
Parameterized Query Language

 - 1 -

 International

 Virtual

 Observatory

Alliance

IVOA Table Access Protocol
Parameterized Query Language

Version 0.2
IVOA Internal Working Draft 2009 May 20

This version:
 PQL-0.2-20090520

Latest version:
 Not yet issued

Previous version(s):

Authors:
 TBD
Contributors:
 TBD

Abstract
This document describes the Parameterized Query language (PQL). PQL has
been developed for parameter-based table queries as part of the DAL Table

Parameterized Query Language

 - 2 -

Access Protocol (TAP). This document formalizes the syntax and meaning of
PQL as a general parameter-based query language for querying tabular data.
PQL complements the Astronomical Data Query Language (ADQL), with PQL
providing a higher level, data model based query facility optimized for specific
astronomical use cases, while ADQL provides a more expressive and powerful
but lower level general query language based upon SQL.

Parameterized Query Language

 - 3 -

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents
1 Introduction 4
2 General Parameter Rules 5

2.1 Single-Valued Parameters 5
2.2 Multi-Valued Parameters 5
2.3 Range-Valued Parameters 6
2.4 Qualifiers 6
2.5 Range-List Syntax 6
2.6 Parameter Indirection 7
2.7 Missing or null-valued parameters 7
2.8 Inapplicable Constraints 7
2.9 Case of parameters 7
2.10 Order and cardinality of parameters 7
2.11 Numeric and boolean values 8

3 Parameter Query Operation 8
3.1 Standard Parameters 8

3.1.1 POS, SIZE 8
3.1.2 REGION 9
3.1.3 SELECT 9
3.1.4 FROM 10
3.1.5 WHERE 10

3.2 TAP Context (informative) 13

Parameterized Query Language

- 4 -

3.2.1 Common Parameters 13
3.2.2 TAP Schema 14
3.2.3 Table Names 14
3.2.4 Table Field (Column) Names 15
3.2.5 Asynchronous Execution 15

4 Advanced Topics 15
4.1 Cone Search Queries 15
4.2 Multi-Position (Multicone) Queries 15

• Query Input 16
• Form of the Output Table 18

4.3 Table Metadata Queries 19
4.4 Generic Dataset Queries 20

5 Use with HTTP (informative) 22
5.1 Reserved characters in HTTP GET URLs 22

6 References 23

 1 Introduction
The Parameterized Query Language (PQL) provides a simple parameter-based
mechanism for querying tabular data within the context of the IVOA Data Access
Layer (DAL) Table Access Protocol (TAP). PQL complements the Astronomical
Data Query Language (ADQL), providing optimized support for common queries
of individual astronomical catalogs as well as table metadata, while ADQL
provides a general language based upon the Structured Query Language
standard (SQL), providing a powerful and general mechanism for querying
relational databases. When used within the context of TAP, PQL and ADQL
provide alternate ways to pose a query, with both sharing the same TAP query
execution and output processing engine as well as a common service interface.
Unlike the more generic ADQL, PQL includes built-in support for astronomical
data models, in particular the DAL generic dataset data model (sometimes also
referred to as the Observation data model). Most astronomical catalogs as well
as many collection-specific index catalogs implement portions of the generic
dataset model, in particular the concept of spatially indexed data records. Data
can also be described using the full generic dataset model, permitting a richer
range of queries based upon a variety of standard attributes such as data
collection, dataset type, time of observation, spectral coverage, object name,
object classification, dataset identifier, spatial resolution, and so forth.
Parametric queries are simple to express and to implement for cases where the
data model is sufficiently well defined for the data to be queried, hiding many of

Parameterized Query Language

- 5 -

the details required to pose and evaluate the query. In this sense PQL, while
simple in terms of interface, provides a higher level of abstraction than richer and
more detailed languages such as ADQL.
While the parameter query can be used to query any individual data table or to
query table metadata, it provides enhanced support for querying both
astronomical catalogs as well as index catalogs, based upon the generic dataset
data model. Astronomical catalogs typically describe sources which have a
spatial position or other physical parameters which can be directly queried with
the parameter query. Index tables describe and link to other data, for example
images, spectra, other catalogs, services used to access such data, or even
instrumental data. A table describing linked datasets using standard generic
dataset metadata is a special case of an index catalog, but custom collection-
specific index tables often share a subset of the generic dataset metadata and
can be directly queried as well.
While the parameterized query described herein could potentially be used in
contexts other than TAP, it is specific to querying tables and table metadata and
as specified here is assumed to execute within the context of a TAP service,
relying upon the TAP service for query execution, table uploads, output
processing, and other TAP-specific functionality. The version of the parameter
query specified herein is intended to be used only with version 1.0 of the TAP
specification

[The intention is to produce a new version of the parameter query whenever
TAP is updated, and always keep these two versioned and closely linked
interfaces in sync - Ed]

 2 General Parameter Rules

 2.1 Single-Valued Parameters
Parameters which are single-valued have a constant value, the semantics of
which are defined by the individual parameter. The value may not use any
reserved characters unless these are URL-encoded 5.1).

 2.2 Multi-Valued Parameters
Parameters which are multi-valued (list valued, such as positions) use the
comma (“,”) as the separator between successive items in the list. Embedded
white space is not permitted. List items may be constants or ranges. A list-
valued parameter composed of ranges is referred to as a range-list parameter (
2.5).
In some lists, individual entries may be empty, and should be represented by the
empty string. Thus, two successive commas indicate an empty item, as does a
leading comma or a trailing comma. An empty list should be interpreted either
as a list containing no items, or as a list containing a single empty item,
depending upon the context.

Parameterized Query Language

- 6 -

 2.3 Range-Valued Parameters
Parameters thats specify a range of values use the forward slash (“/”) character
as the separator between elements of the range specification (as in the ISO 8601
date specification after which this convention is patterned). For example,a range
consisting of all values from 5E-7 to 8E-7 inclusive would be:

Example: 5E-7/8E-7

If a third field is specified it is a step size for traversing the indicated range. If a
parameter permits a step size the semantics of the step size are defined by the
specific parameter.
An open range may be specified by omitting either range value. If the first value
is omitted the range is open toward lower values. If the second value is omitted
the range is open toward higher values. Omitting both values indicates an infinite
range which accepts all values. For example, an open range which accepts all
values less than or equal to 5 would be encoded as shown below.

Example: /5

Range values can only be used with parameters which specify numeric and date
values. [String ranges could potentially be defined as well but advanced string
processing would probably require a different and more complex facility.]

 2.4 Qualifiers
If specified by the definition of a particular parameter, a single-valued parameter,
range, or list may be qualified by appending the character “;” (semicolon)
followed by a qualifier string. This could be used to specify an alternate
coordinate system, e.g.

Example: 180.0,1.0;GALACTIC

could specify a position in galactic coordinates. In some cases, multiple
semicolons may be used to delimit separate sub-lists or clauses within the
parameter value.

 2.5 Range-List Syntax
List and range syntax may be combined, e.g., to indicate a list of scalar or range-
valued parameter values. Such a range list may be ordered or unordered, and
may contain either numeric or string data. An ordered list is one which requires
values to be processed in a specified order, and to ensure this the range list is
sorted or ordered by the service as necessary before being used. It is the
responsibility of the service to sort an ordered range list, hence the client may
input ranges or range values in any order for an ordered range list and the result
must be the same. The sequence in which items in an unordered list occur on
the other hand is significant, as since there is no intrinsic ordering for the list
which can be enforced by the service, items will be processed by the service in
the order they are input by the client.

Parameterized Query Language

- 7 -

 2.6 Parameter Indirection
The value of any parameter can be taken indirectly from an external object rather
than specified directly, if specified in the description of an individual parameter.
The ‘@’ character is used to denote parameter indirection:

Example: POS=@something

The meaning or interpretation of the referenced symbolic value (‘@’ target) is
defined by the individual parameter.

 2.7 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been
specified. If a parameter is given a null value, e.g., “POS=”, the parameter value
has been set and the value is the null string. Whether or not a null parameter
value is significant is defined by the individual parameter. If only the parameter
name is given, e.g., “POS”, it is the same as if the parameter was not specified,
and the parameter value is unset.

 2.8 Inapplicable Constraints
Unless otherwise specified, if a parameter constraint is specified which does not
apply to the referenced table the constraint is ignored without error. This allows
the same query to applied to multiple tables without error, automatically applying
the specified query constraints only where appropriate. Ignoring inapplicable
constraints in this fashion is only done if the constraint parameters refer to
generic data model attributes which may or may not apply to a given table. If a
table or field is explicitly referenced but does not exist an error should be
reported.

 2.9 Case of parameters
Parameter names must not be case sensitive, but parameter values must be
so. While the value of a parameter is considered case-sensitive by the parameter
handling mechanism, whether or not a parameter value is treated in a case
sensitive fashion is specified by the individual parameter. In this document,
parameter names are typically shown in uppercase for typographical clarity, not
as a requirement.

 2.10 Order and cardinality of parameters
Parameters in a request may be specified in any order.
When request parameters are duplicated with conflicting values, the response
from the service is undefined. The service may reject the request or it may pick
one value for the parameter. Clients should not repeat parameters in a request.

Parameterized Query Language

- 8 -

 2.11 Numeric and boolean values
Integer numbers must be represented in a manner consistent with the
specification for integers in XML Schema Datatypes [10]. This document
indicates explicitly where an integer value is mandatory. Real numbers must be
represented in a manner consistent with the specification for double-precision
numbers in XML Schema Datatypes. This representation allows for integer,
decimal and exponential notations. A real value is allowed in all numeric fields
defined by this document unless the value is explicitly restricted to integer.
Sexagesimal formatting is generally not permitted other than in ISO 8601
formatted time strings.
Positive, negative and zero values are allowed unless explicitly restricted by a
service specification making use of PQL.
Boolean values must be represented in a manner consistent with the
specification for Boolean in XML Schema Datatypes. The values “0” and “false”
are equivalent. The values “1” and “true” are equivalent. Absence of an optional
value is equivalent to logical false.

 3 Parameter Query Operation
How a parameter query is posed within the TAP context is defined by the TAP
service interface. The parameters used to compose a parameter query are
described below. The parameter query executes within the runtime context of the
TAP service and relies upon TAP for all functionality not specified explicitly
herein. A brief summary the shared TAP context used with parameter queries is
given in section TAP Context below (3.2).

 3.1 Standard Parameters
The parameters specific to the parameter query are defined below. Unless
otherwise specified the service must implement all the parameters defined in this
section.

 3.1.1 POS, SIZE
The POS and SIZE parameters provide an easy to use, optimized facility for
performing spatial queries of astronomical catalogs, index tables, or other tables
which are spatially indexed. Spatial query constraints are supported only for
tables which contain positional information; most astronomical catalogs or index
tables are of this type. It is an error if a positional constraint is specified but
cannot be applied to the specified target table.
POS and SIZE define a circular search region in the specified coordinate system
(default ICRS). A table which supports the POS and SIZE parameters
implements them as a query constraint for tables containing records tagged with
spatial positions.

Parameterized Query Language

- 9 -

The coordinate values for POS are specified in list format (comma separated)
with no embedded white space, as defined in section 2.2 .

Example: POS=52,-27.8

The POS parameter defaults to right-ascension and declination in decimal
degrees in the specified coordinate system. A coordinate system reference
frame may optionally be specified to indicate a spatial coordinate system other
than ICRS. The reference frame is specified as a list format modifier, with the
acceptable values as defined by Table 3 (standard reference frames) in STC [4].

Example: POS=52,-27.8;GALACTIC

It is an error if the specified coordinate system reference frame is not supported
by the service.
POS may optionally point to a separate table of positions, used to specify
positions for a multi-position query (see section 4.2 Multi-Position (Multicone)
Queries).
The SIZE parameter specifies the angular diameter of the search region input in
decimal degrees.

Example: SIZE=0.05

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a
positional query, the service should supply a default value intended to find nearby
objects which are candidates for a match to the given object position, taking into
account the spatial resolution of the data.

[Note: BAND and TIME have been moved to the discussion of the Generic
Dataset query (4.4) below. – Ed.]

 3.1.2 REGION
The service should implement a REGION parameter, used to provide a more
general spatial search capability than can be defined using POS and SIZE. The
value of REGION must be a STC/S (REF) region specifier, e.g.

Example: REGION=Ellipse ICRS 148.9 69.1 2.0 4.0 32.7

In the example above the embedded spaces are shown for clarity, but in real use
they must be URL encoded.
If POS,SIZE and REGION are both specified in the same query, they both apply.
In this case REGION defines a mask used to further qualify the circular region or
regions specified by POS and SIZE. This is most useful for multi-position queries
(Multi-Position (Multicone) Queries) to cross-correlate two tables within the
specified mask region.

 3.1.3 SELECT
The SELECT parameter specifies the fields to be returned by the query, specified
either as a comma delimited list of table field names, or optionally by specifying

Parameterized Query Language

- 10 -

one of the reserved values $STD (to return only the standard or “primary” fields),
or $ALL (to return all table fields).

Example: SELECT=ra,dec,flux

Example: SELECT=$ALL

By default only the $STD fields are returned. The “primary” fields are specified
on a per-table basis, and define a subset of the most important table fields
chosen by the service implementer. This is used to provide a more readable
view of very wide tables. The service must permit $STD and $ALL to be input
without error, but is not required to actually use them to adjust the view of the
table. If no $STD view is defined for a table the service should ignore $STD and
merely return all table fields.
The names of available table fields may be determined by a prior table metadata
query (Table Metadata Queries), or may be specified by a pre-defined schema such
as the TAP_SCHEMA (TAP Schema).

 3.1.4 FROM
The FROM parameter indicates the target table to be queried. Only a single table
name is allowed. Any table name permitted by TAP is legal here.

Example: FROM=hdfv2

There is no default value and it is an error if no table name is specified. The
minimum possible parameter query would specify only FROM, resulting in the
entire table being returned in the default output format, displaying the default
(SELECT=$STD) view of the table.

 3.1.5 WHERE
The WHERE parameter is used to specify optional filtering constraint(s) to be
applied to the query target to determine which records are returned. By default
all table records are returned. The WHERE parameter may be combined with
other query constraints such as POS and REGION to further refine the query.
The syntax of the WHERE parameter value is a simple sequence of equality or
range constraints delimited by semicolons, with the field name and value
elements of an individual constraint separated by a comma.

Example: WHERE=observer,*smith*;z,1.5/2.2

This specifies two table field constraints: the field “observer” must contain the
case-insensitive substring “smith” (hence the wildcards), and the field “z” must be
in the range 1.5 to 2.2 inclusive.

[NOTE: In the WHERE parameter, the semi-colon is used as the list
delimiter to separate constraints, while in the range-list section
above comma separates list items and semi-colon separates an
item from a qualifier. That is, in the BNF below field-list uses semi-
colon and the other lists use comma. Clearly the separators need to
be different, but maybe re-using the qualifier separator is not such a

Parameterized Query Language

- 11 -

good idea... just in case we want to allow (now or in future) the use
of qualifiers in the WHERE parameter. -Ed.]

The names of available table fields may be determined by a prior table metadata
query (Table Metadata Queries), or may be specified by a pre-defined schema such
as the TAP_SCHEMA (TAP Schema).
The WHERE syntax has deliberately been kept simple as ADQL already provides
a fully general expression evaluation capability which should be used for more
advanced queries. Each constraint applies to a single table field; multiple
constraints on the same table field are allowed. The constraints have an AND
relationship, hence all must evaluate to true for a table row to satisfy the WHERE
condition. Individual constraints may be negated to construct more complex
expressions.
The syntax chosen is intended to be easy to compose, easy and unambiguous
for a service to parse and map to a SQL back end or otherwise evaluate (a
conventional rule-based parser is not required). It was also chosen to be
consistent with similar usage in other data access services, e.g., in the use of
range-list syntax (Multi-Valued Parameters) for the WHERE expression. An effort
has been made to define a minimal set of meta-characters so as to minimize the
need for URL encoding – specifically not using reserved characters in the URI
and URL query string syntax (e.g. =, &, ?, #). Most simple expressions should not
require URL encoding, e.g., if typed interactively into a Web browser, allowing the
simplest Web tools to be easily used for basic queries.
A partial BNF for the WHERE expression is as follows:

<where-expr> ::= <field-list>

<field-list> ::= <field-expr> [';' <field-list>]

<field-expr> ::= <field> ',' ['!'](<list> | "null")

<list> ::= <numeric-list> | <string-list> | <date-list>

<numeric-list> ::= <number> [',' <numeric-list>]

<string-list> ::= <string> [',' <string-list>]

<date-list> ::= <date> [',' <date-list>]

Here we have not attempted to detail the BNF for the numeric, string, and date
tokens. Some additional notes follow.

 Each field expression defines a constraint on the named table field.
 Field expressions are of the form <field-name>’,’<value> (meaning field-

name=value), where <value> is a single value, a range, or a list of single
values or ranges all of the same type. Constraint expressions within the
overall WHERE expression are combined with a logical AND operation.
Values within a range-list are combined with a logical OR operation, i.e. a
range or list for a specific field gives a list of acceptable values.

 A parameter value may optionally be prefixed with ‘!’ (exclamation) to negate
the sense of the entire clause.

Parameterized Query Language

- 12 -

 The special value “null” indicates a null-valued field. For example “flux,!null” is
true only if field “flux” has a non-null value.

 A <date> conforms to ISO8601 date syntax, e.g., "2007-04-05T14:30".
 A <number> token is any legal integer or floating point number optionally

preceded by ‘+’ or ‘-‘.
 A <string> token is any token which is not a number or date, or any sequence

of characters which is quoted using single quotes.
 While accumulating a string token, anything quoted in single quotes is literally

included in the string, otherwise (where case-insensitive context applies),
characters are converted to lower case for use in case-insensitive
comparisons. Quoted characters are treated in a case sensitive fashion. Any
metacharacter other than the quote character may be quoted to include it
within a token. A single quote may be included within a string by quoting it
(that is, three single quotes in sequence). Quotes used within a string token
do not delimit the token.

 For string-valued fields the constraint is a case-insensitive simple pattern,
with “*” matching zero or more characters. Absent any use of “*”, the entire
string must match. Hence “obj,m31” specifies that the value of field “obj”
must match “m31” exactly, except for case. To force a case sensitive match
the case sensitive characters must be quoted.

 For numeric or date values the constraint is either a single value or a range,
using “/” as the range delimiter (range syntax is not supported for strings).
Both open and closed ranges can be specified, e.g., “5/” specifies an open
range equivalent to “greater than or equal to 5”, whereas “5/9” means “5 to 9
inclusive”.

 Spaces may be embedded to improve readability, but if so they must be URL
encoded as “%20”.

Field names or value expressions must be quoted if they contain any special
characters (e.g., semicolon, comma, forward slash, and asterisk). The single
quote is used to avoid conflict with double quote which is often used to quote the
entire URL string.
As a more complex example of WHERE usage consider the following somewhat
contrived expression (with extra spaces for readability here):

WHERE=vmag,4.5/5.5; imag,4.5/; bmag,/5.5; flag,4,5,6;
jmag,4.5/5.5,/3.0,9.0/; name,*Lon*; kmag,4.5/5.5; flux,null;
last,1

The equivalent SQL WHERE clause would be the following:
vmag between 4.5 and 5.5

and imag >= 4.5

and bmag <= 5.5

and (flag = 4 or flag = 5 or flag = 6)

and (jmag between 4.5 and 5.5 or jmag <= 3.0 or jmag >= 9.0)

Parameterized Query Language

- 13 -

and name like '%Lon%'

and kmag between 4.5 and 5.5

and flux is null

and last = 1

Note the special treatment of the jmag constraint; the list of ranges are combined
with the OR operator while the jmag constraint itself is combined with the others
with the AND operator.

 3.2 TAP Context (informative)
When a parameter query executes within the context of a TAP service it relies
upon the TAP service for much of its functionality, including most aspects of
query execution, and all output processing. For the most part the parameter
query is merely an alternative way of posing a query, with all other processing
and execution context in common with other query methods. The TAP
specification should be referred to for a full specification of the TAP context, but
we introduce the functionality most relevant to the parameter query here.

 3.2.1 Common Parameters
The following parameters are provided by TAP and are shared by all query
methods, including the ADQL and parameter queries.

FORMAT The format of the output table, e.g., votable, csv, tsv, text, and
html (default VOTable).

UPLOAD Used to upload a table referenced by its URL. Tables can also
be uploaded in-line with the query. Uploaded tables can be
used like any other table in a query, for example to input a list
of positions for a multi-position query. Uploaded tables are
referred to in queries as TAP_UPLOAD.<table_name>.

MAXREC The maximum number of table records to be returned by the
query. An overflow indication is returned to the client if overflow
occurs. Used to avoid returning arbitrary amounts of data to
the client, unless the client explicitly requests a large response.

MTIME Used to find only table records which have been modified
within a given time interval, specified as an open or closed
range. “Modified” records are table records which are inserted,
deleted, or updated.

RUNID Used to tag service requests with the job ID of a larger
distributed job of which the current request may be only one
part.

Parameterized Query Language

- 14 -

While all of these parameters should be transparent to a parameter query
implementation, they are important to client applications using a TAP parameter
query.

 3.2.2 TAP Schema
The TAP Schema defines standard metadata describing the tableset available
from a TAP service (a tableset is the set of tables provided by a given TAP
service). The TAP Schema is represented in TAP as a set of tables which can be
queried using the standard table query interface. The tables are part of a
database “schema” known as the TAP_SCHEMA. The TAP_SCHEMA currently
defines the following metadata tables:

TAP_SCHEMA.schemas Describes the database schemas defined by
the tableset. A schema is a logical grouping of
tables which are related in some fashion.

TAP_SCHEMA.tables Describes all tables in the tableset.
TAP_SCHEMA.columns Describes all columns (table fields) of all tables

in the tableset (in one big table).

TAP_SCHEMA.keys Describes all primary and foreign key
relationships linking tables within the tableset.

To determine the schemas (table groupings) or tables available from a TAP
service, or the columns of a given table, a client can simply query the
TAP_SCHEMA using the standard TAP query facilities. The parameter query
provides specialized facilities for this purpose (see sectionTable Metadata Queries).
For a description of the detailed content of the TAP_SCHEMA see the TAP
specification.

 3.2.3 Table Names
All table names used in parameter queries must conform to the same table name
specification as is used in TAP. In particular, a fully qualified table name has the
form

[[catalog_name”.”]schema_name”.”]table_name

where catalog_name is the the name of the DBMS catalogue (often the
“database” name) in SQL DBMS terminology, schema_name is the name of the
“schema” in DBMS terminology (often also called a “database”; a DBMS schema
is a type of data model where the top level data model elements are tables), and
table_name is the actual table name. All elements of the table name are optional
except table_name. To reference tables within a specific schema the schema
name should be included, e.g., TAP_SCHEMA.tables, or TAP_UPLOAD.foo.

Parameterized Query Language

- 15 -

 3.2.4 Table Field (Column) Names
Table field names as used in queries should equate to the “column_name”
specified in the TAP_SCHEMA.columns metadata for the given table. While in a
given implementation table field names (or table names) may be case insensitive,
this cannot be relied upon, and it is best to use the exact column name returned
by a prior query of the TAP_SCHEMA for the table.

 3.2.5 Asynchronous Execution
By default parameter queries execute synchronously, and upon successful
execution return the output table directly to the client. Parameter queries may
also execute asynchronously using the UWS mechanism provided by the main
TAP service.

 4 Advanced Topics
While section 3 specifies the basic usage of all parameters for the parameter
query, they can be used with additional semantics to implement the advanced
functionality described in this section.

 4.1 Cone Search Queries
The parameter query must support use of the POS and SIZE parameters as a
spatial constraint for “cone search” type queries, in cases where the table to be
queried contains an appropriate spatial index. It is an error to attempt to apply a
spatial constraint to a table which does not support one.

For example, the following would perform a cone search of table “fp_psc” using
the specified position and search region diameter, selecting only objects for
which the J magnitude is less than or equal to 10 (here and below we omit the
preamble of the GET required to invoke the parameter query operation, showing
only the parameters specific to the parameter query):

FROM=fp_psc&POS=180.0,0&SIZE=0.2&WHERE=j_m,/10.0

Legacy cone search also provided a VERB parameter to control which fields are
returned in a query. This is equivalent to a SELECT, with “$STD” providing the
default “narrow” view, and “$ALL” returning all table fields.

[Note: We may want to specify UCDs for the primary output columns, as was done
for legacy cone search. – Ed.]

 4.2 Multi-Position (Multicone) Queries
The parameter query may implement the multi-position (“multicone”) query, used
to simultaneously query a table at an arbitrary number of spatial positions. The
multi-position query generalizes POS, SIZE to a table of positions, allowing an

Parameterized Query Language

- 16 -

arbitrarily large number of spatial queries to be executed simultaneously.

The multi-position query performs what is essentially a spatial cross-match of two
tables, optionally combined with a WHERE filter on the target table to further
refine the query and reduce the volume of data produced. In a typical scenario
the user uploads a list of the positions of their favorite objects, then executes the
multi-position query against some data table. The resulting table can be
downloaded to the desktop or put into a VOSpace. While the multi-position query
does not provide an astrophysically informed crossmatch, being little more than
nearness in the sky, further processing can be done on the resulting table to
weed out inappropriate matches, and thereby create a true crossmatch. Hence
a simple multi-position query can participate in a sophisticated multi-parametric
distributed cross match, without the need to complex cross-matching algorithm at
the remote site where the target table is stored.

• Query Input
A multi-position query is indicated by using POS to point to a table containing
positions, instead of inputting a single position directly. Any table can be used so
long as it contains position information and a ConeID (unique position identifier)
for each table record.

The POS syntax used to point to a table of positions is “POS=@tablename”,
where tablename can be any valid table known to the service. For example the
client might upload a table named “positions” when executing the multi-position
query, in which case the query might be:

POS=@TAP_UPLOAD.positions&SIZE=0.2

In the most general case any table containing position information may be used.
For example we could use the 2MASS point source catalog from our earlier
examples, assuming a copy is available to the service. This table contains nearly
half a billion sources, so the REGION parameter would be used to apply a spatial
mask to restrict POS to only the positions within the specified region. In this case
we might have “POS=@fp_psc”, with REGION specifying whatever spatial region
the user requires. Additional query constraints could optionally be added to
further refine the query. When an existing table is used in this fashion it is
assumed that the service can automatically determine the source positions and
assign a unique Cone ID for each position.

In the uploaded table, columns must be identified by the service to be used for
ConeID, sky position, and cone diameter. These can be specified either by
UTYPE, by UCD or by column name, as shown in this table:.

Quantity utype ucd Name
Cone ID src:Position.ID meta.id ConeID

Parameterized Query Language

- 17 -

First coordinate (e.g., Right
Ascension), degrees

src:Position.Coord1 pos.eq.ra RA

Second coordinate (e.g.,
Declination), degrees

src:Position.Coord2 pos.eq.dec DEC

Diameter of search region src:Position.Size pos.angDistance SIZE

UTYPE and UCD should be used for reliable field identification when possible.
UTYPE must be used if the anything other than equatorial coordinates are input.
If neither UTYPE nor UCD can be used for field identification the service will try
to use the field names shown.

The Multicone service will try to find which columns of the input table to use in
the following method. If UTYPE is available and its value is in the table above,
then that column of the table is used for that purpose. If the UCD of a column
contains one of the UCDs above as a substring, then that column of the table is
used for that purpose; however, the UCD that also contains the string
"meta.main" will take priority of there is more than one match. If neither suitable
UTYPE or UCD is available, then a precise match of the Name column will
identify the relevant columns.

In the case of VOTable, the following example would provide all four of the
columns required for valid input:

<FIELD name=”SerialNo” utype=”src:Position.ID” />
<FIELD name=”otherRA” ucd=”pos.eq.ra” />

Request and response tables for the multicone service. The uploaded table
must have a unique identifier (Cone ID), RA, Dec (or other coordinate) for
each source, and may also have a cone size (diameter) for each search. The
response table must show the identifier of the source it is close to (cone ID) in
addition to any other identifier.

Parameterized Query Language

- 18 -

<FIELD name=”mainRA” ucd=”pos.eq.ra;meta.main”/>
<FIELD name=”DEC” />
<FIELD name=”diam” utype=”src:Position.Size”/>

Notes for VOTable inputs:

• Table columns can appear in any order.
• The ConeID FIELD must have datatype="char" and arraysize="*"
• The RA and Dec fields must have datatype="float" or datatype="double"
• Other FIELDs can also appear in the table
• The ID attribute of VOTable is not used in this definition

In the event that only field names can be used, the following would provide valid
input:

ConeID, a, b, RA, DEC, c, d, SIZE

As noted above, all positions may share the same search region diameter, or the
search region diameter may be specified separately for each region. If there is a
parameter SIZE in the input request, then the table column for SIZE will not be
used, even if it exists. Otherwise, there must be a SIZE column found in the
input table.

• Form of the Output Table
Where possible output table columns should be assigned UCDs to indicate the
type of quantity stored in the column. If the table contains a data model columns
may also be assigned UTYPEs, and may be aggregated with the VOTable
GROUP construct to identify a subset of table columns as a data model instance.

There are two types of identifiers for the output of a multicone search:

• The ID of the catalog entry
• The ConeID of the input cone in which this entry lies

In general, each row of the output table will be a copy of a row from the queried
table; there may be a reduction of the number of columns if SELECT=$STD. But
there must be a new column also, which is the ConeID from the input table that is
the reason for inclusion.

The ID of that catalog entry must have UCD = meta.id or have UTYPE =
src:Position.ID, and the originating ConeID column must have either UCD =
meta.id.cross or have UTYPE = src:Position.ID.cross, as shown in this table:

Quantity utype ucd
Catalog ID src:Position.ID meta.id

Parameterized Query Language

- 19 -

Cone ID src:Position.ID.Cross meta.id.cross

 4.3 Table Metadata Queries
The parameter query must implement basic table metadata queries based upon
the TAP_SCHEMA (TAP Schema). The service must support listing all tables
provided by the service, listing all the fields of a single table, as well as providing
the full tableset metadata in both XML and VOTable format. A more advanced
TAP service may support general table metadata queries using the full parameter
query interface. Some simple examples of table metadata queries follow.

To list all the tables known to the service and visible to the client (no WHERE is
needed since all tables are to be listed):

FROM=TAP_SCHEMA.tables

To list all columns of table “fp_psc”:

FROM=TAP_SCHEMA.columns&WHERE=table_name,fp_psc

To list the full tableset supported by the service, in registry compliant XML format:

FROM=TAP_SCHEMA.tableset&FORMAT=xml

The tableset query is eqivalent to a query of TAP_SCHEMA.tables except that all
tableset metadata is returned, i.e., all tables matching the query, and all columns
of each table. Only two output formats are supported for a tableset query, “xml”
(registry compliant XML) and “votable” (a dataless VOTable containing only
TABLE and FIELD metadata describing the tables in the tableset). The metadata
returned is the same as for a TAP_SCHEMA.tables or TAP_SCHEMA.columns
query, the only difference being that all metadata is returned and output is
available in only two specialized output formats aggregating data from multiple
tables (hence the output is not relational in the normal sense). Tableset output is
required for VOSI compliance.

A TAP service must support the above primary table metadata queries. A TAP
service may support more advanced table metadata queries which allow other
parameters to be used to further refine a table metadata query. Some examples
of advanced table metadata queries follow.

List all database schemas queryable by the service, in pretty-printed text format:

FROM=TAP_SCHEMA.schemas&FORMAT=text

List only the tables in the database schema “hdf”:

Parameterized Query Language

- 20 -

FROM=TAP_SCHEMA.schemas&FORMAT=text

List only the tables in the database schema “hdf”:

FROM=TAP_SCHEMA.tables&WHERE=table_name,hdf.*

List only tables containing data within the specified region on the sky:

FROM=TAP_SCHEMA.tables&POS=180.0,1.0&SIZE=1.0

As above, but return tableset metadata in VOTable format:

FROM=TAP_SCHEMA.tableset&POS=180.0,1.0&SIZE=1.0

List only the table name and description fields for all tables:

SELECT=table_name,description&FROM=TAP_SCHEMA.tables

List only tables modifed since July 4 2005:

FROM=TAP_SCHEMA.tables&MTIME=2005-07-04/

An advanced TAP service may also support querying of table metadata via
ADQL.

 4.4 Generic Dataset Queries
The parameter query implementation may support queries of tables using the
Generic Dataset (GDS) data model. While POS,SIZE and REGION allow
queries of tables based upon a simple model of spatial position, GDS defines a
full model capable of describing a range of standard attributes of any “dataset”
(image, spectrum, table, etc., as well as complex data associations and even the
more generic attributes of instrumental data). The GDS query in a sense
represents a generalization of the simple cone search to encompass all generic
dataset metadata.

As with all TAP parameter queries the GDS query is used to query tables, but
due to the requirement that the target table implement some subset of the GDS
model (not necessary for a query but necessary for the GDS query to be useful),
the GDS query will generally be limited to queries of index tables of some sort.
An index table provides a uniform description and index of all data contained
within a data collection. Typical data collections might be a survey or
instrumental data collection, a user-defined collection associating an arbitrary set
of data objects, or a master index of all the data at a site. Index tables may
contain arbitrary content and still be queried with TAP, using either the parameter

Parameterized Query Language

- 21 -

query or ADQL, but must contain at least some fields containing GDS metadata
for queries based upon the GDS model to be used.

Index tables not only describe the datasets comprising a data collection, but
typicallly include data links which can be used to download the associated data
object, upload or link the object to a VOSpace, or invoke another service to
access the object (for example an SIA service could be used to cutout portions of
the referenced image or data cube).

While the most generic, physics based aspects of the GDS model can be used to
query most astronomical source catalogs (spatial queries at least are usually
possible), the real utility of the GDS query becomes evident when it is used to
query index tables. Primary datasets may be associated within the query to
model complex data. Data links may be followed to browse or access any
associated data products. The parameter query provides the simplest way to
query GDS index tables as the parameter mechanism provides explicit support
for querying GDS data model attributes. The ADQL query mechanism can also
be used once support for UTYPE-based queries becomes available.

[We could continue at this point to define the parameters for the GDS
query, however this is not required for the initial version of the TAP param
query, and while the GDS metadata and associated query is already in use
in DAL2 interfaces such as SSA, more work as well as prototyping is
needed on new features such as data linking before the GDS query is
ready for standardization. Hence the remainder of this section merely
discusses the aspects of the GDS query where further work is needed in
the next phase of development. – Ed.]

The most basic parameters defined by the GDS query are POS,SIZE, BAND,
and TIME. Equally fundamental for a dataset query which can discover many
types of data is the dataset type, e.g., image, spectrum, table, or any other VO
type. Extension of the dataset type to characterize external data (arbitrary data
from the local archive) is also possible.

Parameter Description

POS, SIZE Spatial position in the specified coordinate system.

BAND Spectral coordinate, range, or band identifier.

TIME Time coordinate or range.

POL (?) Polarization type [may be more useful for data access. – Ed]

DSTYPE (?) Dataset type (table, image, spectrum, custom, etc.)

A more complete set of GDS parameters (from the DAL2 architecture document
[2] and originally SSA) are given in the following table.

Parameterized Query Language

- 22 -

Parameter Description

SPECRP Spectral resolving power
SPATRES Spatial resolution
TIMERES Temporal resolution
TARGETNAME Name of observed target
TARGETCLASS Astronomical object type
ASTCALIB Level of astrometric calibration of data
WAVECALIB Level of spectral coordinate calibration of data
FLUXCALIB Level of flux calibration of data

PUBDID Publisher dataset identifier (e.g., from data center)
CREATORDID Creator dataset identifier (e.g., assigned by survey)
COLLECTION Data collection name or identifier

Additional refinement of the GDS query is likely as the concept is developed
beyond just what was done for SSA and the generic dataset model.
An issue with the GDS query is what to do if a parameter is specified but the
metadata required to evaluate the parameter is not defined. The general rule in
this case for data discovery queries in DAL is to ignore the constraint without
error if it cannot be applied. Data queries thus err on the side of including data
if a query constraint cannot be applied, leaving it up to the client to further refine
the query. This has the advantage of allowing queries to be posed without
requiring detailed knowledge of what metadata is available for a given index
table (this differs from a simple table query where the referenced table fields
must exist).

 5 Use with HTTP (informative)
An HTTP service which accepts PQL as input is constrained by the general rules
for use of HTTP, which are contained in IETF RFC documents. This section
collates some of issues in using PQL with such services. For authoritative
specifications, please refer to the original RFCs.
The PQL parameters described in this document may be mapped directly to
HTTP request parameters in the query string portion of the URL (HTTP GET) or
included in the request (HTTP POST). As noted above, it may not be necessary
to URL encode the parameter values in all cases, but it is generally good practice
to do so.

 5.1 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396 [5]) reserves particular characters as
significant and requires that these be escaped when they might conflict with their
defined usage. This document explicitly reserves several of those characters for
use in the query portion of TAP requests. When the characters “?”, “&”, “=”, “,”

Parameterized Query Language

- 23 -

(comma), “/”, and “;” appear in one of the roles defined in Table 1, they must
appear literally in the URL. When those characters appear elsewhere (for
example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server must be prepared to decode any character escaped
in this manner.
Table 1 — Reserved characters in HTTP URLs

Character Reserved usage
? Separator indicating start of the URL query string
& Separator between parameters in the query string
= Separator between name and value of a parameter
Separator indicating start of a URL fragment (anchor?)

, / ; Separator between individual values in range or list parameters

For example, while PQL does not specify any use for the fragment or anchor (#)
separator, any parameter value contains this character must be URL encoded to
be legally included in a URL.

 6 References
[1] P. Dowler, G. Rixon, D. Tody, DAL-WG, Table Access Protocol, IVOA Internal

Working Draft, May 2009.
[2] D. Tody, F. Bonnarel, M. Dolensky, J. Salgado, DAL-WG, IVOA Data Access

Layer Service Architecture and Standard Profile, IVOA Note 5 October 2008.
http://www.ivoa.net/internal/IVOA/SiaInterface/DAL2_Architecture.pdf

[3] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. Nieto- Santisteban, M.
Ohishi, W. O’Mullane, P. Osuna, VOQL-TEG & VOQL-WG, IVOA Astronomical

Data Query Language version 2, IVOA recommendation 30
th
 October 2008.

http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf
[4] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF

RFC 2119. http://www.ietf.org/rfc/rfc2119.txt
[5] A. Rots, Space-Time Coordinate Metadata for the Virtual

Observatory�Version 1.33, IVOA Recommendation 30 October 2007.
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html

[6] T. Berner-Lee, R. Fielding L. Masinter, Uniform Resource Identifiers (URI):
Generic Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt

[7] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[8] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol – HTTP/1.1, IETF RFC 2616. http://www.rfc-
editor.org/rfc/rfc2616.txt

Parameterized Query Language

- 24 -

TODO: add references to previous DAL services (e.g. SSA)

