presented
with a sufficiently small ROI). A SIA service which dynamically generates an im-
age from more fundamental data, e.g., visibility or event list, is an “imageExtrac-
tion” service.

[An issue is whether to permit a given service to support more than one type of im-
age generation. Can the same service support both archival and cutout access
for example? These could easily be separate capabilities of the same service, but
then we might need a way for the client to specify the type of output desired. Or,
the service could describe all the data available and let the client decide what type
of image to retrieve.]

2.6 Data Cube Access
A special subtype of SIA service is one which deals only with 2D images. A SIA
service which is capable of cube access may also support 2D image access
(hence for example would be capable of logically associating a cube with any re-
lated 2D projections). Image cube support is an advanced capability and if pro-
vided is indicated in the service capabilities description.

3 Interface Overview (informative)
The basic form of a SIA service (or any other second generation DAL service) is
specified in detail in section XX. In the current section we merely summarize the
basic elements of a standard data service.

3.1 Request Format
In general a service may implement multiple operations, such as queryData; alto-
gether these define the interface to the service. Interfaces may change with time
hence are versioned. It is possible for a given service implementation to simulta-
neously expose multiple interfaces or versions of interfaces.

The SIA interface described in this document is based on a distributed computing
platform (DCP) comprising Internet hosts that support the Hypertext Transfer Pro-
tocol (HTTP). Thus, the online representation of each operation supported by a
service is composed as a HTTP Uniform Resource Locator (URL).

A request URL is formed by concatenating a baseURL with zero or more opera-
tion-defined request parameters. The baseURL defines the network address to
which request messages are to be sent for a particular operation of a particular
service instance on a particular server. Service operations generally share the
same baseURL but this is not required.

- 10 -

Simple Image Access Version 2.0

3.1.1 Parameters
Parameters may appear in any order. If the same parameter appears multiple
times in a request the operation is undefined (if alternate values for a parameter
are desired the range-list syntax may be used instead). Parameter names are
case-insensitive. Parameter values are case-sensitive unless defined otherwise
in the description of an individual parameter.

All operations define the following standard parameters:

REQUEST The request or operation name, e.g., “queryData” (mandatory).

VERSION The version number of the interface (optional).

The values of both the REQUEST and VERSION parameters are case-insensi-
tive.

A given service instance may support multiple versions of the SIA interface, which
includes both the input parameters and the query response with all of its complex
metadata. By default the service assumes the highest standard version which is
implemented (access to any experimental versions supported by a service re-
quires explicit specification of the version by the client). Explicit specification of
the interface version assumed by the client is necessary to ensure against a run-
time version mismatch, e.g., if the client caches the service endpoint but a newer
version of the service is subsequently deployed. If desired the client can omit the
VERSION parameter to disable runtime version checking, and default to the high-
est version standard interface implemented by the service.

All other request parameters are defined separately for each service operation.

3.1.2 Parameter Values
Integer numbers are represented as defined in the specification of integers in
XML Schema Datatypes. Real numbers are represented as specified for double
precision numbers in XML Schema Datatypes. Sexagesimal formatting is not
permitted, either for parameter input or in output metadata, other than in ISO
8601 formatted time strings (sexagesimal format is fine for a user interface but in-
appropriate for a lower level machine interface, where it only complicates things).

SIA defines a special range-list format for specifying numerical ranges or lists of
ranges as parameter values. For example, “1E-7/3E-6;source“ could specify
a spectral bandpass defined in the rest frame of the source. The syntax supports
both open and closed ranges. Ranges or range lists are permitted only when ex-
plicitly indicated in the definition of an individual parameter. For a full description
of range list syntax refer to section XX.

3.1.3 Error Response
In the case of a service-level error, service operations must return a VOTable
containing an INFO element with name QUERY_STATUS and the value set to
“ERROR”. More fundamental service or protocol errors may result in an HTTP lev-
el error, hence a client program should be prepared to handle either response. A

- 11 -

Simple Image Access Version 2.0

null query, that is a queryData which does not find any data, is not considered an
error. More information on error responses is given in section XX.

3.2 Synchronous and Asynchronous Requests
A service operation which executes synchronously normally does not return a re-
sponse to the client until the operation completes (the exception is an operation
which streams data back to the client). An asynchronous operation returns an im-
mediate response to the client indicating whether or not the request was ac-
cepted, with the operation continuing to execute as a background job on the serv-
er. A service operation which executes asynchronously performs the same action
as a synchronous request, but may take an arbitrarily long time to execute.

SIA uses the VO standard Universal Worker Service (UWS) pattern to manage
asynchronous requests [XX]. This provides a standard mechanism for submitting
and monitoring asynchronous requests regardless of the context (hence the
mechanism is not specific to SIA).

In terms of the service interface, the primary difference between a synchronous
and asynchronous request is the URL used to submit the request to the service.
A synchronous request is indicated by appending “/sync” to the service base-
URL; an asynchronous request is indicated by appending “/async”. Synchro-
nous requests may be submitted using either HTTP GET or POST. Asynchro-
nous requests must be submitted using HTTP POST, as required by the HTTP
protocol (this is required since an asynchronous request changes state on the
server). In order to provide a consistent URL generation method, the request type
suffix (/sync or /async) is required regardless of the service capabilities. The re-
quest parameters are the same in either case.

3.3 Interface Summary
SIA defines the following service operations:

queryData Find and describe data matching the specified query
constraints. An access reference, provided for each
such data object, may be used to retrieve the described
dataset, which may be computed on-demand by the
service if virtual data is referenced. Support for syn-
chronous execution is mandatory. The request may
optionally execute asynchronously if supported by the
service.

accessData Directly access a specific dataset or data collection,
computing and returning the specified virtual image.
This may be used to repeatedly access portions of a
large image or data collection. Used for precision data
access. Support for synchronous execution is manda-
tory. The request may optionally execute asynchro-
nously if supported by the service.

- 12 -

Simple Image Access Version 2.0

stageData Request computation of one or more images, as de-
scribed in a prior call to queryData. The request exe-
cutes asynchronously. Images are staged to storage
local to the service as they are computed, and may lat-
er be retrieved by the client application.

getCapabilities Describe the capabilities of the individual service imple-
mentation. This information is cached in the Registry
and may be used to find services with the required ca-
pabilities. Synchronous only.

getAvailability Verify that the service is up and running normally, and
ready to accept client requests. Synchronous only.

In a typical scenario the client would issue a queryData to find data of interest, fol-
lowed by one or more synchronous HTTP GET operations to retrieve images ref-
erenced in the query response. If many images are to be requested or image
generation is expected to be computationally intensive, a stageData request could
be issued to cause the computation to run asynchronously; a sequence of syn-
chronous GET operations could still be used to retrieve the generated images fol-
lowing completion of the data staging job. If more advanced image generation is
required the accessData request would be used, for example to reproject an im-
age or to perform repeated precision access to a large data cube.

In most cases where the same query is being posed to many services to broadly
search for data for a particular analysis, queryData is preferable as it will find all
data in a certain region of interest in parameter space regardless of the type of
service or the detailed capabilities of each individual service. If a given service is
capable of generating virtual data it may get closer to what is requested with a cut-
out or projection; otherwise archival images will be found which overlap the ROI or
otherwise match the specified query constraints. For more precision analysis
where the client wants to precisely specify how to generate an image accessData
is preferred, although it may require more knowledge on behalf of the client of the
characteristics and capabilities of the specific data collection, image, or service
being accessed. An iterative approach is possible, using queryData to find data of
interest, possibly followed by accessData for precision access to specific datasets.
Combinations are also possible, e.g., the access reference URL returned by a
queryData could itself be a (hidden, to the client) call to the service accessData
operation. Any such access reference URL could be used as input to a subse-
quent stageData request if asynchronous image generation is desirable.

These service operations are described in more detail in section XX below.

3.4 Request Examples
Some examples of basic usage of SIA follow.

Invoke a synchronous queryData to find data in a given region on the sky:
$baseURL/sync?REQUEST=queryData&POS=180.0&SIZE=0.2

- 13 -

Simple Image Access Version 2.0

Invoke an asynchronous accessData to cutout a subcube of a spectral data cube
(here PUBDID would identify the specific cube to be accessed):

curl -d “REQUEST=accessData&PUBDID=XX” \

-d “POS=180.0&SIZE=0.2&BAND=10E-3/12E-3” $baseURL/async

In this example the commonly available curl application (wget or a browser could
also be used) is used to issue a HTTP POST request to the remote UWS-based
job manager integrated into the SIA service. The query may run for an arbitrarily
long time; during execution the standard UWS facilities may be used to monitor
the job status. When the job completes the generated image can be retrieved
with a conventional synchronous HTTP GET.

4 Requirements for Compliance
The keywords “must”, “required”, “should”, and “may” as used in this document
are to be interpreted as described in the W3C specifications (IETF RFC 2119).

4.1 Mandatory Capabilities
In order to be minimally compliant a service is required to implement all ele-
ments of the SIA protocol identified as must in this document. In brief, the mini-
mal service implementation must include the following:

1. The service must implement the queryData method, providing synchro-
nous return of the query reponse encoded as a VOTable document. At
least the POS, SIZE, BAND, TIME, and FORMAT query parameters must
be supported by the service (regardless of whether these are valid for the
data being accessed). The query response must include all metadata
fields identified as mandatory in the protocol.

2. The service must support synchronous retrieval via the access reference
URL of image data referenced in the query response returned by the quer-
yData operation. An exception is where data is described which is not
available for retrieval, in which case the access reference may have a null
value (for example a dataset which has been observed but which is not
available online).

3. The getCapabilities and getAvailability operations must be provided to al-
low a client (or the resource registry) to query the capabilities of the serv-
ice, and to provide a means to monitor service availability and health.

4.2 Advanced Capabilities
A service may implement the accessData request. A service may implement
the stageData request.

A service may provide multidimensional image (image cube) support. Many
services will provide only access to 2D images.

Many services serve static archival image files or provide simple cutouts, in
which case asynchronous capabilities are not required as requests are unlikely to
time out. A service which is likely to time out while servicing a request (e.g., be-

- 14 -

Simple Image Access Version 2.0

cause generation of virtual data is computationally expensive) should provide
asynchronous capabilities via the stageData operation. If a service provides any
asychronous capabilities it may provide asychronous execution of all provided
service operations with the exception of getCapabilities and getAvailability.

A service is said to be fully compliant if, in addition to the functionality required
to be minimally compliant, the service implements all the should elements of the
interface defined herein.

A more advanced service may in addition implement other advanced capabilities
identified as may in this document.

5 Service Operations

5.1 QueryData
The purpose of the queryData operation is to find images (physical or virtual)
which satisfy the specified query constraints. The result is returned encoded as a
VOTable document wherein each row of the table describes one candidate data-
set. Referenced datasets may be directly downloaded via the given access refer-
ence URL, or passed on to the stageData operation for computation as an asyn-
chronous operation.

5.1.1 Use of Parameters as Query Constraints
A data discovery query uses parameters as query constraints to find only data of
interest to the client.

Unless otherwise specified, if the service does not support a query parameter de-
fined by the protocol it must permit the parameter to be present in the query with-
out error, even if the parameter is not actually used as a query constraint by the
service. Most parameters are used as query constraints, to narrow the selection
of data by the service. If a given parameter is not specified in the query or is not
supported by the service, or cannot be applied to the data as the necessary data-
set metadata is not available (note this is different than the case of theory data de-
scribed below), then a logical value of “all” should be assumed, meaning that the
parameter is not used to constrain the query. This allows a query to succeed
even if it includes parameters which the service does not support, so that the
same query can be submitted to multiple service instances. Since queries can be
imprecise due to missing metadata it is up to the client to analyze the query re-
sponse to further refine the query.

If a service supports a parameter but the value given cannot be parsed or is other-
wise illegal (as opposed to merely not matching any data) then an error response
should be returned to the client. If a service does not support a parameter it is not
required to parse the parameter value and report errors, i.e., it may ignore the un-
supported parameter.

If a service is required to support certain input parameters, that means that the
service should (if possible) use such a parameter to constrain a query. If this is

- 15 -

Simple Image Access Version 2.0

not done and the service merely ignores a mandatory input parameter which the
service is required to support, then it may be easy for the client to pose a query
which results in an overflow of the query response or some other error condition.
For example, if a client queries for data based only on the spectral bandpass and
the service does not support the BAND parameter, the query may overflow or be
declared invalid even though valid data is available.

Specific parameters may or may not have meaningful values for a given data col-
lection. For example, for theory data, anything having to do with time or position
on the sky may be undefined. For solar or planetary data, time is defined but the
spatial position on the celestial sphere may be undefined or not meaningful. In
such a case, where a specific value is specified for an attribute which is undefined
or has no meaning for a given data collection, the service should respond by find-
ing no matching data (for example a query based on POS, if cast to a broad range
of services, would probably not find any matching data if posed against a service
providing access to theory data). For data collections where all physical measure-
ment parameters are meaningful, for example spectra of galactic or extragalactic
astronomical targets, all parameters should be supported and used to constrain
the query, even if only imprecise values of the parameters are known for a given
dataset.

5.1.2 Mandatory Query Parameters
The following parameters must be implemented by a compliant service:

Parameter Sample value Physical unit Datatype
POS 52,-27.8 degrees; defaults to ICRS string
SIZE 0.05 degrees double
BAND 2.7E-7/0.13 meters string
TIME 1998-05-21/1999 ISO 8601 UTC string
POL any - string
FORMAT fits - string

All services must support queries containing at least these six parameters, repre-
senting coverage in the fundamental physical measurement axes, and the output
data format or formats desired by the client. Although services must support
these parameters, this does not necessarily mean that the quantity referred to is
meaningful for the class of data being queried (XX). While a compliant service
must implement these parameters and use them where possible to constrain
queries, a valid query can be composed from any combination of parameters,
and may include or omit any given parameter. If a parameter is not specified, it is
not used to constrain the query. For example if POS is not specified, data from
any spatial region, or data for which POS is undefined, will satisfy the query and
other parameters must be used to constrain the query.

5.1.2.1 POS
The central position of the region of interest (ROI). The coordinate values are
specified in list format (comma separated) with no embedded white space, as de-
fined in section XX.

- 16 -

Simple Image Access Version 2.0

Example: POS=52,-27.8

POS defaults to right-ascension and declination in decimal degrees in the ICRS
coordinate system. A coordinate system reference frame may optionally be
specified to specify a coordinate system other than ICRS. When appropriate for
the data being accessed the service must support ICRS and should support ga-
lactic and ecliptic coordinates as well (notable exceptions being services for
theory data and solar and planetary data). The reference frame is specified as a
list format modifier, with the acceptable values as defined in the respective table
of the CoordSys object in the Spectrum data model (McDowell/Tody et al. 2007),
which is in turned based upon the spatial coordinate frames defined by Table 3
(standard reference frames) in STC (Rots 2007).

Example: POS=52,-27.8;GALACTIC

Coordinates requiring more than two values are possible merely by having more
than two comma-delimited values before the qualifier.

Whether or not a service supports a specific coordinate systems for POS is a
service-defined optional capability. It is an error if a coordinate reference frame
is specified which the service does not support.

[POS,SIZE can also be used to specify the input for multi-position queries, similar
to what is specifed for TAP PQL. This still needs to be added to the specification
for SIAV2.]

5.1.2.2 SIZE
[This section has been revised from SIAV1 to attempt to more clearly describe the
use of the CAR projection for large area searches. Of course the ROI if based
upon CAR still blows up at the pole. But large area searches are much simpler
using CAR and the distinction is negligible for small regions, and regions which
extend over the pole are rare or nonexistent in practice. The alternative would be
to specify SIZE in angular units. This is ok at a fixed declination and more natural
for small regions but results in a complex N-S boundary for large regions - CAR
seems simpler for large regions. Which is the simplest approach? A related is-
sue is whether to support rotation of the ROI, but this is rarely required and is al-
ready provided by REGION and by WCS-based image generating using access-
Data. Whatever we do this needs to be clearly spelled out as this is one of the
major points of confusion with SIAV1.]

The width and height of the rectangular region of interest, defining either the ideal
image footprint (for services which generate images on the fly, e.g., a cutout serv-
ice) or the search region (for services which find static archival images intersect-
ing the specified region). Values are specified in decimal degrees in the coordi-
nate frame defined for POS, e.g., for ICRS the values would be the width in RA
and height in DEC, both specifed in decimal degrees.

- 17 -

Simple Image Access Version 2.0

Example: SIZE=0.05[,0.03]

If only a single value is given it applies to both the width and height of the search
region, otherwise the two values may be specified separately.

In the case of a service returning archival (whole) images, POS,SIZE specifies
the search region to be used to search for images. In the case of a cutout or mo-
saic service which computes images on the fly, POS,SIZE specifes the footprint
of the “ideal image” to be generated. Thus a single POS,SIZE can be used to
search for data regardless of the type of service being queried. If only discovery
of existing archival images overlapping some search region is required the RE-
GION parameter provides an alternate and more general mechanism capable of
dealing with arbitrary regions.

A special case is when SIZE=0 or is unspecified. For an archival image service
which returns whole images this tests whether the given point is in any image.
For a cutout or mosaic service this will cause a default sized image to be re-
turned. The default image size is service-defined and may be a value considered
appropriate for the service, for the given image or data collection being accessed,
or for the object (if any) at the given position.

POS and SIZE define a nonrotated, rectangular region in the specified coordinate
system. For example in the case of the ICRS coordinate frame, coordinates are
specified in right ascension and declination, using the cartesian (CAR) projection
with the region center (POS) as the reference point. The cartesian projection is
used here as it is simple and can scale easily to large regions or to the whole
sky, yet works about as well as anything else for small regions. If more precise
image searching is desired the REGION parameter can be used to more rigor-
ously specify a generalized search region. If more precise image generation is
desired then accessData can be used. Note that the use of the CAR projection
to define the ROI has nothing to do with what projection we choose for any actual
generated images.

Techical Note:
Large query regions are well defined for the CAR projection used
for the ROI. For example, a region with a DEC size of 20 and a
RA size of 360, with POS anywhere on the equator, defines a re-
gion 20 degrees wide covering the entire celestial sphere at the
equator. A region with a DEC size of 90 and a RA size of 180 at
45 degrees N would cover one half of the northern hemisphere.
Regions which extend past the pole are defined: they extend past
and over the pole in declination. The ROI is undefined if a re-
gion extends over the pole since the CAR projection blows up at
the pole, but can be approximated by assuming a RA size of 360.

Note that since SIZE is specified in terms of the coordinate frame used for POS,
the extent of the ROI can be computed by taking the central position coordinates

- 18 -

Simple Image Access Version 2.0

and simply adding or subtracting half the value of SIZE. In the case of celestial
coordinates since computations are done using the CAR (cartesian) projection,
angular measures will differ from coordinate measures by a cosine(dec) factor as
one approaches the pole (e.g, the angular extent of the ROI in RA decreases by
a cosine(dec) factor as the region approaches the pole).

It is suggested that if only a single value is given for SIZE that this be considered
as applying to the ROI size in declination (hence it is an angular extent), and a
cosine(dec) factor should be applied in computing the extent of the search region
in right ascension. The ROI in this case is thus automatically corrected for decli-
nation or latitude as the region approaches the pole. If the client supplies two
values for SIZE it is responsible for applying this correction if desired. Since
query refinement can be performed on the client side it is permitted to use ap-
proximation techniques for the search so long as the returned data is accurately
described and no data is missed. Computations for other coordinate frames
should follow a similar approach.

5.1.2.3 REGION (optional)
In the case of services which return archival images (whole images) the REGION
parameter may be used to specify the spatial region to be searched more pre-
cisely than can be done with POS,SIZE. The region is specified as a STC-S for-
matted string [XX]. When REGION is used the search region is no longer limited
to nonrotated rectangles, e.g., circles, ellipses, rotated regions, and arbitrary poly-
gons may be specified as well.

Example: Circle ICRS 148.9 69.1 2.0

A service may implement the REGION parameter. A service which implements
REGION should support at least the ICRS and GALACTIC coordinate frames, if
appropriate for the data being accessed. It is an error if the REGION parameter is
specified but is not supported by the service.

5.1.2.4 INTERSECT (optional)
A parameter that indicates how matched images should intersect the region of in-
terest. The allowed values are:

* COVERS -- The candidate image covers or includes the entire ROI.

* ENCLOSED -- The candidate image is entirely enclosed by the ROI.

* CENTER -- The candidate image overlaps the center of the ROI.

* OVERLAPS -- The candidate image overlaps some part of the ROI.

INTERSECT applies to regions specified by both POS,SIZE (in region search
mode) as well as REGION.

If this parameter is not present, INTERSECT=OVERLAPS is assumed. Calcula-
tions need not be exact, e.g., a nonrotated bounding box approximation may be
used to compute the type of intersection of a candidate image with the ROI. If the

- 19 -

Simple Image Access Version 2.0

client requires a more precise measure, the spatial intersection a target image
with the ROI may be computed precisely using the WCS metadata returned in the
output VOtable. For a cutout or mosaicing service this parameter refers to the por-
tion of the generated image containing valid (non-blank) data.

[Do we want to keep this parameter? I am not aware of any cases where anyone
has actually implemented this for SIAV1; it is possible but probably rare]

5.1.2.5 BAND
The spectral bandpass is specified in range-list format (XX) either numerically as
a wavelength value or range, or textually as a spectral bandpass identifier, e.g., a
filter or instrumental bandpass name. If a numerical value is specified as a single
value it matches any spectrum for which the spectral coverage includes the
specified value. If a two valued range is given, a dataset matches if any portion
of it overlaps the given spectral region. The range list may contain multiple ele-
ments in which case a candidate dataset matches if it matches any element of
the range list. See section XX for a more detailed discussion of range lists.

For a numerical bandpass the units are wavelength in vacuum in units of meters
(Hanisch et.al, 2005) in the rest frame of the source.

If a bandpass is specified as a string identifier it is assumed to be a bandpass
identifier such as a standard VO bandpass name (“uv”, “radio”, “optical”, etc.) as
specified in the resource metadata [RSM, Hanisch et.al, 2005] for Cover-
age.Spectral.Bandpass.

5.1.2.6 TIME
The temporal coverage (epoch of observation) is specified as a single value or
range in ISO8601 format. If the time system used is not specified UTC is as-
sumed. The value specified may be a single value or an open or closed range. If
a single value is specified it matches any spectrum for which the time coverage
includes the specified value. If a two valued range is given, a dataset matches if
any portion of it overlaps the given temporal region.

[Is ISO time all we need here? MJD could be offered as well, using a qualifier to
specify the time system used.]

5.1.2.7 POL
Specifies whether or not data is desired which measures polarization, and if so the
type of polarization desired. Possible values include “any”, “none”, “stokes”, “line-
ar”, “circular”, etc.

[This needs more careful thought to specify the possible values. For the most
part here we are concerned with data discovery, e.g., whether or not polarization
is measured at all, or whether specific types of polarization are measured such as
linear or circular. Extracting specific polarization planes is more of an issue for ac-
cessData.]

- 20 -

Simple Image Access Version 2.0

5.1.2.8 FORMAT
The FORMAT parameter specifies the allowable data formats for a retrieved im-
age. The value is a comma-delimited list as defined in section XX, where each
element can be any recognized MIME-type such as

application/fits, image/jpeg, text/html

and so forth.

In addition to the standard MIME-type format specifications defined above, the
following special shorthand values are defined:

FORMAT Meaning
all All formats supported by the service
fits Shorthand for image/fits or application/fits
graphic Any of the graphics formats: JPEG, PNG, GIF
html The image is rendered as a HTML page with annotations
If FORMAT is omitted, FORMAT=ALL should be assumed, and the service
should describe all available formats. FORMAT values are case insensitive.

[Additional predefined FORMATs can be considered as well. For example,
“text/xml” (as for SSA) for a richer alternative to FITS for returning full image
metadata.]

The FORMAT parameter describes the desired format of returned image data. If
no data is available in the specified format, a null query response should be re-
turned indicating that no data satisfying the query is available. If data is dynami-
cally generated the service may generate data in the format requested by the cli-
ent on the fly. Note FORMAT applies only to the data; the query response itself
is always returned as a VOTable.

5.1.3 Recommended and Optional Query Parameters
The following additional parameters should or may be implemented by a serv-
ice; all the “recommended” parameters are required for a fully compliant service.
In the table below and those following, mandatory parameters are indicated by
MAN, recommended parameters by REC, and optional parameters by OPT.

Parameter Sample value Unit Req Datatype
SPECRES/RP 2000 none REC double
SPATRES 0.05 degrees REC double
TIMERES 31536000 (=1yr) seconds OPT double
FLUXLIMIT ? ? OPT double

TARGETNAME mars OPT string
TARGETCLASS star OPT string
ASTCALIB absolute OPT string
FLUXCALIB relative OPT string
WAVECALIB absolute OPT string

PUBDID ADS/col#R5983 REC string

- 21 -

Simple Image Access Version 2.0

CREATORDID ivo://auth/col#R1234 REC string
COLLECTION SDSS-DR5 REC string

TOP 20 none REC int
MAXREC 5000 REC string
MTIME 2005-01-01/2006-01-01 ISO 8601 REC string
COMPRESS hcompress REC string
RUNID REC string

The spatial, spectral, and time resolution of the data may all be used as query
constraints to find data of interest. The flux limit specifies the minimum sensitivity
of data required for analysis. The target name and class may be used to search
for data for a specific target, or for a specific type of astronomical object. The
creator and publisher dataset identifiers and data collection name may be used to
precisely specify the data to be accessed. TOP and MAXREC are used to man-
age the data to be returned to the client. All parameters are explained in more
detail below.

[We may also want a parameter to enable/disable optional metadata extension
metadata, used to provide more detailed metadata such as individual image foot-
prints, detailed provenance information, instrument-specific information, and the
like.]

5.1.3.1 SPECRES/RP
The minimum spectral resolution, specified as [either] the minimum spectral reso-
lution specified as a wavelength in meters [or as] the spectral resolving power
λ/dλ in dimensionless units.

[Which or both to support needs further discussion; one possibility would be to
permit use of a “;type” qualifier to specify either resolution or resolving power.].

5.1.3.2 SPATRES
The minimum spatial resolution specified in decimal degrees. Spatial resolution
refers to the PSF of the observed signal and is independent of the pixel size of
the image so long as the image is adequately sampled.

5.1.3.3 TIMERES
The minimum time resolution, specified in seconds. For a typical image the time
resolution corresponds to the bounds of the time coverage of the exposure. For
a time cube the time resolution would refer to the time resolution along the time
axis of the image.

5.1.3.4 FLUXLIMIT
The minimum measureable flux in the image, specified in Jansky per unit area.

[What shall we use for the unit? Does anyone know how to compute this for opti-
cal data where a magnitude limit would normally be used?.]

- 22 -

Simple Image Access Version 2.0

5.1.3.5 TARGETNAME
The target name, suitable for input to a name resolver. In general it is preferable
to perform target name resolution on the client side, using POS to drive the query
performed by the service, so that any service can respond to the query. The
main reason that TARGETNAME is included at the service level is to make it pos-
sible to find images of objects that do not have a known position, for example, im-
ages of solar system planets or asteroids. If both TARGETNAME and POS are
specified, both must satisfy the query for a candidate object to be matched.

5.1.3.6 TARGETCLASS
A comma delimited list of strings denoting the types of astronomical objects to be
searched for.

Examples: star, galaxy, pulsar, PN, AGN, QSO, GRB

[We need to add a reference here to the astronomical object classification speci-
fied by the IVOA Semantics WG.

5.1.3.7 ASTCALIB
Specifies the minimum level of astrometric (spatial) calibration for acceptable da-
ta. Possible values are “absolute”, "relative", and "any" (the default). If "rel-
ative" is specified, data which have an absolute astrometric calibration will be
found as well.

5.1.3.8 WAVECALIB
Specifies the minimum level of spectral coordinate calibration for acceptable da-
ta. Possible values are “absolute”, "relative", and "any" (the default). If
"relative" is specified, spectra which have an absolute spectral coordinate calibra-
tion will be found as well.

[Note there is no TIMECALIB - it doesn’t seem to be needed as pretty much all da-
ta is time calibrated; all we need is probably resolution and error.]

5.1.3.9 FLUXCALIB
Specifies the minimum level of flux calibration for acceptable data. Possible val-
ues are “absolute”, "relative", "normalized", and “any” (the default). If
"relative" is specified, spectra which have an absolute flux calibration will be
found as well. "Normalized" refers to spectra which have been normalized by di-
viding by a reference spectrum (including continuum normalization).

5.1.3.10 PUBDID
The IVOA publisher’s dataset identifier, assigned by the publisher of a dataset.
PUBDID will uniquely identify a dataset within the collection managed by the pub-
lisher, however the same dataset published in different places may have a differ-
ent PUBDID assigned by each publisher. This differs from CREATORDID which
is unique to the data, however there is no guarantee that data creators will assign

- 23 -

Simple Image Access Version 2.0

IVOA identifiers to created datasets. A data publisher can always assign a
unique PUBDID when a dataset is published to the VO. ADS dataset identifiers
are an example of a PUBDID, but in general any publisher may assign their own
unique publisher dataset identifier. Publisher dataset identifiers may be deter-
mined by a prior query or some external means, such as another form of archive
query.

Note:
A special case of a publisher's dataset identifier is the ADS
dataset identifier, used to reference published IVOA datasets in
journal articles.

5.1.3.11 CREATORDID
An IVOA dataset identifier, assigned at creation time by the creator of the parent
data collection (survey project, observatory, etc.). Datasets may have a globally
unique CreatorDID assigned prior to publication of the data to the VO, for exam-
ple when the data is generated by a processing pipeline, or ingested into the
master archive for the data collection. This is possible since the Creator entity for
a data collection (e.g., an observatory or survey project) controls its own name-
space, which can be registered as a globally unique Authority identifier. When a
CreatorDID has been assigned this is the most universal way to refer to a data-
set, as all replicated versions will share the same CreatorDID regardless of
where they are published. Creator dataset identifiers may be determined by a
prior query or by some other means, such as another form of archive query.

Example: ivo://nrao.edu/vla#1998s2/4992a

5.1.3.12 COLLECTION
Either the IVOA resource identifier or the “shortName” of a data collection as de-
fined by the service, for example SDSS-DR6, or ivo://nrao.edu/vla. By da-
ta collection we refer to an organized, uniform collection of datasets from a single
source, for example a single data release from a survey, or an instrumental data
collection from an observatory. Unless an IVOA identifier is input, the service
should treat the search term as a case insensitive, minimum match string. For in-
stance, “dss” would match either dss1 or ESO-DSS2. Allowable data collection
references are specified in the service capabilities.

5.1.3.13 TOP
TOP limits the number of returned records in the query response table to the
specified number of top ranked ones. Records are ranked according to a “score”
heuristic (Dolensky 2006). The details of the actual heuristic used are up to the
service, but the general idea is that the better a candidate dataset matches the
query, the higher the score it receives. Metrics such as distance from the speci-
fied position, or the degree of overlap with a specified bandpass or time interval,
determine the score. If two datasets would otherwise have the same score, the
service may use other unspecified dataset characteristics, such as some intrinsic

- 24 -

Simple Image Access Version 2.0

data quality metric, to further rank candidate datasets. If the service implements
a ranking heuristic the query response table should normally be returned sorted
in order of decreasing score. TOP can also be used by the client to limit the size
of the query response table in cases where the query might find a very large
number of candidate objects.

5.1.3.14 MAXREC
The maximum number of records to be returned in the query response. This may
be used by the client to increase or decrease the built-in default limit defined by
the service, up to some maximum service-specified default. A service should typ-
ically have a modest default MAXREC, providing a reasonable query response
time, and a large upper limit on MAXREC, provided to enable large queries. Very
large values of MAXREC may allow streaming an arbitrary amount of data back
to the client.

If a query response exceeds the value of MAXREC currently in effect, MAXREC
rows of data should be returned to the client, setting the query status value to
OVERFLOW to indicate that overflow occurred. It is not an error if query over-
flow occurs.

5.1.3.15 MTIME
Find only datasets modified, created, or deleted in the given range of dates,
specified as a single element in range-list format, as an open or closed range,
with the dates specified in ISO 8601 format. Note this is not the same thing as
TIME, which refers to time of observation. MTIME may be used to periodically
query services for new or updated data. Deleted datasets are indicated by a
non-null deletion date in the Dataset.Deleted field of the query response. Serv-
ices which support MTIME should also support Dataset.Deleted (see also XX).

5.1.3.16 COMPRESS
If this flag is present, datasets returned via the getData method may optionally be
returned to the client in compressed form. Valid values are “gzip”, “hcompress”,
and “rice”. By default compressed data is not permitted.

Dataset-level compression is distinguished from protocol-level compression,
which is performed at the level of the HTTP protocol, on the entire data stream,
and is transparent to the client.

[Note: We may need an additional parameter to specify the level of compression.
Lossy compression should also be supported.]

5.1.3.17 RUNID
The RUNID is an opaque string used to associate multiple service invocations in
service logs, e.g., to identify them as all belonging to the same job or application.
RUNID is not used by SIA itself, except in cases where SIA may call another VO
service, in which case the RUNID parameter should be passed on to the called

- 25 -

Simple Image Access Version 2.0

service. The purpose of RUNID is to allow the job run ID to be logged, and in
particular, if a job involves multiple requests to multiple services, to allow all just
requests to be associated by having a common RUNID. This applies to all serv-
ice operations regardless of whether they execute synchronously or asynchro-
nously. [An exception might be getAvailability).

5.1.4 Service-Defined Parameters
The service may support additional service-defined parameters. Parameter
names must not match any of the reserved parameter names defined herein, in-
dependent of case.

Any service defined parameters should be defined in the metadata query re-
sponse (). Appendix A presents an example of this, where service defined pa-
rameters are used to dynamically generate spectra based upon a theoretical
model.

5.2 Query Response
[This section has not yet been fully integrated; in particular the Mapping model
has evolved considerably (see text file notes).]

The output returned by a query is an XML document compliant with VOTable
V1.2 or greater (VOTable 2009) and should be returned with a base MIME-type
of text/xml to enable simple display of query results in browsers using direct
rendering of the XML, or an optional style sheet. Parameterization may be used
to further refine the MIME-type, for example "text/xml;content=x-votable"
may be used to indicate that the content of the XML document returned is a VOT-
able.

Note:
The FORMAT parameter has no influence on the query response. FORMAT
applies only to the returned datasets, not to the query response. The
query response is always returned as a VOTable.

The VOTable must contain a RESOURCE element, identified with the tag type =
"results", containing a single TABLE element with the results of the query. Addi-
tional RESOURCE elements may be present, and the usage of any such elements
is defined below (extensions).

The RESOURCE element must contain an INFO with name="QUERY_STATUS". Its val-
ue attribute should be set to ”OK” if the query executed successfully, regardless
of whether any matching data were found. All other possible values for the value
attribute are described below (section ???).

Examples:
<INFO name="QUERY_STATUS" value="OK"/>
<INFO name="QUERY_STATUS" value="OK">Successful Search</INFO>

- 26 -

Simple Image Access Version 2.0

Another INFO with name="SERVICE_PROTOCOL" should contain the protocol version
number in its value attribute and the name of the service protocol as the fixed
string ”SIAV2” (see version negotiation…).

Example:
<INFO name="SERVICE_PROTOCOL" value="2.0">SIAV2</INFO>

Additional INFOs may be provided, e.g., to echo the input parameters back to the
client in the query response (a useful feature for debugging or to self-document
the query response), however this is not required.

In the query response table each row represents a different physical or virtual da-
taset which is potentially available to the client. The VOTable GROUP construct is
used to associate related groups of fields. Table FIELDs describe the attributes
of each dataset; if all datasets share the same value for an attribute it can be rep-
resented as a PARAM.

Hint:
Put constant values in PARAM elements instead of repeating them in each
table row.

5.2.1 Query Response Metadata
Names of fields and parameters are left to the service provider. UTYPEs of
standard fields are required for identification of interface elements and must be
given and must comply with the SIAV2 protocol (this document) SIAV2 utypes
are a subset of the Obs data model, considered as required for images and
cubes. UCDs should also be given when specified by the protocol (not all inter-
face or data model elements have assigned UCDs), but are not used to identify
interface or data model elements. Values for the UCDs of standard interface and
data model elements, where defined, are given in this specification.

Note:
UTYPE values must be provided to identify interface or data model ele-
ments.
UCD values for standard data model elements should be provided as
well.

The SIAV2 query response consists of a number of fields, identified by UTYPE,
grouped into component data models (or packages) of the form “<component-
name>’/’<field-name>’.’<field-name>”, as defined in the utype specification docu-
ment (Louys et al, 2009). The components of the query response are described
directly by the SIAV2 protocol (this document), but they are compliant with the
Observation data model (xxx et al, 2009). In most cases the UTYPE values are

- 27 -

Simple Image Access Version 2.0

close to the one defined for the SSA query response (Tody et al , 2008). Hence
most of the query response metadata consists of generic component data mod-
els. For example, if the Observation data model specifies obs:Target.Name this
appears in the SIAV2 query response as sia2:Target.Name exactly like in SSA
(apart from the namespace). Applications can refer to Target.Name regardless
of whether the data to be accessed is an Image or some other data object such
as a Spectrum or a Cube.

In the following, query response parameters which are mandatory, recom-
mended, or optional are indicated as such in the tables or specified more pre-
cisely in the text. Additional attributes from the Observation data model not
shown here may appear in the query response table.

When a generic data model is applied in a specific context, the requirements for
what is required, what is optional, and flexibility in what is permitted will vary de-
pending upon how the data model is being used. Hence when data model attrib-
utes are indicated as mandatory or recommended in this document, this over-
rides any similar requirements specified in the Observation data model docu-
ment. The SIAV2 query response is also more restrictive than the underlying
model; in particular the allowable units are more restrictive than what is permit-
ted in the model, in order to be more consistent with other elements of SIAV2,
and to provide more uniformity to make multiband data discovery by the client
easier. Hence within SIAV2, characterization restricts the allowable units for spa-
tial coordinates to decimal degrees.
It is difficult to specify every detail of every metadata element in this document
without burdening the text with too much detail; furthermore, many optional meta-
data values are omitted from the summary tables shown here. Full details are
given in the Observation data model document, and in a convenient summary
form in a spreadsheet which lists all metadata elements with full details for each.

Query metadata may be mapped to VOTable fields in any order, so long as fields
which are part of the GROUP construct (all the component data models are
GROUP elements) appear in consecutive table fields.

5.2.2 Types of Metadata
Metadata in the query response is grouped into a number of component data
models as summarized in the table below, and explained in more detail in the
sections which follow.

Service Metadata
Query Describes the query itself
Association Logical associations
Access Dataset access-related metadata

Data Model Metadata

- 28 -

Simple Image Access Version 2.0

Dataset General dataset metadata
DataID Dataset identification (creation)
Provenance Instrumentalm or software Provenance
Curation Publisher metadata
Target Observed target, if any
CoordSys Coordinate system frames
Char Dataset characterization
Mapping Dataset Axes Mapping or WCS

Characterization Metadata
Char/FluxAxis Observable, normally a flux measurement
Char/SpectralAxis Spectral measurement axis, e.g., wavelength
Char/TimeAxis Temporal measurement axis
Char/SpatialAxis Spatial measurement axis
Char/Polarization Polarization Axis
Char/*.Coverage Coverage in any axis
Char/*.Resolution Resolution on any axis
Char/*.SamplingPrecision Sampling or Precision on any axis
Char/*.Accuracy Accuracy and error in any axis

Mapping metadata
Image matrix mapping
WCS Mapping

Service metadata is specific to the functioning of the service itself, for example
to step through large queries or retrieve selected datasets. Data model metada-
ta describes each dataset, and is common between the SIAV2 protocol and the
Observation data model. Characterization metadata physically characterizes
the dataset in terms of the spatial, spectral, and temporal measurement axes and
the observable. Characterization is part of the data model but is broken out sep-
arately in the table above to show the major elements of the characterization
model. Most of the metadata returned by SIAV2 is generic dataset metadata,
which means it is not actually specific to images and cubes and may be used in
other DAL interfaces to describe other types of dataset, for example a catalog. It
is obvious that SIAV2 responses is very close to the SSA one. For data model
metadata, please refer to the Observation data model for details unless specified
otherwise in this document.

Each of these types of query response metadata is discussed in more detail in
the sections which follow.

5.2.3 Query Metadata
Query metadata describes the query itself.

- 29 -

Simple Image Access Version 2.0

UTYPE Description Req
Query.Score Degree of match to query params REC

5.2.3.1 Query.Score
A record with a higher score more closely matches the query parameters. The
score is expressed as a floating point number with an arbitrary scale (different
queries may return results with different scale factors and cannot be inter-com-
pared). If scoring is used, the query response table should be returned sorted in
order of decreasing values of score, with the top-scoring items at the top of the
list. The details of the heuristic used to compute the score are left to the service.
See the discussion of the TOP parameter in section …..

5.2.4 Association Metadata
Association metadata is used to describe logical associations relating datasets
described in the query response, as described in section … . Logical associa-
tions between query response records may refer to the data access operation it-
self, e.g., where the same data object is available in multiple output formats, or to
logical associations relating the physical data, e.g., where multiple primary data-
sets are part of the same observation. The same dataset may belong to multiple
associations.

UTYPE Description Req
Association.Type Type of association OPT
Association.ID Unique ID identifying the association instance OPT
Association.Key Unique key different for each element of association OPT

Each such association is described by a separate instance of the Association
model, with a defined Association Type, ID, and Key. In many cases the Associ-
ation Type and Key can be represented as fixed PARAMs, leaving only Associa-
tion.ID to be represented as a FIELD in each table row.

In general, specification of the allowable Association types is beyond the scope
of this specification. The semantic details of Associations are intended to be de-
fined either at a lower level, for a specific data collection or service, or at a higher
level, e.g., to describe complex data associations. An exception is the MultiFor-
mat association described in the next section.

5.2.4.1 MultiFormat Association
A pre-defined case is the MultiFormat association, where several records refer to
the same dataset which is available in several different output data formats. In
this case Association.Type should be set to “MultiFormat”, Association.ID can
be anything, and Association.Key should be set to “@Access.Format” to indi-
cate that the key which differentiates the elements of the association is the value

- 30 -

Simple Image Access Version 2.0

of the Access.Format field of the record. If several query response records are of
this type the association should be specified to indicate the association. In all
other cases (currently undefined by the protocol) the association may be speci-
fied.

5.2.4.2 Association.Type
A service-defined type used to indicate what type of association is being referred
to. The value should be unique within the scope of the query response. There
can be many types of logical associations. Associations provide a means of de-
scribing complex data aggregations relating multiple datasets (images in the case
of SIAV2). Association is a type of extension mechanism, and the definition of
associations is beyond the scope of SIAV2; SIAV2 like SSA merely provides the
means to define and manipulate associations. Examples of possible associa-
tions might be a multi CCD detector observation consisting of as many images
as CCD, each of which appears in the query response as an individual image, or
a group of query response records which all refer to the same dataset but differ
only in the output format.

Since the association type may be shared by many table records, it may be best
specified as a PARAM in the output VOTable, using an ID-REF to link it to the as-
sociation it refers to. An association type should be provided for each associa-
tion in the table.

5.2.4.3 Association.ID
The association ID is a string, unique within the scope of a given VOTable, identi-
fying one instance of a given association. All members of the association in-
stance share the same Association.ID. The association ID must be provided for
any association. The content of the string is up to the service. Multiple associa-
tion IDs may be provided for a single record if a record belongs to more than one
association. Note that Association.ID is unrelated to the VOTable ID, which is
used to uniquely identify the elements of a VOTable.

Extension metadata may optionally be provided to describe an association in
more detail. Extension metadata appears in the output VOTable as optional ad-
ditional RESOURCE elements (see section ….). The ID-REF mechanism may
be used to link such an extension record to the association in the main table.
The contents of an association metadata extension record are externally defined
and beyond the scope of SIAV2.

5.2.4.4 Association.Key
The association key should be provided to identify what is “different” for each
member of an association. The value is a string and may be either an arbitrary
value defined by the association, or a reference to one or more table fields which

- 31 -

Simple Image Access Version 2.0

form the association key. If a table field is referenced the ‘@’ character should be
prefixed to the VOTable ID of the referenced FIELD to indicate the indirection
(e.g., “@Format”), otherwise the literal string is used as the key. A key may con-
tain multiple elements delimited by commas.

5.2.5 Access Metadata
Access metadata is required to tell a client how to access the datasets described
in the SSA query response.

UTYPE Description Req
Access.Reference URI (URL) or template used to access the dataset MAN
Access.Format MIME type of dataset MAN
Access.Size Estimated (not actual) dataset size REC
Access.Parameters.* OPT

5.2.5.1 Access Reference
The simplets case of access reference is a URI (typically a URL) which can be
used to synchronously retrieve the specific dataset described in a row of the
query table response. If the dataset pointed to by the access reference does not
exist at query time, it will be computed on the fly when accessed.
Access Reference can also be an URI template if some of the PARAMETERS
can be filled interactively by the client during the AccessData phase. Access.Pa-
rameters will help to do this.
SIAV2 supports data staging and asynchronous data access. Support for these
functionalities is described below and is usefull to support generation of simu-
lated or synthetic data, as well as very large images retrieval.

When the access reference is a URL, it is convenient to be able to input the ac-
cess reference directly in a Web browser or other standard Web tool to access
the referenced dataset. For this reason the access reference string should be
URL-encoded if it contains any reserved URL metacharacters (the “#” character
used in dataset identifiers is particularly nasty). See also section… . The CDA-
TA construct used in earlier data access interfaces (SIAP V1.0) does not serve
the same purpose and should not be used; use URL encoding instead.

5.2.5.2 Output Format
The file format of a candidate dataset is specified by its MIME type. Both uncom-
pressed and compressed data can be indicated in this fashion.

The file format says nothing about the data model used by whatever data object
is stored in the file; this is specified by the Dataset.DataModel attribute discussed
in section …...

- 32 -

Simple Image Access Version 2.0

A single data object may be available in multiple file formats. In such a case an
association should be defined to indicate that the entries all refer to the same da-
ta object.

5.2.5.3 Dataset Size Estimate
The approximate estimated size of the dataset, specified in kilobytes, should be
given to help the client estimate download times and storage requirements when
generating execution plans. Only an approximate, order of magnitude value is
required (a value rounded up to the nearest hundred KB would be sufficient). In
the VO dataset sizes can vary by many orders of magnitude hence it is important
to know this information to optimize execution plans before attempting to down-
load data or request computation. It is preferable to return an order of magnitude
estimate of the dataset size, than no value at all. A precise value is not required.

5.2.5.4 Access Parameters:
[This should probably be handled by getCapabilties instead but is left in here for
the present to record the type of functionality which we need to describe.]

These parameters allow to describe detailed and specific access modes to the
data:

 Access.param.Interactive gives the list of interactive parameters pro-
viding optionnaly possible ranges of values (eg POS, SIZE, COM-
PRESS, etc…)

 In order to give information to the client of where to find appropriate in-
formation in the retrieved file a couple of UTypes have been defined.
Such specification is made necessary because sometimes the actual
science data is only a subpart of the retrieved file :

 Acces.param.extnum and Access.param.extname give the Extension
number and Extension name in FITS (or VOTABLE)

 Access.param.Cutout gives the cutout limit (à la “IRAF”) in Fits Array,
 Access.param.Field and acces.param.row give the name/number of

the Field/row in FITS table or VOTABLE….)

5.2.6 Data Model Metadata
The following metadata components are in common with the Spectrum data mod-
el.

5.2.6.1 General Dataset Metadata
General dataset metadata describes the overall dataset.

UTYPE Description Req Default
Dataset.DataModel Datamodel name and version MAN Obs-1.0
Dataset.Type Type of dataset MAN Image, cu-

be

- 33 -

Simple Image Access Version 2.0

Dataset.Length Number of pixels in image/cube MAN
Dataset.Deleted Set to deletion time, if dataset is deleted OPT

Dataset.DataModel is a string identifying the data model type and version used in
the described dataset. For SIAV2-compliant data this should be a value such as
"Obs-1.0", as specified in the Obs data model document for the version of the
data model being used. For pass-through of native project data some other val-
ue should be used which identifies the specific project data model used, e.g.,
"HST-STIS-1.0".

For the current SIAV2 interface, Dataset.Type is either "Image", or “Cube”. Da-
taset.Length is mandatory and specifies the dimensionless "length" of the image,
i.e., the total number of pixels or samples in the full image. Dataset.Deleted is
used with the MTIME query parameter to inform the client that a previously exist-
ing dataset has been deleted; if a service supports MTIME it should also support
Dataset.Deleted. The value is the ISO 8601 date (as in MTIME) at which the da-
taset was deleted, or null for a normal non-deleted dataset. Dataset.Deleted
should be returned in a query only if MTIME is used in the query, and the deletion
date matches the interval of time specified by MTIME. Otherwise deleted data-
sets should never be visible in a query. A service may permanently delete data-
set deletion history after a period of time (currently unspecified) long enough to
permit clients to discover deleted datasets.

5.2.6.2 Dataset Identification and Provenance Metadata
Dataset identification metadata is used to describe the fundamental identify of a
dataset, including where it came from and how it was created.

UTYPE Description Req Default

DataID.Title Dataset title MAN
DataID.Creator Creator name (string) REC
DataID.Collection IVOA Identifier of collection REC
DataID.DatasetID IVOA Dataset ID OPT
DataID.CreatorDID Creator assigned dataset identifier REC
DataID.Date Data processing/creation date OPT
DataID.Version Version of creator-produced dataset OPT
DataID.CreationType Dataset creation type REC archival
Provenance.ObsConfig.Instrument Instrument name OPT
DataID.ObsConfig.Bandpass Bandpass name, e.g., filter OPT
DataID.ObsConfig.DataSource Original source of data REC survey

Dataset.Title is a short, human-readable description of a dataset, and should be
less than one line of text. Information such as the instrument or survey name, fil-
ter, target name, etc., is typically included in a condensed form. The exact con-
tents of Dataset.Title are up to the data provider. Dataset.Creator identifies the
entity which created the dataset, and should be a short string consistent with the
RSM specification, e.g., "SDSS". Dataset.Collection is the registered IVOA identi-

- 34 -

Simple Image Access Version 2.0

fer of the data collection to which the dataset belongs, e.g.,
"ivo://sdss/dr5/spec".

The CreatorDID is the IVOA dataset identifier (if any) assigned by the entity
which created the dataset content, typically (but not always) an observatory or
survey project. If the dataset referred to is virtual data, CreatorDID refers to the
parent dataset from which the virtual data will be created (see …. for further de-
tails). If a CreatorDID has been assigned to a dataset it should be provided, oth-
erwise it should be omitted. DataID.Date, specified in ISO time format, specifies
the date when the dataset was created or last modified by the DataID.Creator en-
tity. If a dataset is modified or replaced without changing its CreatorDID, Data-
ID.Date and DataID.Version should be updated accordingly. DataID.Creation-
Type describes how the dataset returned by the service was or will be created,
as defined in section … .

Provenance metadata are used to provide information on the scientific origin of
the DataSet either on the observing or on the processing point of view.
Provenance.ObsConfig.Instrument is a short string identifying the instrument
used to create the data (instrument may be an actual telescope instrument or
something else, e.g., a program in the case of theory data). Provenance.Ob-
sConfig.Bandpass is a short string specifying the bandpass name if any, e.g., a
filter name or an instrumental bandpass such as I, J, K, Q, HI, and so forth. Val-
ues specified with Provenance.ObsConfig.Bandpass may be used as input to the
BAND parameter (…..) to refine a query (if this feature is supported by the serv-
ice).

Provenance.DataSource describes the original source of the data.

5.2.6.3 Curation Metadata
Curation metadata describes who curates the dataset and how it is published to
the VO.

UTYPE Description Req De-
fault

Curation.Publisher Publisher MAN
Curation.Reference URL or Bibcode for documentation REC
Curation.PublisherDID Publisher's ID for the dataset REC
Curation.Date Date curated dataset last modified OPT
Curation.Version Version of curated dataset OPT
Curation.Rights Restrictions: public, proprietary, etc OPT public

Curation.Publisher is a short string identifying the publisher of the data, e.g., a
data archive or data center, or an indexing service such as the ADS. Cura-
tion.PublisherDID is the IVOA dataset identifier (URI) assigned by the publisher
to identify the dataset within its holdings. Curation.Reference is a forward link to
publications which reference the dataset; multiple instances are permitted. Cura-
tion.Date and Curation.Version refer to the dataset as curated by the publisher,

- 35 -

Simple Image Access Version 2.0

hence can differ from the same values given in DataID, which refer to the content
of the dataset as generated by the dataset Creator. Curation.Rights specifies
whether the dataset is "public" or "proprietary". Proprietary data requires authen-
tication and authorization by the data provider to access, and once downloaded
should be protected from subsequent access on the client side.

Note:
If the same dataset is replicated at several locations with multiple pub-
lishers, it is possible to set up an association group to indicate this fact.

5.2.6.4 Astronomical Target Metadata
Target metadata describes the astronomical target observed, if any.

UTYPE Description Req De-
fault

Target.Name Target name OPT
Target.Class Target or object class OPT
Target.Redshift Target redshift OPT
Target.VarAmpl Target variability amplitude, typical OPT

Target.Name is a short string identifying the observed astronomical object, suit-
able for input to a name resolver. Target.Class is the object class if known, e.g.,
Star, Galaxy, AGN, QSO, and so forth (see section). Target.Redshift, Tar-
get.VarAmpl, are as defined in the data model. Either standard target values, or
derived quantities, may be used in the query response.

5.2.6.5 Coordinate System Metadata
Coordinate system metadata describes the coordinate system reference frames
used in the SIAV2 query response.

UTYPE Description Req De-
fault

CoordSys.SpaceFrame.Name Spatial coordinate frame REC ICRS
CoordSys.SpaceFrame.Equinox Equinox OPT 2000.0
CoordSys.TimeFrame.Name Timescale OPT TT
CoordSys.TimeFrame.Zero Zero point of timescale in MJD OPT 0.0

These reference frames apply to all spatial (sky), spectral, and time coordinates
used in the SIAV2 query response (including Characterization) unless otherwise
specified. Note that spatial coordinates are not limited to the celestial sphere;
any spatial coordinate frame specified in the data model may be specified, includ-
ing solar and planetary coordinate systems, although the default is ICRS.

- 36 -

Simple Image Access Version 2.0

5.2.6.6 Dataset Characterization Axis Metadata
The Characterization axis metadata specifies the type of physical quantity on
each physical measurement axis as well as the observable.

UTYPE Description Req De-
fault

Char/FluxAxis.Ucd ucd for flux REC
Char/SpectralAxis.Ucd ucd for spectral coord REC
Char/TimeAxis.Ucd ucd for time coord REC
Char/SpatialAxis.Ucd ucd for time coord REC
Char/PolarizationAxis.Ucd Ucd for pol axis REC

Values are specified as UCDs, as defined in the data model. For example, to
specify that the flux axis is flux density per unit wavelength, the value
"phot.fluDens;em.wl" would be given.

5.2.6.7 Characterization Coverage Metadata
The Coverage component of the Characterization data model (Char) describes
the coverage of the dataset in each of the four primary measurement axes.

UTYPE Description
Char/SpatialAxis.Coverage.Location.coord Observed position, e.g., RA DEC MAN
Char/SpatialAxis.Coverage.Bounds.Extent angular area, sq deg MAN
Char/SpatialAxis.Coverage.Bounds.limits.LoLimit2Vec
Char/SpatialAxis.Coverage.Bounds.limits.HiLimit2Vec
Char/SpatialAxis.Coverage.Support.AreaType
Char/SpatialAxis.Coverage.Support.Area Accurate Field of View OPT
Char/TimeAxis.Coverage.Location.coord Midpoint of exposure (MJD) MAN
Char/TimeAxis.Coverage.Bounds.Extent Total elapsed exposure time REC
Char/TimeAxis.Coverage.Bounds.limits.LoLimit Start time OPT
Char/TimeAxis.Coverage.Bounds.limits.HiLimit Stop time OPT
Char/TimeAxis.Coverage.Support.Extent Effective exposure time OPT
Char/SpectralAxis.Coverage.Location.coord Midpoint of Spectral coord range MAN
Char/SpectralAxis.Coverage.Bounds.Extent Width of spectrum in meters MAN
Char/SpectralAxis.Coverage.Bounds.limits.LoLimit Start in spectral coordinate REC
Char/SpectralAxis.Coverage.Bounds.limits.HiLimit Stop in spectral coordinate REC
Char/PolarizationAxis.enumeration

Within Char, Coverage specifies the location (central or characteristic value),
bounds (measurement limits), support (region covered within the bounds), for
each measurement axis. The coordinate system reference frames specified in
Coordsys apply here. Spatial coordinates are specified in units of decimal de-
grees, spectral coordinates in units of meters, and time coordinates in units of
days. The Polarization axis is peculiar in this that it gives the list of available po-
larization parameters for the polarization system given by the UCD (eg Q, U, V
parameters for Stokes system….)

- 37 -

Simple Image Access Version 2.0

5.2.6.8 Characterization Resolution and Sampling Metadata
The Resolution component of Characterization specifies the sampling and
resolution estimates for the dataset.

UTYPE Description Req De-
fault

Char/SpectralAxis.Resolution Spectral res. FWHM REC BinSize
Char/TimeAxis.Resolution Temporal res. FWHM OPT BinSize
Char/SpatialAxis.Resolution Spatial resolution of data REC
Char/SpectralAxis.SamplingPrecision.RefVal Wavelength bin size OPT
Char/TimeAxis.SamplingPrecision.RefVal Time bin size OPT
Char/SpectralAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0
Char/SpatialAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0
Char/TimeAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0

The spatial and spectral resolution should be specified. Note that, for consis-
tency within Char, the spectral resolution is specified here in spectral coordinate
units (FWHM in meters), unlike the SPECRP query parameter, which is specified
as /d.

5.2.6.9 Characterization Accuracy and Error Metadata
The Accuracy component of Characterization specifies the sampling, resolution,
and error estimates for the dataset.

UTYPE Description Req Default
Char/FluxAxis.Accuracy.StatError Statistical error OPT
Char/FluxAxis.Accuracy.SysError Systematic error OPT
Char/FluxAxis. CalibrationStatus Type of flux calibration REC calibrated
Char/SpectralAxis.Accuracy.StatError Spectral coord meas. error OPT
Char/SpectralAxis.Accuracy.SysError Spectral coord meas. error OPT
Char/SpectralAxis. CalibrationStatus Type of coord calibration REC calibrated
Char/TimeAxis.Accuracy.StatError Time coord statistical error OPT
Char/TimeAxis.Accuracy.SysError Time coord systematic error OPT
Char/TimeAxis. CalibrationStatus Type of coord calibration OPT calibrated
Char/SpatialAxis.Accuracy.StatError Astrometric statistical error REC
Char.SpatialAxis.Accuracy.SysError Systematic error OPT
Char.SpatialAxis. CalibrationStatus Type of coord calibration REC calibrated

Both overall statistical and systematic error estimates may be specified. The cali-
bration status of all three primary measurement axes as well as the observable
should be given, otherwise "calibrated" is assumed.

- 38 -

Simple Image Access Version 2.0

5.2.7 Mapping Metadata
The mapping model specifies the image matrix and the transformation from image
pixel coordinates to the specified world coordinate system (WCS). Image axes
with any combination of spatial, spectral, time, or polarization coordinates are sup-
ported.

UTYPE Description Req Default
Image Matrix Transform

Mapping.NAxes Number of image axes
Mapping.NAxis[] Length of each axis in pixels
Mapping.CoordRefPixel[] Reference pixel
Mapping.CoordRefValue[] WCS value at reference pixel
Mapping.CDMatrix[] Coord definition matrix
Mapping.PCMatrix[] Coord definition matrix
Mapping.CDelt[] World coord delta per pixel
Mapping.AxisMap[] Image-to-WCS axis mapping
Mapping.WCSAxes Number of WCS axes

World Coord Transform
Mapping.SpatialAxis.CoordType Coordinate type as in FITS
Mapping.SpatialAxis.Projection Celestial projection
Mapping.SpatialAxis.CoordFrame Spatial coordinate frame
Mapping.SpatialAxis.CoordEquinox Coordinate equinox (if used)
Mapping.SpatialAxis.CoordUnit Unit for coordinate value
Mapping.SpatialAxis.CoordName Axis name (optional)

Mapping.SpectralAxis.CoordType Coordinate type as in FITS
Mapping.SpectralAxis.Algorithm Algorithm type as in FITS
Mapping.SpectralAxis.RestFreq Rest frequency of spectral line
Mapping.SpectralAxis.RestWave Rest wavelength of spectral line
Mapping.SpectralAxis.CoordUnit Unit for spectral coordinate value
Mapping.SpectralAxis.CoordName Axis name (optional)
Mapping.SpectralAxis.CoordValue[] Spectral value/band at pixel index

Mapping.TimeAxis.CoordType Time scale (UTC, TT, TAI, ...)
Mapping.TimeAxis.CoordUnit Time unit
Mapping.TimeAxis.CoordName Time axis name (optional)
Mapping.TimeAxis.CoordValue[] Time value at pixel index
Mapping.TimeAxis.RefPosition TOPOCENT, BARYCENT, ...

Mapping.PolAxis.CoordType Polarization system (Stokes etc.)
Mapping.PolAxis.CoordName Polarization axis name (optional)
Mapping.PolAxis.CoordValue[] Polarization type at pixel index

In the above table, UTYPEs which have “[]” appended are vector-valued (the val-
ue is a string consisting of a sequence of numbers or string tokens delimited by
spaces). The “[]” is not part of the actual UTYPE.

- 39 -

Simple Image Access Version 2.0

The Mapping model used in SIA is essentially the same as FITS WCS although it
is represented slightly differently and has been somewhat simplified. The biggest
deviation is in the representation of polarization which is represented as a simple
lookup table assigning a polarization type to each pixel index on the polarization
axis (e.g, “I”, “Q”, “U”, “V” for full Stokes).

A detailed description of the FITS WCS model is beyond the scope of the current
document but can be found in FITS WCS papers 1-5. In summary the WCS trans-
formation consists of a general linear transformation of the input image pixel coor-
dinates (with the transform represented either as the CD matrix or as the PC ma-
trix plus CDELT), followed optionally by a nonlinear transformation to produce the
final world coordinates. To apply the linear transformation one first subtracts the
coordinates of the reference pixel, then applies the transformation matrix, and fi-
nally adds the world coordinates at the reference pixel to establish the zero point.
The result is a linear transformation of the input pixel coordinates to “intermediate”
(linear) world coordinates.

In our representation the AxisMap is then used to map the axes of the intermedi-
ate world coordinates to the axes of the final world coordinate system. The spa-
tial, spectral, time, or polarization transforms may then be applied independently
to the associated intermediate world coordinte values. A nonlinear coordinate
system may be represented either as a continuous function consisting of a well-
known projection or algorithm of some sort (e.g., TAN, F2V, etc.), or as a lookup
table wherein each pixel index on the axis is directly assigned a world coordinate.

[More needs to be added here to fully specify this metadata, in particular the vec-
tor representation, allowable units, and allowable coordinate types and algo-
rithms, following the FITS model, but this should suffice to demonstrate the ap-
proach.]

5.2.8 Additional Service-Defined Metadata
A given service may return additional query response metadata not defined by
the SIAV2 protocol. This additional metadata may take the form of additional ta-
ble columns, or additional RESOURCE elements in the query response VOTable.

Service-defined output metadata should use service-defined UTYPEs and UCDs
as long as they do not clash - and can be easily distinguished - from mandatory
and reserved SIAV2 output columns.

5.2.9 Metadata Extension Mechanism
The metadata extension mechanism allows a data provider to add additional cus-
tom metadata to the query response to describe collection-specific details of the
data. Extensions are provided in the query response only by explicit demand by
the Extension query parameter (default) is none. Extension parameter value is an
enumeration of
Extension metadata appears in the query response as additional RESOURCE ele-

ments in the VOTable. The format and contents of these RESOURCE elements is

- 40 -

Simple Image Access Version 2.0

up to the data provider. The ID-ref mechanism of VOTable is used to link exten-
sion elements to associated fields of the main query response VOTable.

The extension RESOURCE elements can contain PARAMs, TABLEs, or nested
RESOURCEs. The ID-ref mechanism simply allows associating FIELDs from the
main table to RESOURCEs, TABLEs and GROUPs in the extension RESOURCEs.
It is actually the core of an indexing mechanism where the values of the referring
FIELD are used as a key to associate a specific query response field to some ad-
ditional information.
 In case the referred element is a TABLE in the extension RESOURCE, this TA-

BLE must contain a FIELD identical to the referring FIELD and the indexing
mechanism will provide a classical “a la RDBMS" jointure.

 In case the referred element is a RESOURCE of the extension, the key value
is assumed to be the ID of a nested element (PARAM, RESOURCE, or TABLE)
which is associated to the FIELD of the main table.

 It is also possible to provide backward linking by referring to FIELDs in the
main section from elements in the extension.

As for any VOTable, the client software is informed about the role and guided for
the usage of these extensions by the UTYPEs of the main query response and
extension elements. UTYPE identifies the exact meaning of the element in a
specific data model. In the context of the DAL metadata extension mechanism,
UTYPE:

 gives the meaning of the association mechanism described above,
 givdes the meaning of all the extension elements.
 Current available IVOA data model and UTYPEs are defined for

resource metadata, VOEvent, STC, Observation, (including Prove-
nance and Characterization) and the Spectrum data model.

 Typical use of the Extension mechanism is for inclusion of Obser-
vation Field of Views (characterization support), Provenance de-
tails such as Filter transmission curve or specific data access
mechanisms

5.3 Image Retrieval
Retrieval of individual images following a queryData is done via the access refer-
ence (“acref”) URL given in the query response record describing the image. Im-
ages are retrieved individually (but multiple transfers can normally proceed simul-
taneously). Transfers are synchronous but can stream, allowing arbitrarily large
images to be transferred. The acref URL normally uses the HTTP protocol,
although this is not required. In the case of a HTTP transport, image retrieval is
done with a HTTP GET request.

Note:
For maximum flexibility image retrieval is URL-based via the ac-
cess reference. The acref can point to a static image file or
to a Web resource used to generate the image upon demand. A
common way to do this is in SIA implementations is by having the

- 41 -

Simple Image Access Version 2.0

access reference URL resolve to an accessData request, which can
either copy out a static file or invoke server-side code to gen-
erate the requested image.

[An additional possibility is for the acref URL to point to a VOSpace containing the
image, once VOSpace is integrated into SIAV2.]

5.3.1 Successful Output
The output of a getImage request should be a single image or other document re-
turned with a MIME-type identifying the format of the data actually returned. If an
image is returned it must conform to the simple image data model as outlined in
Image Service Types above [we need to add something to spell this out more
clearly.]. When the input acref points to a physical image the primary type of the
MIME code should be “image/”. Other MIME types are allowed, depending on the
capabilities of the image service; for example, a MIME-type of “text/html” may be
used when the acref URL points to an HTML description and/or preview of the im-
age.

If a FITS image is returned the image should contain a valid FITS WCS. Any
areas of the image which do not contain valid data, e.g., because the requested
region extends beyond the bounds of the source image, should be flagged with a
blank value, using the FITS keyword BLANK to identify the blank fill value used.

5.3.2 Error Response
If an error occurs and the requested image cannot be returned for any reason an
error response should be returned as outlined in section XX. This consists of a
VOTable with a single RESOURCE element containing an INFO with name
“query_status” indicating that an error has occurred. The DESCRIPTION text in
the INFO should describe the error which occurred.

While service errors shdould result in a protocol error as described above, not all
errors are catchable in the serivce code and the client should be prepared for
HTTP level errors as well. The response from a getImage request should always
be inspected to verify that what was returned was what was expected.

5.4 AccessData
The accessData operation provides advanced capabilities for precise, client di-
rected access to a specific image or image collection. Unlike queryData, access-
Data is not a query but rather a command to the service to generate a single im-
age, and the output is not a table of candidate datasets but the actual requested
image (or an error response if an error occurs). Use of accessData will generally
require a prior call to queryData to get metadata describing the image or image
collection to be accessed in order to plan subsequent access requests. Access-
Data is ideal for cases where an image with a specific orientation and scale is re-
quired, or for cases where the same image or image collection is to be repeatedly
accessed, for example to generate multiple small image cutouts from an image, or
to interactively view subsets of a large image cube.

- 42 -

Simple Image Access Version 2.0

5.4.1 Logical Access Model (informative)
The accessData operation is used to generate an image upon demand as directed
by the client application. Upon successful execution the output is an image the
parameters of which are what was specified by the client. The input may be an ar-
chive image, some other form of archive dataset (e.g., radio visibility or event data
from which an image is to be generated), or a uniform data collection consisting of
multiple data products from which the service automatically selects data to gener-
ate the output image.

In producing an output image from the input dataset accessData defines a number
of transformations which it can perform. All are optional; in the simplest case the
input dataset is an archival image which is merely delivered unchanged as the
output image with no transformations having been performed. Another common
case is to apply only a single transformation such as an image section or a gener-
al WCS-based projection. In the most complex case more than one transforma-
tion may be applied in sequence.

Starting from the input dataset of whatever type, the following transformations are
available to generate the output image:

1. Per-axis input filter. The spatial, spectral, temporal or polarization axis
(if any) can be filtered to select only the data of interest. Filters are de-
fined as a range-list of acceptable ranges of values using the BAND,
TIME, and POL parameters as specified later in this section, for the
spectral, temporal, and polarization axes respectively. POS and SIZE
are specified as for queryData except that the default coordinate frame
matches that of the data being accessed (more on this below). Often the
1D BAND, TIME, and POL axes consist of a discrete set of samples in
which case the filter merely selects the samples to be output, and the ax-
is in question gets shorter (for example selecting a single band of a multi-
band image or a single polarization from a polarization cube). In the
case of axis reduction where an axis is “scrunched”, possibly collapsing
the entire axis to a single pixel, the filter can also be used to exclude da-
ta from the computation. Data which is excluded by a filter is not used
for any subsequent computations as the output image is computed.

2. WCS-based projection. This step defines as output a pixellated image
with the given image geometry (number of axes and length of each axis)
and world coordinate system (WCS). Since the input dataset has a well-
defined sampling and world coordinate system the operation is fully de-
fined. If the input dataset is a pixellated image the image is reprojected
as defined by the new WCS. If the input dataset is something more fun-
damental such as radio visibility or event data then the input data is
sampled or imaged to produce the output image. Distortion, scale
changes, rotation, cutting out, axis reduction, and dimensional reduction
are all possible by correctly defining the output image geometry and
WCS.

- 43 -

Simple Image Access Version 2.0

3. Image section. The image section provides a way to select a subset of
a pixellated image by the simple expedient of specifying the pixel coordi-
nates in the input image of the subset of data to be extracted (in our
case here pixel coordinates would be specified relative to the image re-
sulting from the application of steps 1 and 2 above). Axis flipping, di-
mensional reduction, and axis reduction (scrunching of an axis, combin-
ing a block of pixels into one pixel) can also be specified using an image
section. Dimensional reduction, reducing the dimensionality of the im-
age, occurs if an axis is reduced to a single value. The image section
can provide a convenient technique for cutting out sections of images for
applications that find it more natural to work in pixel than world coordi-
nates. For example the section “[*,*,3]” applied to a cube would pro-
duce a 2D X-Y image as output, extracting the image plane at Z=3.
Dimensional reduction affects only the dimensionality of the image pixel
matrix; the WCS retains its original dimensionality.

4. Function. More complex transformations can be performed by applying
an optional transformation function to an axis (typically the Z axis of a
cube). For example the spectral index could be computed from a spec-
tral data cube by computing the slope of the spectral distribution along
the Z axis at each point [x,y,z] in the output image.

These processing stages define a logical set of transformations which can option-
ally be applied, in the order specifed, to the input dataset to compute the output
image. Defining a logical order for application of the transformations is neces-
sary in order for the overall operation to be well defined, as the output of each
stage of the transformation defines the input to the following stage.

In terms of implementation the service is free to perform the computation in any
way it wants so long as the result agrees with what is defined by the logical se-
quence of transformations. It is possible for example, for each pixel in the final
output image, to trace backwards through the sequence of logical transforma-
tions to determine the signal from the input dataset contributing to that pixel. Any
actual computation which reproduces the overall transformation is permitted.

In practice it may be possible to apply all the transformations at once in a single
computation, or the actual computation may include additional finer-grained proc-
essing steps specific to the particular type of data being accessed and the sof-
ware available for processing. The AccessData model specifies the final output
image to be generated, but it is up to the service to determine the best way to
produce this image given the data being accessed and the software available.
The actual processing performed may vary greatly depending upon what type of
data is accessed. [We need to add some use cases to illustrate in concrete terms
how this works.].

Since accessData tells the service what to do rather than asking it what it can do,
it is easy for the client to pose an invalid request which cannot be evaluated. In
the event of an error the service should simply return an error status to the client
indicating the nature of the error which occurred.

- 44 -

Simple Image Access Version 2.0

5.4.2 Input Parameters

5.4.2.1 Introduction
[The remainder of this section is only partially complete; in particular the individual
input parameters are only briefly described and not yet fully specified. The current
text is intended more as a design dialog than as a formal specification and will be
formalized as this section is developed.]

Part of the motivation for accessData is to provide for precision image access
without over-complicating queryData. Otherwise queryData would have more pa-
rameters and the semantics would need to differ for data discovery and access. If
we move most of the advanced, less frequently used functionality into accessData
both operations are likely to be more tightly defined, plus queryData will remain
largely comparable in function to what we had in SIAV1 (except for being refined
and updated to more modern standards). It becomes feasible to add advanced
functionality via accessData without compromising the basic functionality of SIA.

The image generation parameters are considered advanced functionality hence
these have been moved from queryData to accessData; however few SIAV1 serv-
ices or clients have used these so the imact should not be great. Image genera-
tion of this sort requires more detailed knowledge of the service capabilities hence
more logically belongs in accessData, plus WCS-based image generation is a fun-
damental part of the more sophisticated logical operation model defined for ac-
cessData.

The input parameters for accessData describe the image to be generated, and for
the most part specify how to generate it. Hence this operation differs from query-
Data, which is more of a query to the service to see how close it can come to the
ideal image required by the client application for analysis. AccessData is simpler
in some ways because it just tells the service what to do. If the request is invalid
then the service merely returns an error. Otherwise it generates the requested im-
age (usually some sort of subset or transform) and returns the data to the client.

The input parameters to accessData are thus either the specifications for the im-
age to be generated, or parameters specifying how to generate the image. The
technique used to specify the image to be generated is simply to describe the im-
age we want back. It is then up to the service to decide how best to generate it
from the available data. This focuses the client on what it wants, and gives the
service maximum scope for deciding how to service the request.

The most general way to specify an image to be generated is to specify the geom-
etry and WCS of the desired output image. This specifies the dimensionality and
size of the output image as well as the spatial, spectral, time and polarization co-
ordinates of each output pixel. The input may be an archival image, a data collec-
tion or other set of images, or more fundamental data such as radio visibility or
event data.

While specifying the geometry and WCS of the output image is the most general
technique for image generation, a simple alternative approach is to specify a “cut-
out” or “image section” of the original input image. This provides a simple techni-

- 45 -

Simple Image Access Version 2.0

que for cases where a single pixelated image is used as the input, allowing image-
specific pixel coordinates to be used.

The input dataset may also be filtered (or subsetted) independently in each axis
before any further processing is done. All transformations are optional. The full
set of possible transformations is outlined in section XX above.

5.4.2.2 Input Dataset
To define an accessData operation first we must specify the input dataset, data-
sets, or data collection to be used to generate the new image.

Parameter Sample value Unit Req Datatype
PUBDID ADS/col#R5983 REC string
CREATORDID ivo://auth/col#R1234 REC string
COLLECTION SDSS-DR7 REC string

The input may be a single image (including cube data), a list of images (for exam-
ple for construction of a mosaic image), a data collection, or a non-image primary
dataset of some sort, such as radio visibility data or high energy event data. The
input data may be anything so long as the service is capable of processing such
data to make an image. In the case of an uniform data collection (for example a
survey with full coverage of some region of the sky) the form of the input data is
transparent to the client. [We need to have a way for the queryData to define ap-
propriate input data for accessData, including non-image datasets, so long as im-
age data can be generated.]

5.4.2.3 Filter Parameters
Specifying a filter to be applied to the input dataset is done using the POS,SIZE,
BAND, TIME, and POL input parameters.

Parameter Sample value Physical unit Datatype
POS 52,-27.8 degrees; defaults to ICRS string
SIZE 0.05 degrees double
BAND 2.7E-7/0.13 meters string
TIME 1998-05-21/1999 ISO 8601 UTC string
POL U,V - string

The filter mechanism provides a simple way to “cutout” data with the region to be
extracted being specified in world coordinates (if pixel coordinates are more con-
venient the image section mechanism may be used instead). For example, given
a multiband image cube with bands U,B,V, the filter BAND=V would extract the 2D
V-band image from the cube. Any combination of filters may be used. If a filter is
combined with other transformations only the data which passes the filter will be
used for subsequent processing.

The value of a BAND, TIME, or POL filter may be any valid range list (or simple
list) containing either numerical or string values - whichever is used in the dataset
for the axis in question. Ranges are useful for simple cutouts to limit the data to
be returned or used for further processing to only what is required. An important

- 46 -

Simple Image Access Version 2.0

case of this occurs when a subsequent axis reduction or function operation is per-
formed. For example if the spectral or time axis of a cube is reduced to a single
value, a range list filter may be used to filter out night sky lines, or time intervals
where the data is bad (RFI, spacecraft instrument issues, etc.). [In the most gen-
eral case this could require upload of a large filter.]

Unlike queryData where a fixed set of standard units are used for discovery, ac-
cessData normally requires that the coordinate frames used with the filter parame-
ters match the data being accessed. A prior call to queryData will provide the
frame and unit information if it is not already known. Hence the “BAND=V” in our
multiband image example above. With a full-Stoke radio polarization cube,
“POL=I” would return the total intensity plane. If the spectral axis of a spectral da-
ta cube is in velocity units these are what would be used for the query, e.g.,
“BAND=-2.3/1.1”.

An exception to the rule that only native frames and units should be used is made
for the spatial filter specified using POS,SIZE. In this case the default spatial
frame would be the native frame specified by the dataset or data collecting being
accessed. Otherwise any supported spatial coordinate frame can be used as in
the accessData version of POS,SIZE. The units are always decimal degrees.

5.4.2.4 Image Geometry and WCS
Specifying the geometry and WCS of the output image is the most general techni-
que available for image generation, potentially allowing any output image to be
generated which can be described by a standard WCS. Reprojection, scaling, ro-
tation, cutting out, generation of a 2D slice through a cube at an arbitrary position
and orientation, dimensional reduction, axis reduction, OTF imaging from more
fundamental data, etc., can all be provided via this technique.

[This section defines an updated, multidimensional version of the “image genera-
tion parameters” used in SIAV1. We still need to specify the image generation pa-
rameters; basically what is required is the Mapping, consisting of the image geom-
etry NAxes and NAxis[] plus the output image WCS parameters. What is required
is essentially a version of what is presented in section XX for the Mapping meta-
data expressed as a set of input parameters. Unfortunately, to support general
access to cube data where we slice and dice arbitrary cubes we probably need a
fairly general WCS - the simplifications adopted in SIAV1 for basic 2D reprojection
are not enough. It is not so bad as it sounds though, as these various transforma-
tions are all variations on the same general model, which is essentially the same
as the already widely implemented FITS WCS].

5.4.2.5 Image Section
An alternative to specifying the output image in world coordinates is to specify a
section (subset) of the input image in pixel coordinates. This is simple and well
defined, and implicitly specifies the geometry and WCS of the output image. This
limits the operation to a single input image, requiring knowledge of the image
boundaries and extent, however it is simple and permits precision access to an
image down to the pixel level. [This technique adopts the image section concept

- 47 -

Simple Image Access Version 2.0

already used in cfitsio and IRAF image sections]. For example, “[*,*,2]” would
return the plane at Z=2 of the referenced image cube. To cutout a portion of a 2D
image we might use something like “[100/200,350/450]”. To reduce the third
axis to a single value we might have “[*,*,//*]”. If we specify the pixels to be
returned from an existing image this automatically specifies the WCS and geome-
try of the output image, plus we are guaranteed to specify an exact cutout with no
interpolation required.

In the fully general approach where we specify the output image geometry it be-
comes possible to reduce the image dimensionality, e.g., produce a 2D plane from
a 3D cube. This is known as dimensional reduction. It is nontrivial as the result
may be an image of lesser dimension than the associated WCS. Furthermore
when we reduce a axis of the image, we need to specify the reduction algorithm to
be used, for example, sum, mean, or higher moments of each successive input
sample (block of pixels to be reduced).

5.4.2.6 Functions
The final stage of processing defined by accessData provides for application of a
general function to an axis. Unlike axis reduction, a function may change the type
of data on the image axis.

[This is an issue as the WCS model may not be general enough to represent such
data. However this is potentially a very powerful feature for data analysis, particu-
lar of cube data; we need to determine a basic set of functions worth supporting at
this level. A typical example of such a function for a spectral data cube is the
spectral index, or slope of the spectrum at a given point along the spectral axis. In
the most general case, general transformations should probably be moved out in-
to a separate tasking mechanism.]

5.4.2.7 Other Parameters
Finally since we are generating a single output image we can directly specify other
aspects of the image to be returned, such as the image format and whether or not
any compression is used. General processing parameters not specific to any one
transformation are also included here.

Parameter Sample value Unit Req Datatype
REDUCE sum
FORMAT fits - MAN string
COMPRESS hcompress REC string
RUNID REC string

REDUCE specifies the method to be used for axis reduction. The default is to sum the
pixel values (signal) [other possible values such as mean, median, etc. are TBD; we dis-
tinguish reduction, which does not change the axis type, from functions such as spectral
index which can potentially generate any quantity.]. FORMAT specifies the format of the
image to be returned; it is an error if a format is requested which is not supported by the
service. COMPRESS is used to enable compression, and specify the type of compres-
sion to be used, e.g., gzip, HCOMPRESS, RICE, and so forth. [detailing the available
compression algorithns, and compression levels for the lossy algorithhms, is TBD.].

- 48 -

Simple Image Access Version 2.0

5.4.3 Request Response
If the request is successful an image is returned, otherwise an error response
VOTable is returned.

5.5 StageData (optional)
This is used to initiate an asynchronous (batch) job to generate a single image or
a number of images. Each image is specified by its acref as given in a prior call
to queryData. Async execution is required for computationally expensive image
generation tasks, e.g., on the fly imaging of radio data or large scale mosaic gen-
eration, or for scaling up, e.g., to pose a job to compute thousands of image cut-
outs.

5.5.1 Input Parameters
TBD - list of acrefs essentially, plus any job options, passed via POST to the
/async endpoint for the service.

5.5.2 Request Response
TBD - basically it is the URL of the UWS job to be used to monitor/control the job
as it executes.

5.6 GetCapabilities (mandatory)
TBD - XML description of service capabilities.

5.7 GetAvailability (mandatory)
TBD - A simple request used to poll a service periodically to monitor it and verify
that it is still up and ready to receive requests.

6 Basic Service Elements
Adapt from the comparable section in SSA or TAP or DAL2.

7 Service Registration
Say something about registering a service (we may also want to mention service
verification).

8 Service Metadata
Logical definition of the service metadata describing the service capabilities. This
is the information content for what is returned by getCapabilities.

- 49 -

Simple Image Access Version 2.0

Appendix A: “Appendix Title”
Insert appendix here

References

[1] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html

[2] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines
and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html

http://www.ivoa.net/Documents/latest/DocStdProc.html
http://www.ivoa.net/Documents/latest/RM.html

	1 Introduction
	2 Interface Concepts (informative)
	2.1 Images and Image Cubes
	2.2 Virtual Data
	2.3 Region Of Interest (ROI)
	2.4 Data Derivation
	2.4.1 Data Source
	2.4.2 Creation Type

	2.5 Service Type
	2.6 Data Cube Access

	3 Interface Overview (informative)
	3.1 Request Format
	3.1.1 Parameters
	3.1.2 Parameter Values
	3.1.3 Error Response

	3.2 Synchronous and Asynchronous Requests
	3.3 Interface Summary
	3.4 Request Examples

	4 Requirements for Compliance
	4.1 Mandatory Capabilities
	4.2 Advanced Capabilities

	5 Service Operations
	5.1 QueryData
	5.1.1 Use of Parameters as Query Constraints
	5.1.2 Mandatory Query Parameters
	5.1.2.1 POS
	5.1.2.2 SIZE
	5.1.2.3 REGION (optional)
	5.1.2.4 INTERSECT (optional)
	5.1.2.5 BAND
	5.1.2.6 TIME
	5.1.2.7 POL
	5.1.2.8 FORMAT

	5.1.3 Recommended and Optional Query Parameters
	5.1.3.1 SPECRES/RP
	5.1.3.2 SPATRES
	5.1.3.3 TIMERES
	5.1.3.4 FLUXLIMIT
	5.1.3.5 TARGETNAME
	5.1.3.6 TARGETCLASS
	5.1.3.7 ASTCALIB
	5.1.3.8 WAVECALIB
	5.1.3.9 FLUXCALIB
	5.1.3.10 PUBDID
	5.1.3.11 CREATORDID
	5.1.3.12 COLLECTION
	5.1.3.13 TOP
	5.1.3.14 MAXREC
	5.1.3.15 MTIME
	5.1.3.16 COMPRESS
	5.1.3.17 RUNID

	5.1.4 Service-Defined Parameters

	5.2 Query Response
	5.2.1 Query Response Metadata
	5.2.2 Types of Metadata
	5.2.3 Query Metadata
	5.2.3.1 Query.Score

	5.2.4 Association Metadata
	5.2.4.1 MultiFormat Association
	5.2.4.2 Association.Type
	5.2.4.3 Association.ID
	5.2.4.4 Association.Key

	5.2.5 Access Metadata
	5.2.5.1 Access Reference
	5.2.5.2 Output Format
	5.2.5.3 Dataset Size Estimate
	5.2.5.4 Access Parameters:

	5.2.6 Data Model Metadata
	5.2.6.1 General Dataset Metadata
	5.2.6.2 Dataset Identification and Provenance Metadata
	5.2.6.3 Curation Metadata
	5.2.6.4 Astronomical Target Metadata
	5.2.6.5 Coordinate System Metadata
	5.2.6.6 Dataset Characterization Axis Metadata
	5.2.6.7 Characterization Coverage Metadata
	5.2.6.8 Characterization Resolution and Sampling Metadata
	5.2.6.9 Characterization Accuracy and Error Metadata

	5.2.7 Mapping Metadata
	5.2.8 Additional Service-Defined Metadata
	5.2.9 Metadata Extension Mechanism

	5.3 Image Retrieval
	5.3.1 Successful Output
	5.3.2 Error Response

	5.4 AccessData
	5.4.1 Logical Access Model (informative)
	5.4.2 Input Parameters
	5.4.2.1 Introduction
	5.4.2.2 Input Dataset
	5.4.2.3 Filter Parameters
	5.4.2.4 Image Geometry and WCS
	5.4.2.5 Image Section
	5.4.2.6 Functions
	5.4.2.7 Other Parameters

	5.4.3 Request Response

	5.5 StageData (optional)
	5.5.1 Input Parameters
	5.5.2 Request Response

	5.6 GetCapabilities (mandatory)
	5.7 GetAvailability (mandatory)

	6 Basic Service Elements
	7 Service Registration
	8 Service Metadata
	Appendix A: “Appendix Title”
	References

