Table Access Protocol

International
Virtual

Observatory

Alliance

Table Access Protocol

Version 0.31
IVOA Internal Working Draft 2008 November 24

This version:
TAP-V0.31-20081124

Latest version:

Not yet issued

Previous version(s):
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-v0.3.pdf
http://www.ivoa.net/internal/[VOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf

Lead authors:
P. Dowler, G. Rixon (editor), D. Tody
Contributors:
K. Andrews, J. Good, R. Hanisch, T. McGlynn, K. Noddle,
F. Ochsenbein, I. Ortiz, P. Osuna, R. Plante, G. Rixon, J. Salgado,

-1 -

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf

Table Access Protocol

A. Stebe, A. Szalay
Abstract

The table access protocol (TAP) defines a service protocol for accessing general
table data, including astronomical catalogs as well as general database tables.
Access is provided for both database and table metadata as well as for actual
table data. Both simple filtering operations on individual tables as well as more
general multi-table operations such as relational joins are supported. This version
of the protocol includes support for both ADQL-based queries and parameterized
queries within an integrated interface, and includes support for both synchronous
and asynchronous queries. Special support is provided for spatially indexed
queries using astronomical coordinate systems. A multi-position query capability
permits queries against an arbitrarily large list of astronomical targets, providing a
simple spatial cross-matching capability. More sophisticated distributed cross-
matching capabilities are possible by orchestrating a distributed query across
multiple TAP services.

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http.//www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”
Contents
1 IntroducCtion.....eeeeeeeeeeeeeeneeneeeeeeeeeeieeeeiieeeeieeeeeeeieieeeeieeiie e 4
11 Types Of QUErY.......coveeeeeeiiiiiiiiieeiiie i 5
1.1.1 Data., metadata. tableset and VOSI qUEries........coeeeeceeeeieceieiiiieeeiiin 5
1.1.2 Parametric and ADQL QUENES.......uuuueeeeeeiiiiiiiiiiiiiiieeeiiiieieiiiiieeieiie 5
1.1.3 Synchronous and asynchronous QUEres.eeeeeeeeiiiiiiiiieiiiieeeeeees 6
1.2 Interface Overview (informative)........cccceeeeeeeeiiieiiiiiiieieeeeee, 7
2 Requirements for a TAP service (NOrmative)...........ceeeeeiesiisssiiiiiiieieene 9

http://www.ivoa.net/Documents/

Table Access Protocol

2.1 Principal funCtionS.........eceeeeiiiiiiiiiiiiiiiiiiiee 9
2.2 \WED reSOUICES. .uuuiiiiieiiiiiiiieiii ittt 9
2.3 TAP OPEratioNS.....cceuiseeiiiiiiiiiiiiseii it 10
2.4 Parameters for HTTP requests..........ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 11
241 REQUEST.....oooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e, 11
2.4.2 QUERY...ouuuuiiiiiiiiiiiiiiiiee et 12
2.4.3 Parameters for parametric QUEery...........oeeeeeeeeeeeiieiiiiiiiieeiiieeeeiieeeeee 12
2.4.4 LANGooiiiieiiiiiii et 13
2.4.5 FORMATttt ee e e 13
2.4.6 UPLOAD......cccuiiiiiiiiieie e 13
2.4.7 MAXREC....cciiiiiiiiiiiiiiiiiiiit it 14
2.4.8 MTIME.........ooviieiiiiiieee ettt e e 15
2.4.9 RUNID.....ccoviieiiiiiiiiiiii ittt 15
2.4.10 VERSION....oooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt 15
2.4.11 Range-list parameters..........oeeuuieieiiiiiiiiiiiiiiiii 16
2.4.12 Missing or null-valued parameters...........ooeeeeeeeeeeieieiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 17
2.4.13 Case of parameters.........oeeeeeiiiiiiiiiisiiiicicieieeieeeeeeeeeeeeeeeeeeeeeeee 17
2.4.14 Order and cardinality of parameters............occoeeeeiiiiiiiiiiieieeiiiiiiiiiiiiiiieenes 17
2.5 Table NAMES....cuveeeiiiiiiii ittt 17
2.6 Metadata tables and TAP schema...........cceeeiiiiieeeiiiiiiiiiiieeeeeeeeee 18
2.7 Table UploadS.uuueeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieee e 19
2.8 Representations of reSUlS......covveeeeeeeeiiiiiiiiiiieiieeiiiiiiieieeeieeeeeeeeeen 20
2.8.1 Data and metadata QUENES.uueueiiiiiiieiiiiiiiiiiiiiiiiieeeeee e 20
2.8.2 TableSet QUENIES. ..uuuueieiiiiiiiiiiiiieiee et 21
P S T YL O 1 21
2.8.4 Error dOCUMENES...oeeeieiiiieiiiee ettt 22
2.8.5 OVErflOWS.....ceueeeieiiiiiiiiiiiiiiesseeeeee et 22
2.9 Versioning of the TAP protoCol........cceeeeeeeeeiiiiiiiiieeeeeeeeeeeeeieeee 23
2.9.1 Version number form and valu€...........ooeuveeeeeeeeeeiiiiiiiiiiiieieiieeeeeiieeeeeeeen 24
2.9.2 Version nUMber ChanQes.uuuuuiieeeiiiiiiiiiiiiiiiiiiiieeeiieeeii e 24
2.9.3 Appearance in requests and in service metadata..............oooeeeeiiiiiiiiennnnnnn, 24
2.9.4 Version number Negotiation.eeeeeeeiiiiiiiiiiiiiiiiiiiiiiii i 24
2.10 Parametric query-language........cceeeeeeeieeiieiieeiei e, 25

Table Access Protocol

2101 POS.SIZE....ceeeeiiiiiiiiiiieeeeee e 25
2.10.2 BEGION. ..ottt ee e 27
2.10.3 SELECT ..t 27
2.10.4 FROM. ..ooiiiiieeeieeee ettt eea e, 27
210.5 WHERE. .. .oouuiiiiieieeeeeeeee ettt 28
2.11 Numeric and boolean values............ueeeeeeeiiiiiiiiiiieieeeeeeiiiiieeeeeieeeeees 30
2.12 Use of VOTabI€.....ooeieiieeiieeeeeeeeeeeee et 31
3 Service Reqistration (NOrmative)..........eeeeeeeieiiieeeeiieeeeiiiiiiiieieieeeeeeeeeeeeees 33
4 Extended capabilities (normative)........cceeeeeeieiiiiceieiiiiiiieeeeeeeeeeeeiieeeee 34
5 Use of UWS (informative).......oeeeeieeeeeeiiiiiiiiiiiiiiiieiiieeiiieiiiieeien 34
6 VOSpace Integration (informative)..........coceeeeeeieieeiiiiiieeiiiiieiiienee 36
7 Use of HTTP (informative)........oeeeieeeeiieiiiiiieiiieeiieeiieeeieee e 36
71 General HTTP request ruleS......oceveeeeeeneeiiiiiiiiiiiieiiiiiieieeieeeeeeee 36
711 Introduction.....ceeeeeeeeeiiiiie e 36
7.1.2 Reserved characters in HTTP GET URLS.....ceeeeeeeeeeeeeiiieeeiiiiiiiiiiieeeeee, 37
713 HTTP GET oottt ee e 37
71.4 HTTP POST ..ottt eeeeeeeeen, 38
7.2 General HTTP response ruleS.....uuueeeeeieieeeeeiieieiiiiiiiiiiieieiieeeeeeee 39
8 References........ccevveveeeeeieiii e, 39

1 Introduction

The Table Access Protocol (TAP) is a Web-service protocol that gives access to
collections of tabular data referred to collectively as a tableset. TAP services
accept queries posed against the tableset (set of tables) available via the service
and return the query response as another table, in accord with the relational
model. Queries may be parameter based or may be composed as expressions in
some query language such as the Astronomical Data Query Language (ADQL
[1]), or possibly native SQL, and may execute synchronously or asynchronously.

The result of a TAP query is another table, returned as a VOTable or optionally in
some other format. This table contains directly the requested table data; it is not
a table containing links to data objects to be downloaded separately (c.f. SIAP
and SSAP).

The table collections made accessible via TAP are typically stored in relational
database management systems (RDBMS), but TAP may also be implemented for
data stored in other ways, such as in flat-file systems. This aspect of the
implementation is abstracted by the protocol and is not visible to users. A TAP

-4 -

Table Access Protocol

service exposes the database schema to client applications so that queries can
be posed directly against arbitrary data tables available via the service.

Multi-table operations such as joins or cross matches are possible provided the
tables are all managed by the local TAP service, and provided the service
supports these capabilities. Larger scale operations such as a distributed cross
match are also possible, but require combining the results of multiple TAP
services.

TAP is a member of the IVOA Data Access Layer (DAL) family of data access
protocols, conforming to the second generation (DAL2) interface standards [ref].
These standards provide uniformity among all the DAL2 protocols and include
conformance to relevant query language, data model, VOTable, registry, and Grid
and Web services standards (VOSI, UWS, etc.), where appropriate. Except
where explicit reference is made to other standards documents an attempt is
made to make the current specification self-contained, while maintaining
conformance with more general IVOA standards. In case of conflict or ambiguity
with the more general standards the TAP standard documented herein has
precedence.

1.1 Types of query

1.1.1 Data, metadata, tableset and VOSI queries
TAP services distinguish four different kinds of query by the information returned.

Data queries apply to the science archive served by a TAP installation. They are
the reason for providing a TAP service. All the other kinds of query support the
ability to make data queries. Data queries are phrased in a query language,
either ADQL [1] or TAP's parametric query-language (see Section).

Metadata queries work like data queries, using the same query languages, but
they are applied to standardized tables which explain the data model of a
particular TAP installation. Metadata queries allow a client to discover the names
of tables and columns to be used in data queries.

Tableset queries are a special case metadata queries that reveal the entire data
model in one response. They use a different output format to metadata queries.

VOSI 'queries' supply metadata concerning the availability of a TAP service, its
main interfaces ('VOSI-capabilities'), and its data model ('VOSI-tables'). VOSI-
capabilities and VOSI-tables outputs use the same XML schema as the IVOA
registry and can be incorporated in service registrations.

1.1.2 Parametric and ADQL queries

This request, to an IVOA cone-search service, is an example of a parametric
query:

Table Access Protocol

http://some.where/some/thing?RA=180&DEC=42&SR=0.5

This query could be translated as “from the table dataset represented by the
service at the URL http://some.where/some/thing, find all records for
which the recorded position is within 0.5 degrees of the search position (180,42),
where the coordinates are right ascension and declination in the ICRS coordinate
system, measured in degrees”. The query is the boolean combination of the
constraints expressed in the RA, DEC and SR (search-radius) parameters.

Parametric queries such as this are simple to express and to implement for cases
where the data model is sufficiently well defined and adequate for the data to be
queried, hiding many of the details required to pose and evaluate the query (both
the simple spatial cone search as well as queries of the TAP metadata schema
are examples of such simple well defined queries). When we query arbitrary
data tables however, there often is no well defined data model, and the data table
itself must be queried directly. The Astronomical Data Query Language (ADQL),
a standardized sub-set of SQL92, was defined to deal with this more general use
case.

Because ADQL has a formally-defined grammar it is feasible to build a complete
parser for ADQL. Where an ADQL-consuming service uses a standard SQL-
based DBMS as the back-end, it is possible to use an off-the-shelf ADQL parser
to do most of the work required to generate SQL queries for the back-end DBMS.
TAP includes provisions for ADQL queries for the general case as well as
simplified parametric queries for the most common use cases.

1.1.3 Synchronous and asynchronous queries

We say that a TAP query is synchronous if the results of the query are delivered
in the HTTP response to the request that originally posed the query. In this case,
the service delays the response until the query completes or fails. Conversely, if
the service returns an immediate HTTP-response upon accepting a query and
the client later obtains the results of the query in response to a separate HTTP
request, then we say the request is asynchronous.

In the synchronous case, the client must wait for the query to finish. If it times out
or otherwise breaks communication before receiving the response, then the
query fails. Synchronous queries are analogous to blocking 1/O in a file-system;
asynchronous queries correspond to non-blocking 1/0.

Asynchronous queries require that client and server share knowledge of the state
of the query during its execution and between HTTP exchanges. They are an
example of stateful interactions. In TAP, the mechanism by which the clients and
services share the state of transactions is the Universal Worker Service (UWS)
pattern. Synchronous queries are stateless between HTTP exchanges and need
no such mechanism.

Table Access Protocol

Synchronous queries are easier to implement, both for the client and the service;
they are easier for scientists to use, and are adequate for most simple queries.
However, there are many more advanced use-cases where synchronous queries
are not sufficient. Therefore, TAP supports both synchronous and asynchronous
queries.

1.2 Interface Overview (informative)

TAP defines a RESTful web service with two primary URLs: one for synchronous
queries, including metadata requests, and one for asynchronous queries." The
query language and query constraints for a particular request are determined by
the HTTP query-string.

This is an example of the URL for a synchronous ADQL query on r magnitude:
http://some.where/tap/sync?REQUEST=AQDLQuery \

S&QUERY='SELECT * FROM magnitudes as m where m.r>10 and m.r<16"'

The URL for an equivalent parametric query would be

http://some.where/tap/sync?REQUEST=ParamQuery
&FROM=magnitudes&WHERE=r,10/16

The REQUEST parameter indicates the kind of query required.

Synchronous queries return the table of results in the HTTP response to the
initial request. In the examples above, the output format defaults to VOTable; the
FORMAT parameter could be added to select a different format.

Synchronous queries can be requested using HTTP GET or HTTP POST; the
examples show the GET form. Using GET allows the query result to come from a
cache, either inside the TAP service or between the service and client.

Asynchronous queries are started in the same way as the synchronous kind,
using the other URL.:

HTTP POST to http://some.where/tap/async
REQUEST=AQDLQuery
QUERY='SELECT * FROM magnitudes as m where m.r>10 and m.r<16'

or

HTTP POST to http://some.where/tap/async
REQUEST=ParamQuery

FROM=magnitudes

WHERE=r,10/16

1 The original plan was to have just one, primary URL for all kinds of query. After investigation,
we find that a single URL cannot satisfy fully the requirements of both the DAL generation-2
conventions and the UWS standard.

http://some.where/tap/sync?REQUEST=AQDLQuery&Q

Table Access Protocol

The service's response to these requests is an HTTP redirection (code 303 'see
other') to a URL representing the query's state and progress. The progress may
be tracked by polling a URL for the state: it will eventually go to COMPLETED or
ERROR. The results, or an error document can then by retrieved from a URL
associated with the job. This is an application of the UWS pattern. Details are in
sections and 5.

Positional queries have special support in the parametric query-language. This is
a cone search on a specified table:

http://some.where/TAP/sync? \
REQUEST=paramquery&P0S=12,34&SIZE=0.5&FROM=f00

A 'multi-position' cone-search may be done by uploading a table of search
positions. This query

http://some.where/tap/sync?REQUEST=ParamQuery \
&UPLOAD=http://some.where.else/data/foo.vot,positions \
&P0S=@TAP_UPLOAD.positions&SIZE=0.2

uploads the VOTable from http://some.where.else/data/foo.vot (i.e. from a server

separate from the TAP service) and searches a 0.2-degree cone around each
position. Section gives more detail.

Each TAP service has its own 'tableset’: a particular collection of tables and
columns with locally-defined names. Those local names are the operands in the
queries and so a client needs to know the tableset for a particular service to form
a query. There are two ways of exploring the tableset.

First, a description of the entire tableset may be obtained in XML via the VOSI-
tables URL, e.g.
http://some.where/TAP/sync?REQUEST=GetTableMetadata

These metadata are in the format defined for the IVOA resource-registry and the
client may find a cached copy in the registry. Details are specified in section .

Secondly, the structure of the tableset is described by a set of tables with fixed
names beginning with TAP_SCHEMA. These can be queried using either ADQL
or the parametric-query languge.

This lists the columns of table 'foo':

http://some.where/tap/sync\

?REQUEST=paramquery&FROM=TAP_SCHEMA.COLUMNS

SWHERE=tablename, foo

The service's availability can be read using VOSI:
http://some.where/tap/sync?REQUEST=getAvailability

Finally, the service's capabilities can be read using VOSI:
http://some.where/tap/sync?REQUEST=getCapabilities

-8-

Table Access Protocol

This output lists any extra interfaces such as legacy cone-search or built-in
VOSpace support.

2 Requirements for a TAP service (normative)

The keywords “must”, “required”, “should”, and “may” as used in this document
are to be interpreted as described in the W3C specifications (IETF RFC 2119 [2]).
Mandatory interface elements are indicated as must, recommended interface
elements as should, and optional interface elements as may or simply “may”
without the bold face font.

2.1 Principal functions
An implementation of a TAP service must provide these capabilities:
® ADQL query with synchronous execution
® ADQL query with asynchronous execution
An implementation of a TAP service should provide these capabillities:
® Table metadata query (synchronous, VOSI compliant)
® Service metadata query (synchronous, VOSI compliant)
® Service availability query (synchronous, VOSI compliant)
An implementation of a TAP service may provide these capabilities:
® Parametric query with synchronous execution
® Parametric query with asynchronous execution

A TAP service must be registered in the IVOA resource-registry in the form
specified in section .

[Arguably, the requirements above come into force because a service is
registered as TAP. This opens the question as to inheritance of requirements
when a service derived from TAP is registered in a different form. E.g., a service
searching a catalogue image cubes could be defined as a TAP service with a
specific data-model and a different form of registration. In this case it is not clear
that ADQL query would still be mandatory. This point was discussed briefly at the
October 2008 Interop but no conclusion was reached. -Ed.]

2.2 Web resources

A TAP service must be represented as a tree structure of web resources each
addressable via a URL in the http scheme, or the https scheme, or both.

The web resource at the root of the tree must represent the service as a whole.
This specification defines no standard representation for this root resource.
Implementations may provide a representation, or may return a '404 not found'

-9-

Table Access Protocol

response to requests for the root web-resource. One possible representation is
an HTML page describing the scientific usage of the service. TAP clients must
not depend on a specific representation of the root web-resource.

A TAP service must provide a web resource with relative URL /sync that is a
direct child of the root web-source. This web resource must represent the results
of synchronous queries, including metadata outputs defined by VOSI. The exact
form of the query, and hence the representation of the resource, is defined by the
query parameters as listed in section 2.4. Representations of results of data
queries, metadata queries and VOSI outputs are defined in sections 2.8.1, 2.8.2
and 2.8.3 respectively.

[During the writing of TAP 0.3, there was a divergence of opinion between the
editors as to whether the VOSI metadata should be representations of the /sync
web-resource or whether they should be made available on separate endpoints.
The requirements in the preceding paragraph are a compromise between REST
principle and the “DAL-2 architectural style”. This decision might be reviewed in
later versions of TAP. - Ed.]

An HTTP-GET request to the /sync web-resource may return a cached copy of
the representation. This cached copy might come from an HTTP cache between
the client and the service, and the service may also maintain its own cache.
Clients which require an up-to-date representation of volatile data or metadata
must use HTTP POST.

A TAP service must provide a web resource with relative URL /async that is a
direct child of the root web-resource. This web resource must represent controls
for asynchronous queries. Specifically, the web resource must represent the job-
list as specified in the UWS standard [3].

A TAP service must provide web resources as specified by UWS. These are
descendants of the /async web-resource, and they include a web resource that
represents the eventual result of an asynchronous query. A client making an
asynchronous request must use the UWS facilities to monitor or control the job
and to retrieve the result. If an asynchronous query succeeds, then the table of
results must be made available as a UWS result with the formal name resuit?

Requests to run queries on the /async web-resource are always sent as HTTP-
POST requests.

2.3 TAP operations
The operations supported by a TAP service are listed in the following table.

Operation Web resource | Requirement

2 A'UWS result' is a web resource for which the position in the tree of web resources is defined
by the UWS standard. See section for an explanation in the context of TAP.

-10 -

Table Access Protocol

ADQLquery /sync “must”
ADQLquery /async “must”
ParamQuery /sync “may”
ParamQuery /sync “may”
GetCapabilities /sync “should”
GetAvailability /sync “should”
GetTableMetadata /sync “should”

Operation names match allowed values of the REQUEST parameter, as specified
in section . The web resources are specified in section .

2.4 Parameters for HTTP requests

The /sync and /async web-resources must accept the parameters listed in the
following sub-sections. In a synchronous request, the parameters select the
representation returned in the response message. In an asynchronous request,
the parameters select the representation of the eventual query-result rather than
the response to the initial request.

Not all combinations of the parameters are meaningful. E.g., if a request carries
REQUEST=ADQLquery then the SELECT parameter (from the parametric-query
language) is spurious. If a service receives a spurious parameter in an otherwise-
correct request, then the service must ignore the spurious parameter, must
respond to the request normally and must not report errors concerning the
spurious parameter.

2.41 REQUEST

This parameter distinguishes data-query requests from VOSI requests and
distinguishes ADQL queries from parametric queries. A TAP client must set this
parameter correctly in every request. If a TAP service receives a request without
this parameter or with an incorrect value for this parameter, then the service
must reject the request and return an error document as the result.

These are the allowed values of the parameter.
® paramquery: execute a parametric query.
® ADQLquery: execute an ADQL query.

® getCapabilities: return VOSI-capabilities metadata.

-11 -

Table Access Protocol

® getAvailability: return VOSI-availability metadata.
® getTableMetadata: return VOSI-tables metadata.

[The various examples of the REQUEST parameter in TAP 0.3 are inconsistent in
case. Given that parameter values are stated below to be case-sensitive, TAP 0.4
should pick one capitalization of the REQUEST values and stick to it — Ed.]

2.4.2 QUERY

A service must support the QUERY parameter, used to input the ADQL [1] (or
other query language) statement to be executed. The query string is case
sensitive. In particular, the case of table and column names must be preserved
between a metadata query and a subsequent query of a data table.

Within the ADQL query, the service must support the use of datetime/timestamp
values in ISO8601 format.

If the tables that are queried through a service contain columns with spatial
coordinates and the services wants to enable the caller to perform spatial
queries, the service must support the INTERSECTS function and it must
support the following geometry functions: REGION, POINT, BOX, CIRCLE,
COORD1, COORD2, COORDSYS. Support for the AREA, CONTAINS, and
POLYGON functions are optional. If the service supports the REGION function, it
must support region encoding in STC-S format [4]; the extent of STC-S support
within the REGION function is left up to the implementation. Coordinate system
specification for POINT, BOX, CIRCLE, and POLYGON must use values from
Table 3 (standard reference frames) in STC [4].

Although it is allowed by the ADQL syntax, services should return an error if use
of POINT, BOX, CIRCLE, or POLYGON mix constants and column references for
coordinate system and coordinate values. For example, POINT('ICRS', tra,
t.dec) should be an error. The only place where mixing constants and column
references is acceptable is when using a constant for the radius in a CIRCLE,
e.g. CIRCLE(t.coordsys, t.ra, t.dec, 0.1), as this allows the caller to control search
radii for multi-position searches or source cross-matching.

The QUERY parameter is not used to input a parametric query.

2.4.3 Parameters for parametric query

A number of parameters are used specifically for the parametric queries, both
synchronous and asynchronous. This query language is described in section .

-12-

Table Access Protocol

2.4.4 LANG

The service should implement the LANG parameter. The value is a string
specifying the language and optionally the language version used for the QUERY
parameter, as defined by the service capabilities. A service which implements
the AdglQuery operation must support “ADQL” (case insensitive) as the default
query language. The service may support other query language encodings as
well, e.g., other ADQL versions, or pass-through of native SQL, as specified by
the service capabilties. The version of the query language may be specified,
e.g., “ADQL-1.0” (the syntax should be as shown). The service should return an
“‘unknown query language” error if an unsupported and incompatible value of
LANG is specified.

2.4.5 FORMAT

The FORMAT parameter indicates the client's desired format for the table of
results of a query. lts value should be a MIME type for tabular data or one of the
following shorthand forms:

® votable
® csv (comma separated values)
® fits (FITS binary table)
® text (pretty-printed text)
® html (pretty-printed Web page)
All the shorthand forms are insensitive to case.
If the parameter is omitted, the default format is VOTable.

A TAP service must support VOTable as an output format, should support CSV
output and may support other formats. A TAP service must accept a FORMAT
parameter indicating a format that the service supports and should reject queries
where the FORMAT parameter demands an unsupported format.

2.4.6 UPLOAD

The service should implement an UPLOAD parameter, used to reference read-
only external tables via their URL, to be uploaded for use as input tables to the
query. Tables uploaded in this fashion are assumed to be encoded in VOTable
format. The value of the UPLOAD parameter is a list of table name-URL tuples,
delimited by semicolon, using comma to delimit each table name-URL tuple (that
is, a list-structured parameter as specified in section 2.4.11). For example:

UPLOAD=table_a,http://host_a/path;table_b,http://host_b/path

would define two input tables fable _a and table b, located at the given URLs
(URL-encoding is mandatory in this case since we embedding a URL within a

-13 -

Table Access Protocol

URL). The specified table names are arbitrary but must be legal ADQL table
names and must be unique within the upload table namespace for the lifetime of
the query (see section 2.7). The given name for the table name should be an
unqualified table-name; uploaded tables will automatically be qualified with the
schema name TAP_SCHEMA. The upload table storage area is shared with any
tables uploaded in-line with the query.

2.4.7 MAXREC

The service should implement a MAXREC parameter specifying the maximum
number of table records (rows) to be returned. If the result set for a query
exceeds this value a valid data table should be returned with an overflow
indicator as specified in section .

If MAXREC is not specified in a query, the service may apply a default value or
may set no limit. The default MAXREC value defined by a service should be
large enough to avoid overflow for most small queries, but small enough to
provide a response to the user reasonably quickly. The client may override the
default MAXREC, increasing the value up to the maximum value permitted by the
service, as defined in the service capabilities. A sufficiently large MAXREC may
permit streaming of arbitrarily large output tables. Output tables larger than the
maximum permitted value of MAXREC must use some other technique such as
asynchronous computation of the output table followed by retrieval using a
streaming synchronous GET (VOSpace output may also be supported in a later
version of TAP).

In the case of a large output table which is streamed back to the client as it is
being computed it may not be possible to know in advance whether overflow will
occur (for a fully streamed response the VOTable header may be output before
the table data has been computed). In this case the output should be returned
with a query status of “OK”, indicating a valid query; if overflow occurs, MAXREC
plus one rows should be returned to indicate that overflow occurred.

[This paragraph seems to contradict the detailed rules for handling overflow
stated elsewhere in this document. Both this and the alternate provisions are
taken from TAP 0.3. Since the rules for handling overflow in section are more
complete, | suggest that the paragraph above be dropped in TAP 0.4 - Ed.]

A value of MAXREC=0 indicates that, in the event of an otherwise successful
query, a valid output table should be returned containing metadata but no table
data rows. It is up to the service whether or not to actually execute the query and
generate table rows which will be discarded; the query status should be returned
as “OK” so long as the query is otherwise valid. This is an example of a null
query, that is, a query which produces an empty table.

-14 -

Table Access Protocol

2.4.8 MTIME

The service may support an MTIME parameter, used to query a table for only
rows which were modified within a given range of times, specified as an 1ISO8601
open or closed range list in the UTC time system. A “modified” row is a table row
which was inserted, updated, or deleted during the indicated time interval (hence
MTIME may be used to see deleted rows which are not visible in any other
fashion). This feature may be used by a remote client to maintain a replica of a
large table, or to periodically poll a table for changes. The period of time for
which deletions are preserved is server dependent (depending upon how often
deleted rows are purged) but should be at least one week.

When the MTIME parameter is specified, the service must add extra columns to
the output table (in addition to that specified in the select statement of the query),
with utypes Record.Modified and Record.Deleted. The values in this column are
the time-stamp when the last insert/update occurred or when the row was deleted
respectively. One value must be set and the other null for every row in the table;
values are in ISO8601 format. Rows that are thus marked as deleted must
include values for one or more column(s) that uniquely identify the row, but other
column values may be null.

The MTIME parameter must not be used with queries that select from multiple
tables (joins in ADQL). If MTIME is used in a such a query the service must
reject the request and return an error document.

2.4.9 RUNID

The service should implement the RUNID parameter, used to tag service
requests with the job ID of a larger job of which the request may be part. For
example, if a cross match portal issues multiple requests to remote TAP services
to carry out a cross-match operation, all would receive the same RUNID, and the
service logs could later be analyzed to reconstruct the service operations initiated
in response to the job.

The service should ensure that RUNID is preserved in any service logs.
The service should pass on the RUNID value in any calls to other services, e.g.
VOSpace.

2.4.10 VERSION

The VERSION parameter specifies the protocol version number. The format of
the version number, and version negotiation, are described in section 2.9.

A TAP service must support the VERSION parameter.

-15 -

Table Access Protocol

2.4.11 Range-list parameters
Parameters which are list-valued (for example, UPLOAD and POS) use the

comma (“,”) as the separator between successive items in the list. Embedded
white space is not permitted. If a parameter value includes a space or comma, it
must be escaped using the URL encoding rules (see section and IETF RFC

2396 [5)).

In some lists, individual entries may be empty, and should be represented by the
empty string. Thus, two successive commas indicate an empty item, as does a
leading comma or a trailing comma. An empty list should be interpreted either
as a list containing no items, or as a list containing a single empty item,
depending upon the context.

Some parameters (for example MTIME and WHERE) may allow a parameter
value to be specified as a numeric range. Such range-valued parameters use
the forward slash (“/”) character as the separator between elements of the range
specification (as in the ISO 8601 date specification after which this convention is
patterned). For example, “5E-7/8E-7" would specify a range consisting of all
values from 5E-7 to 8E-7, inclusive. If a third field is specified it is a step size for
traversing the indicated range. If a parameter permits a step size the semantics
of the step size are defined by the specific parameter.

An open range may be specified by omitting either range value. If the first value
is omitted the range is open toward lower values. If the second value is omitted
the range is open toward higher values. Omitting both values indicates an infinite
range which accepts all values. For example, “/5” is an open range which
accepts all values less than or equal to 5. To specify all values less than 5, “/4”
would be used (for an integer valued range). Range values are limited to
numeric values or ISO dates.

If specified by the definition of a particular parameter a list may be qualified by
appending the character “;” (semicolon) followed by a qualifier string. For
example “180.0,1.0;galactic’ would specify a position in galactic coordinates. In
some cases (e.g., UPLOAD; the ParamQuery WHERE), multiple semicolons may

be used to delimit separate sub-lists or clauses within the parameter value.

List and range syntax may be combined, e.g., to indicate a list of scalar or range-
valued parameter values. Such a range list may be ordered or unordered, and
may contain either numeric or string data. An ordered list is one which requires
values to be processed in a specified order, and to ensure this the range list is
sorted or ordered by the service as necessary before being used. It is the
responsibility of the service to sort an ordered range list, hence the client may
input ranges or range values in any order for an ordered range list and the result
must be the same. The sequence in which items in an unordered list occur on
the other hand is significant, as since there is no intrinsic ordering for the list

-16 -

Table Access Protocol

which can be enforced by the service, items will be processed by the service in
the order they are input by the client.

The SELECT parameter in the parametric query-language is an example of an
unordered list, that is, a list which does not have a specified order mandated by
the service (hence in this case the client determines the order in which table
fields will be output).

2.4.12 Missing or null-valued parameters

If a parameter is not included in a query its value is unset; no value has been
specified. If a parameter is given a null value, e.g., “POS=", the parameter value
has been set and the value is the null string. The interpretation of such an input
is defined separately for each parameter, and may or may not be an error
condition.

2.4.13 Case of parameters

Parameter names must not be case sensitive, but parameter values must be so.
In this document, parameter names are typically shown in uppercase for
typographical clarity, not as a requirement.

2.4.14 Order and cardinality of parameters
Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response
from the service is undefined. The service may reject the request or it may pick
one value for for the parameter. Clients should not repeat parameters in a
request.

2.5 Table names

A fully qualified table name has the form
[[catalog name”.”[schema name”."”]table name]]

where catalog _name is the the name of the DB catalogue (often the “database”
name) in SQL DBMS terminology, schema_name is the name of the “schema” in
DBMS terminology (often also called a “database”; a DBMS schema is a type of
data model where the top level data model elements are tables), and table_name
is the actual table name. All elements of the table name are optional except
table_name. Depending upon the DBMS, “catalog” or “schema” may or may not
be implemented; some DBMS implement both, others one or the other, and the
simplest database systems might not implement either.

The implementation of a TAP service must define the table names acceptable in
queries and must reveal these to clients through metadata queries or through
VOSI-tables output, and the names must be identical in each of these sources. .

-17 -

Table Access Protocol

A TAP client must determine the acceptable names from one of these sources or
from the cached form of the VOSI-tables output included in the service's
registration. A client must use the names in the exact form given by the service,
reserving the case of letters and the embedded punctuation.

2.6 Metadata tables and TAP schema

The TAP core schema is intended to define the minimal metadata required to
describe and use the tables exposed by a TAP service. The information in the
TAP core-schema is equivalent to that defined by VOSI-tables and allowed by the
registry for a VODataService.

The qualified names in the tables of the TAP schema must follow the rules
defined in section 2.5. The names must be stated in a form that is acceptable as
an operand of a query.

The table TAP_SCHEMA.schemas must contain the following columns:

schema name

fully qualified schema name (catalog.schema)

description

brief description of schema

utype

UTYPE if schema corresponds to a data model

The table TAP_SCHEMA .tables must contain the following columns:

schema name fully qualified schema name (catalog.schema)

table name fully qualified table name
(catalog.schema.table)

table type one of: base table, view, output

description brief description of table

utype UTYPE if table corresponds to a data model

The table TAP_SCHEMA.columns must contain the following columns:

column_name column name

table name fully qualified table name
(catalog.schema.table)

description brief description of column

unit unit in VO standard format

ucd UCD of column if any

utype UTYPE of column if any

datatype datatype as in VOTable/Registry

arraysize array dimensions as in VOTable/Registry

primary column is visible in default selection

indexed column is indexed on the server

-18 -

Table Access Protocol

std standard column (as opposed to custom)

A TAP service must provide the tables listed above and may provide other tables
in the TAP_SCHEMA namespace.

The schema name TAP_UPLOAD should be included in the table name for any
tables uploaded to the service by a client.

The TAP_SCHEMA may be queried for tables named TAP_SCHEMA.* to get
information about the schema itself, e.g., to determine if any extended schema
metadata is defined by the service.

The schema naming conventions used here follow that of the registry. Data
types are expressed as in VOTable and the registry, e.g., boolean, unsignedByte,
short, int, float, double, and so forth. “Arraysize’ specifies the dimensions of an
array, e.g., "™", "b", "bx20" etc. “Primary” indicates that the column should be
visible in the default (narrow) view of a table. “Indexed” indicates that the column
is indexed, potentially making queries run much faster if this column is used as a
constraint. “Std” is included for compatibility with the registry, which uses this
value to indicate that a given column is defined by some standard, as opposed to
a custom column defined by a particular service.

The TAP schema also defines TAP_SCHEMA.tableset, however this is not an
actual table but rather a structured view of the core schema tables above.
Special output formats are defined for queries against this view; see section
2.8.2. A simple tableset-query must return the entire tableset, but advanced
services may permit selection with a WHERE clause, e.g., to find only tables
within a given region or for which the table name matches some pattern.

2.7 Table Uploads

TAP currently supports two methods by which a client application can upload
table or other data for use in a query. The simplest approach for tables which are
Web-accessible is use of the UPLOAD parameter (section 2.4.6) to reference an
external table by URI. More flexible for dynamic client queries is the inline table
upload where the table is uploaded inline as part of the query.

In both cases uploaded tables share the TAP_UPLOAD schema, and should be
referred to in queries as TAP_UPLOAD.tablename, where the tablename is
specified by the client at upload time, and must be a legal ADQL table name.
Tables are uploaded in VOTable format. Tables in the TAP_UPLOAD schema
persist only for the lifetime of the query (although caching might be used behind
the scenes).

Uploading a table at query time using the UPLOAD parameter is straightforward
so long as the table has already been made Web-accessible. For example, a

-19-

Table Access Protocol

table could be placed in a publicly-readable VOSpace, and the VOSpace URI of
the table could be used with UPLOAD to reference the table in a query.

In the case of the inline table upload a table is uploaded inline as part of the
query, used within the query like any other table, then discarded once the query
completes. A typical example would be a multi-position query where the user
uploads a list of source positions.

To upload a table inline the POST form of the query must be used. The content
type used is multipart/form-data, using a “file” type input element, with the “name”
attribute specifying the table name.

So for example in the POST data (following the header and input parameters) we
might have:
Content-Type: multipart/form-data; boundary=AaB03
[...]
- -AaB03x
Content-disposition: form-data; name="tablel"; filename="tablel.xml"
Content-type: application/x-votable+xml
[...]
- -AaB03x
Content-disposition: form-data; name="region"; filename="region.xml"
Content-type: application/x-stc+xml
The uploaded table would automatically propagate and could be referenced in

either ADQL or parametric queries as TAP_UPLOAD.table1. In the above
example a STC region mask is also being uploaded.

Inline table uploads may be used both with standard web-forms in a browser, as
well as for programmatic input.

Any number of tables can be uploaded using this technique, so long as they are
assigned unique table names within the query. Although our discussion here
concerns uploading tables, any type of file can be uploaded in this fashion
provided the service can do something useful with the file.

2.8 Representations of results

2.8.1 Data and metadata queries
The result of a data query or a metadata query must be a single table.

This table must be encoded in the output format specified by the FORMAT
parameter of the query. See section for required, optional and default formats.
VOTable is the default format and VOTable support is mandatory.

VOTables must follow the rules in section . These VOTables should be returned
with a MIME type of text/xml;content=x-votable.

-20-

Table Access Protocol

CSV formatted data should represent the output table with one row of text per
table row, with the table column values rendered as text and separated by
commas. If a column value contains a comma the entire column value should
be enclosed in double quotes. Text lines may be arbitrarily long. The first data
row should give the column name as the data value. Header lines may
optionally be included in the first few lines of output, prior to the first data row,
and should be indicated by placing the character ‘# in the first character of the
line.

2.8.2 Tableset queries

If the target of the query is the special table TAP_SCHEMA.tableset, then the
service must support an XML serialization of the tableset and must support a
special use of VOTable to express the structure of the tableset.

The special, XML serialization must conform to the registry standard expressed
in VODataService v1.1 [7] and the corresponding XML-schema. This serialization
format is identical to that used for VOSI tables [6].° This format is selected by the
parameter setting FORMAT=xml in the query.

The special use of VOTable must be a data-less VOTable in which the header
elements denote the structure of the tableset. There must be one VOTABLE
element per table in the tableset. This is an exception to the rule that query
results contain single tables. This format is selected by the parameter setting
FORMAT=votable in the query.

[In v0.3 of the TAP standard the intent w.r.t metadata queries is clear but the
implementation details are not. | have inferred some of the detailed rules as best |
can, but may have diverged from the original intent. These details should be
cleared up in TAP 0.4 - Ed]

2.8.3 VOSI

Representations of VOSI outputs (service capabilities, availability, table
metadata) must be as defined in the VOSI standard [6].

The representation of table metadata must include all tables in the service's
tableset.

VOSI's representation of table metadata is that mandated for the registry in
VODataService [7].

3 The registry-compliant-XML serialization of the tableset structure is almost the same thing as
the VOSI-tables output of the service but is not strictly identical. The format is the same, but
while the VOSI output is required to cover all the tables in the tableset (implicitly 'SELECT *
FROM TAP_SCHEMA.tablesel), the result of a tableset query can be restricted by the
WHERE clause of that query.

-21-

Table Access Protocol

[In TAP v0.3, it was written that 'The content of the TAP service availability
description are TBD.' My understanding of VOSI is that there are no details left to
determine. -Ed]

2.8.4 Error documents

If the service detects an exceptional condition, it must return an error document
with an appropriate HTTP-status code. TAP distinguishes three classes of
exceptions.

® Errors in the use of the HTTP protocol.

® Errors in the use of the TAP protocol, including failure of the service to
complete valid requests.

® Overflow conditions where the number of rows returned from a query
would exceed a pre-set limit (set either by the client or by the service).

Error documents for HTTP-level errors are not specified in the TAP protocol.
Responses to these errors are typically generated by service containers an
cannot be controlled by TAP implementations.

Error documents for TAP errors must be VOTable documents; in exceptional
conditions, any result-format specified in the query is ignored. When returning
such a document, the service must set HTTP status-code 200 'OK' (because the
HTTP operation is correct, even though the request cannot be fulfilled). The
exception condition must be signaled to the client using a status code in the
VOTable header and a qualifier in the MIME type reported in the HTTP header.
Section specifies the exact use of these error documents.

Overflow conditions are not strictly errors and results from overflowed queries are
not strictly error-documents. Therefore, a response to an overflowed query must
contain the results table truncated at the row limit and must be in the format
requested by the client. A response to an overflowed query should contain an
indication of the overflow if the output format allows this. Section specifies the
means of reporting overflows in VOTables. No reporting mechanism is specified
for other formats.

Example:
<INFO name="QUERY_STATUS" value="ERROR">DEC out of range: DEC=91</INFO>

2.8.5 Overflows

If a query is executed by a TAP service, the number of rows in the table of results
may exceed a limit set by the user (using the MAXREC parameter or the TOP
keyword in ADQL) or a limit set by the service implementation. In these cases,

-22 -

Table Access Protocol

the query is said to have 'overflowed'. Typically, a TAP service will not detect an
overflow until some part of the table of results has been sent to the client.

On detecting an overflow, a TAP service must produce a table of results that
valid in the required output format and which contains all the results up to the
point of overflow. Since an output overflow is not an error condition, the MIME
type of the output VOTable must be the same as for any successful query and
the HTTP status-code must be as for a successful, complete query.

If the service detects the overflow before sending the query response to the
client, and if the output format is VOTable, then the service must include in the
table of results an INFO element with name attribute set to QUERY _STATUS and
value element set to OVERFLOW. The service should set the value of this
element to an error message explaining the overflow. The error message should
state the number of rows at which the output was truncated.

If the output format is VOTable, and if the service detects the overflow after the
header for the table of results has been sent to the client, then the service must,
after closing the TABLE element for the table of results, write another TABLE
element to indicate the overflow. This latter table must not include data but must
an INFO element announcing the overflow. This element must have attributes
and content as specified for the case where the overflow was detected before
starting to write the VOTable.

No method of reporting an overflow is defined for formats other than VOTable.

[The discussion leading to the TAP 0.3 specification produced the two-table. The
TAP 0.3 document does not mention this scheme. Since the two-table approach
was agreed to be necessary by the editors of TAP 0.3, | have included it this draft
-Ed.]

Example:

<INFO name="QUERY_STATUS" value="OVERFLOW">
Number of table rows exceeds default limit of 5000
</INFO>

2.9 Versioning of the TAP protocol

The TAP protocol provides explicitly for versioning of the interface, using the
features provided by the VOA registry and the conventions of the DAL-2
architecture.

-23-

Table Access Protocol

2.9.1 Version number form and value

The TAP protocol defines a protocol version-number. The version number applies
to all aspects of the protocol as defined in this document, including any
associated XML schema and the request encodings. The TAP version refers
only to the TAP protocol; ADQL is versioned separately and TAP and ADQL
versions may differ.

Version numbers follow IVOA document conventions and contains two non-
negative integers, separated by decimal points, in the form “x.y”, for example,
“1.0”, or “1.13”. This is actually a three level version number encoded as two
digits, e.g., “1.23” is logically the same as “1.2.3”. One result of this syntax is that
second level version numbers cannot be greater than 9, for example “1.9” is a
higher version number than “1.10” (logically “1.9.0 vs. “1.1.0”). Hence IVOA
version numbers cannot be numerically compared without first being parsed.

2.9.2 Version number changes

The protocol version number will change with each published revision of this
document. The number will increase monotonically and will comprise no more
than two integers separated by decimal points, with the first integer being the
most significant. There may be gaps in the numerical sequence. Some numbers
may denote draft versions. Servers and their clients need not support all defined
versions, but must obey the negotiation rules below.

A version number change at the first level (e.g., 1.0 — 2.0) indicates a major
change. A version number change at the second level indicates a minor change
which is not necessarily backwards compatible. A version number change at the
third level is considered backwards compatible, and should not affect the pre-
existing functionality of the interface.

2.9.3 Appearance in requests and in service metadata

The version number may appear in at least three places: in the service metadata,
as a parameter in client requests to a server, and in the query response. The
version number used in a client’s request of a particular server must be equal to
a version number which that server has declared it supports (except during
negotiation, as described below). A server may support several versions, whose
values clients may discover according to the negotiation rules.

2.9.4 Version number negotiation

If a TAP client does not specify the version number in a request, the server
assumes the highest standard version supported by the service, and no explicit
version checking takes place. |If the client specifies an explicit version number,
and this does not match a version available from the service at level two, the
service returns a version number mismatch error. The client can determine what

=24 -

Table Access Protocol

versions of the protocol the service supports by a prior call to VOSI-capabilities or
via a registry query.

2.10 Parametric query-language

A TAP service which implements parametric queries on data must do so using
the parameters defined in this section. None of these parameters are mandatory
unless the service supports parametric queries; however, many of the
parameters become mandatory once a service registers its support for such
queries. These parameters have no meaning in ADQL queries or VOSI requests.

2.10.1 POS, SIZE

The POS and SIZE parameters provide an easy to use, optimized facility for
performing spatial queries of astronomical catalogs, similar to the legacy cone
search protocol. Spatial queries are supported only for tables which contain
positional information (e.g., RA and DEC for each table record), however many
astronomical catalogs are of this type.

POS and SIZE define a circular search region in the specified coordinate system
(default ICRS). A service which implements ParamQuery must support the POS
and SIZE parameters, and implement them as a query constraint for tables
containing records tagged with spatial positions. If POS and SIZE cannot be
applied to the referenced table an error should be returned.

The coordinate values for POS are specified in list format (comma separated)
with no embedded white space, as defined in section 2.4.11 and as implemented
in other second generation DAL interfaces.

Example: POS=52,-27.8

POS defaults to right-ascension and declination in decimal degrees in the ICRS
coordinate system. A coordinate system reference frame may optionally be
specified to indicate a spatial coordinate system other than ICRS. The reference
frame is specified as a list format modifier, with the acceptable values as defined
by Table 3 (standard reference frames) in STC [4].

POS=52,-27.8;GALACTIC

Whether or not a service supports coordinate systems other than ICRS for POS
is an optional service-defined capability (solar and planetary data for example
might use other coordinate systems). It is an error if a coordinate reference
frame is specified which the service does not support.

POS also defines a special syntax which is used to reference a table of positions
for multi-position queries. This is discussed later in this section.

SIZE specifies the diameter of the search region input in decimal degrees.
Example: SIZE=0.05

-925.-

Table Access Protocol

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a
positional query, the service should supply a default value intended to find nearby
objects which are candidates for a match to the given object position, taking into
account the spatial resolution of the data.

The service must accept a value for POS in the form POS=@name where name
identifies a table known to the TAP service and conforms to the rules for table
names specified in section . When POS is given in this form, it identifies a table
of search positions. The service shall then perform a positional search for each
position in the positions table in the manner specified above for the single-
position form of POS. The service must concatenate the results from all these
searches and return them in a single table.

When interpreting a table of positions, the service must identify the relevant
columns, by utypes if these are known, or else must identify the columns by
UCDs. These values of utype and UCD indicate appropriate columns:

UTYPE ucb Description

src:Position.ID meta.id;meta.main Position identifier

src:Position.Coord1 | pos.eq.ra;meta.main | Right Ascension, degrees

src:Position.Coord2 | pos.eq.dec;meta.main | Declination, degrees

src:Position.Size instr.fov [?7] Diameter of search region

The table of results from a multi-position query must contain all the columns of
the data table being queried plus an extra column identifying the row in the
positions table that selected each row of the results. If the positions table
contains a position-identifier column, then this must be transcribed to the output.
Otherwise, the service must add a position-identifier column containing a 1-
indexed integer position ID specifying the row of the input table.

If the positions table is not annotated with either utypes or UCDs, then the result
of a multi-position query is undefined. If the position table is part of the TAP
service's tableset, as opposed to a table uploaded by the client, then the service
may use an implementation-dependent technique to identify the positional and
search-radius columns. (This form of inference is required for the single-position
form of position query.)

If a SIZE parameter is specified the service must apply this value at all search
positions, overriding any column of search radii. If there is neither a SIZE
parameter nor a column or radii then the service must use a default search-
radius.

-26-

Table Access Protocol

Positions tables for multi-position searches may be arbitrarily large (consider
using the 2MASS catalogue as a positions table for a search of SDSS inside one
tableset), but a given TAP service may refuse to process such a query. Clients
should the REGION parameter to constrain searches on large lists of positions.

2.10.2 REGION

The service may accept a REGION parameter, used to define more general
spatial search regions than can be defined using POS and SIZE. The value of
REGION must be a STC/S (string encoded) region specifier, e.g.

REGION=Ellipse ICRS 148.9 69.1 2.0 4.0 32.7

In the example above the embedded spaces are shown for clarity, but if used in
an URI they should be URL encoded.

If POS,SIZE and REGION are all specified in the same query, REGION must be
used as a mask to further qualify the circular region specified by POS and SIZE.
This is most useful for multi-position queries, where a large table of possible
search positions may include positions outside the desired search region. In this
case REGION specifies the sub-region of the referenced table to be used. This
allows large tables to be used in a multi-position query. In particular it permits a
cross match of two data tables (e.g., two large astronomical catalogs) to be
performed in a single operation, restricting the spatial portion of the cross match
to the mask region.

2.10.3 SELECT

The must implement a SELECT parameter, used to specify the table fields to be
returned by the query, specified either as a comma delimited list of field names,
or optionally by specifying one of the reserved values $STD (to return only the
standard or “primary” fields), or $ALL (to return all table fields).

SELECT=ra,dec, flux

By default only the “primary” fields are returned. The “primary” fields are
specified on a per-table basis, and define a subset of the most important table
fields. This is used to provide a more readable view of very wide tables. The
service must permit $STD and $ALL to be input without error, but is not required
to actually use them to adjust the view of the table. If no “narrow” view is defined
for a table the service should ignore $STD and merely return all table fields.

2.10.4 FROM

The ParamQuery operation must implement a FROM parameter, indicating the
name of the table to be queried, specified as defined in section . Only a single
table reference is allowed. There is no default, hence it is an error if no table
name is specified, or if the specified table name is invalid. E.g.

-97-

Table Access Protocol

FROM=hdfv2

In addition to the data tables managed by the service, tables in the query upload
area (section) may be referenced, as well as the (real or virtual) metadata tables
defined by the TAP information schema (section).

In a client query FROM must be specified to identify the table to be queried.
SELECT and WHERE are optional.

2.10.5 WHERE

The ParamQuery operation must implement the WHERE parameter, used to
specify an optional filtering constraint to be applied to the table to determine
which table rows are returned. By default all table rows are returned.

In a client query, WHERE may be combined with other query constraints such as
POS and REGION to further refine the query.

The syntax of the ParamQuery WHERE parameter value (not to be confused with
the SQL WHERE-clause of the same name) is a simple sequence of equality or
range constraints delimited by semicolons, with the field name and value
elements of an individual constraint separated by a comma.

A simple example illustrates the syntax:
WHERE=observer, *smith*;z,1.5/2.2

This specifies two table field constraints: the field “observer” must contain the
case-insensitive substring “smith” (hence the wildcards), and the field “z” must be
in the range 1.5 to 2.2 inclusive. This syntax is explained in more detail below.

The ParamQuery WHERE syntax has deliberately been kept simple as TAP
already has ADQL to provide a fully general expression evaluation capabillity,
which should be used for advanced data queries. Each constraint applies to a
single table field; multiple constraints on the same table field are allowed. The
constraints have an AND relationship, hence all must evaluate to true for a table
row to satisfy the WHERE. Individual constraints may be negated to construct
more complex expressions.

The syntax chosen is intended to be easy to compose, easy and unambiguous
for a service to parse and map to a SQL back end or otherwise evaluate (a
conventional rule-based parser is not required). It was also chosen to be
consistent with similar usage in other data access services, e.g., in the use of
range-list syntax (2.4.11) for the WHERE expression (the BAND, TIME, etc.
parameters in other DAL services use the same range-list syntax). An effort has
been made to define a minimal set of meta-characters so as to minimize the
need for URL encoding — most simple expressions should not require URL
encoding, e.g., if typed interactively into a Web browser, allowing the simplest
Web tools to be easily used for basic queries.

-28-

Table Access Protocol

A partial BNF for the WHERE expression is as follows:

<where-expr> 1= <field-list>

<field-list> 1= <field-expr> [';' <field-list>]

<field-expr> i:= <field> ',"' ['!'](<list> | "null")

<list> ::= <numeric-list> | <string-list> | <date-list>
<numeric-list> ::= <number> [',' <numeric-list>]

<string-list> 1:= <string> [',' <string-list>]

<date-list> ::= <date> [',' <date-list>]

® Where we have not attempted to detail the BNF for the numeric, string, and

date tokens. Some additional notes follow.
Each field expression defines a constraint on the named table field (column).

Field expressions are of the form <field-name>’/’<value> (meaning field-
name=value), where <value> is a range list (a single value, a range, or a list
of single values or ranges all of the same type). Constraint expressions have
an “and” relationship within the overall WHERE expression. Values within a
range-list have an “or” relationship, i.e., the range-list for a specific field
reference is a list of valid values.

A parameter value may optionally be prefixed with ‘" (exclamation) to negate
the sense of the entire clause.

The special value “null” indicates a null-valued field. For example “flux,!null” is
true only if field “flux” has a non-null value.

® A <date> conforms to ISO8601 date syntax, e.g., "2007-04-05T14:30".

® A <number> token is any legal integer or floating point number optionally

preceded by ‘+’ or ‘-

A <string> token is any token which is not a number or date, or any sequence
of characters which is quoted using single quotes.

While accumulating a string token, anything quoted in single quotes is literally
included in the string, otherwise (where case-insensitive context applies),
characters are converted to lower case for use in case-insensitive
comparisons. Quoted characters are treated in a case sensitive fashion. Any
metacharacter other than the quote character may be quoted to include it
within a token. A single quote may be included within a string by quoting it
(that is, three single quotes in sequence). Quotes used within a string token
do not delimit the token.

For string-valued fields the constraint is a case-insensitive simple pattern, with
“*” matching zero or more characters. Absent any use of “*”, the entire string
must match. Hence “obj,m31” specifies that the value of field “obj” must

-29-

Table Access Protocol

match “m31” exactly, except for case. To force a case sensitive match the
case sensitive characters must be quoted.

® For numeric or date values the constraint is either a single value or a range,
using “/” as the range delimiter (range syntax is not supported for strings).
Both open and closed ranges can be specified, e.g., “5/” specifies an open
range equivalent to “greater than or equal to 5”, whereas “5/9” means “5 to0 9
inclusive”.

® Spaces may be embedded to improve readability, but if so they must be URL
encoded as “%20".

Field names or value expressions must be quoted if they contain any special

characters (e.g., semicolon, comma, forward slash, asterisk). The single quote

is used to avoid conflict with double quote which is often used to quote the entire

URL string.

As a more complex example of WHERE usage consider the following somewhat
contrived expression:

vmag,4.5/5.5; imag,4.5/; bmag,/5.5; flag,4,5,6; jmag,4.5/5.5,/3.0,9.0/;
name, *Lon*; kmag,4.5/5.5; flux,null; last,1

The equivalent SQL WHERE clause would be the following:
vmag between 4.5 and 5.5 and imag >= 4.5 and bmag <= 5.5
and (flag = 4 or flag = 5 or flag = 6)
and (jmag between 4.5 and 5.5 or jmag <= 3.0 or jmag >= 9.0)
and name like '%Lon%' and kmag between 4.5 and 5.5
and flux is null and last =1
The following is a complete example of a typical ParamQuery of a data catalog.
This returns the selected fields from the “fp_psc” catalog for sources within 0.2
degrees of the given position, where the J magnitude is less than or equal to 10.
$baseURL/sync?REQUEST=ParamQueryé&
SELECT=ra,dec,j m,h m,k m &
FROM=fp psc &
P0S=10.68469,41.26904 &
SIZE=0.2 &
WHERE=j m,/10.0

2.11 Numeric and boolean values

Integer numbers must be represented in a manner consistent with the
specification for integers in XML Schema Datatypes [10]. This document
indicates explicitly where an integer value is mandatory. Real numbers must be
represented in a manner consistent with the specification for double-precision
numbers in XML Schema Datatypes. This representation allows for integer,

-30 -

Table Access Protocol

decimal and exponential notations. A real value is allowed in all numeric fields
defined by this document unless the value is explicitly restricted to integer.

Sexagesimal formatting is generally not permitted other than in ISO 8601
formatted time strings unless otherwise specified in this document. For TAP an
exception is made for queries of data tables where the native table formatting is
normally preserved.

Positive, negative and zero values are allowed unless explicitly restricted.

Boolean values must be represented in a manner consistent with the
specification for Boolean in XML Schema Datatypes. The values “0” and “false”
are equivalent. The values “1” and “true” are equivalent. Absence of an optional
value is equivalent to logical false. This document indicates explicitly where a
Boolean value is mandatory.

2.12 Use of VOTable
VOTable is a general format. TAP requires that it be used in a particular way.

VOTables should comply with VOTable v1.1 or greater [9].

VOTables resulting from successful queries, including overflowed queries (see
section for a definition of overflow) must be returned with MIME type
text/xml;content=x-votable. A base MIME-type of text/xml is used for synchronous
queries to enable display of query results in browsers using direct rendering of
the XML or an optional style sheet. VOTables which are manipulated as file data
should instead use the MIME type application/x-votable+xml.

The VOTable must contain a RESOURCE element identified with the tag type =
"results”, containing a single TABLE element with the results of the query.
Additional RESOURCE elements may be present, but the usage of any such
elements is not defined here and TAP clients should not depend upon them.

The RESOURCE element must contain, before the TABLE element, an INFO
element with attribute name = "QUERY _STATUS". The value attribute must
contain one of the following values:

® “OK”, meaning that the query completed successfully and did not overflow;

® “ERROR”, meaning that an error was detected at the level of the TAP
protocol;

® “OVERFLOW”, meaning that the query completed without error but
overflowed;

® “STREAM”, meaning that neither error nor overflow had been detected
when the service started to write the results to the client, but that either
condition could still arise before the response is completed.

-31 -

Table Access Protocol

The STREAM status covers the case where the service streams a long table of
results to the client rather than buffering it. In this situation, the data typically
come from an SQL cursor and the service does not know the number of rows in
the response when starting to write the TABLE element; overflow cannot be
reported in the initial INFO element. When the initial status is set to STREAM, the
service must write a second INFO element, with name="QUERY STATUS”, after
the end of the TABLE element. This element must have its value attribute set to
“OK”, “ERROR” or “OVERFLOW".

The value of the INFO element conveying the status should be a message
suitable for display to the user describing the status.

Examples:

<INFO name="QUERY_ STATUS" value="OK"/>

<INFO name="QUERY STATUS" value="OK">Successful query</INFO>

<INFO name="QUERY STATUS" value="ERROR">DEC out of range: DEC=91</INFO0>
<INFO name="QUERY STATUS" value="OVERFLOW">

Number of table rows exceeds default limit of 5000

</INFO>

Additional INFO elements may be provided, e.g., to echo the input parameters
back to the client in the query response (a useful feature for debugging or to self-
document the query response), but clients should not depend on these.

Example:
<VOTABLE .. version="1.1">
<RESOURCE type="results">
<INFO name="QUERY_ STATUS" value="ERROR">unrecognized operation</INFO>
<INFO name="SERVICE PROTOCOL" value="1.0">TAP</INFO>
<INFO name="REQUEST" value="queryData"/>
<INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>
<INFO name="serviceVersion" value="1.0"/>
<INFO name="serviceName" value="tap"/>
<INFO name="ServiceEngine" value="tap: TAP 1.0 DALServer version 0.4"/>
</RESOURCE>
</VOTABLE>

[TAP 0.3 also says this concerning status reporting in streamed responses:
‘Alternatively, the initial query status could be OK or ERROR and a failure later on
would require just the additional INFO with OVERFLOW or ERROR - then we do
not have to add STREAM... that might be a more general solution' — Ed.]

-32-

Table Access Protocol

If the output of a query includes column(s) of type datetime/timestamp (?), the
values must be specified in ISO8601 format.

If the output of a query includes columns of type region (e.g. a column of type
POINT, CIRCLE, POLYGON, or REGION as defined by ADQL), the value must
be output in a single column and encoded in STC-S format (Rots 2007). If the
underlying tables (as described by the table metadata) store spatial information in
multiple columns (e.g. RA and DEC in separate columns), then the output may
also use multiple columns (and, in the case of VOTable, the coordinate system
can usually be specified by a PARAM rather than a FIELD).

Where possible output table columns should be assigned UCDs (uniform content
descriptors) to indicate the type of quantity stored in the column. If the table
contains a data model columns may also be assigned UTYPEs, and may be
aggregated with the VOTable GROUP construct to identify a subset of table
columns as a data model instance.

3 Service Registration (normative)

Publication of a service to the VO requires that it be registered with the VO
registry, including describing the identity and capabilities of the service.

The resource document for a TAP service instance must be structured according
to VOResource 1.0 [8] using the sub-type CatalogService as defined in
VODataService 1.1 [7].

The resource document must include a capability element denoting the TAP
interface and functions. The content of this element, including the value of its
standardID attribute is TBD.

[In the debate leading to TAP 0.3, it was suggested that the capability might list
as interface the URL for the root web-resource of the service (as defined in
section). Clients would add to this URL /sync or /async as appropriate. This
arrangement was not confirmed in the text of v0.3 and should be confirmed or
replaced in TAP 0.4 — Ed.]

The resource document must contain capability elements for the VOSI-
capabilities, VOSI-availability and VOSI-tables outputs. These must be formatted
as in the VOSI standard [6].

[This requirement is not stated in TAP 0.3. | have added it since VOSI itself
requires it — Ed.]

The resource document should include the table metadata, except where the
database-schema of the archive changes frequently.* Where table metadata are

4 |If the database schema changes faster than the changes can be propagated through the
publishing registries to the full registries, then it is pointless to register the table metadata. If
the details change hourly then clearly the registries cannot keep up; if the details change

-33-

Table Access Protocol

provided, they must be represented as XML elements drawn from
VODataService 1.1.

4 Extended capabilities (hormative)

The TAP service allows for optional extended capabilities and operations.
Extensions may be defined within an information community when needed for
additional functionality or specialization. A generic client must not be required or
expected to make use of such extensions. Extended capabilities or operations
must be defined by the service metadata. Extended capabilities provide
additional metadata about the service, and may or may not enable optional new
parameters to be included in operation requests. Extended operations may allow
additional operations to be defined.

A server must produce a valid response to the operations defined in this
document, even if parameters used by extended capabilities are missing or
malformed (i.e. the server must supply a default value for any extended
capabilities it defines), or if parameters are supplied that are not known to the
server.

Service providers must choose extension names with care to avoid conflicting
with standard metadata fields, parameters and operations.

5 Use of UWS (informative)

The UWS pattern is specified in [3] and its application to TAP in section . This
section explains the exchange of messages between a TAP client and service
when using UWS to run an asynchronous query.

Consider a TAP service at http.//x.y.z/TAP. TAP mandates that the asynchronous
requests be directed to http://x.y.z/TAP/async. This URL points to the list of 'jobs';
i.e. the list of queries currently or recently executed.

To start a new query, the client posts a request to the job list.

HTTP POST to http://x.y.z/TAP/async

REQUEST=ADQLquery&ADQL=SELECT TOP 100 * FROM foo

The service then creates a job and assigns that job a name and a URL based on
the name. Suppose that the name is j42, then the URL will be
http.//x.y.z/TAP/async/[42 because the jobs are always children of the job list.

The service then issues an HTTP redirection to the job's URL.

HTTP status 303 'See other'

Location: http://x.y.z/TAP/async/j42

Beneath the job URL there are further URLs for aspects of the job:

yearly, then clearly they can. Intermediate cases are less certain, but weekly changes are
probably too fast and monthly changes probably slow enough.

-34-

Table Access Protocol

http://x.y.z/TAP/async/j42/phase
http://x.y.z/TAP/async/j42/results
http://x.y.z/TAP/async/j42/error

(there are more, but these are the one that the client has to deal with).

The phase URL shows the progress of the job. When the job is created by the
service it will normally be set to PENDING, but might be set to ERROR if the
service has rejected the job. If the phase is ERROR, then the error URL should
lead to a an error document explaining the problem. If the phase is PENDING,
then the client needs to commit the job for execution.

The client commits the job by posting to the phase URL
HTTP POST to http://x.y.z/TAP/async/j42/phase
PHASE=RUN

The service replies with a redirection to the job URL

HTTP status 303 'see other'

Location: http://x.y.z/TAP/async/j42

The phase will now have changed to either QUEUED or EXECUTING, depending

on the service implementation. The client tracks the execution by polling the
phase URL:

HTTP GET http://x.y.z/TAP/async/j42/phase

When the query is complete, the phase changes to COMPLETED. The client
then retrieves the result from the results list:

HTTP GET http://x.y.z/TAP/async/j42/results/result

The client knows that the table of results is at the URL /result relative to the
results list because the TAP protocol requires this naming.

If the service cannot run the query, then the final phase is ERROR and there is
no table of results. In this case, the client should expect an HTTP 404 'not found'
status if it tries to retrieve the result. The client should look instead at the error
URL to find out what went wrong

HTTP GET http://x.y.z/TAP/async/j42/error

The service remembers the job for a limited period after which it forgets the job
information and discards the result of the query. After job expires, the client will
receive an HTTP 404 'not found' status if it tries to get any information about the

job. The destruction time of the job is chosen by the service and the client can
read it from the job:

HTTP GET http://x.y.z/TAP/async/j42/destruction

The service may allow the client to change the destruction time:
HTTP POST to http://x.y.z/TAP/async/j42/destruction
DESTRUCTION=2008-11-11T11:11:11Z

-35-

Table Access Protocol

The basic sequence can be executed from a web browser or from a shell script
using the curl utility:

curl -d 'REQUEST=paramquery&P0S=12,34&SIZE=0.5&FROM=fo0"' \
http://x.y.z/TAP/async
[read Location header from curl output]
curl -d 'PHASE=RUN' http://x.y.z/TAP/async/j42
curl http://x.y.z/TAP/async/j42/phase
[repeat until phase is COMPLETED]
curl http://x.y.z/TAP/j42/results/result

6 VOSpace Integration (informative)

This version of TAP provides limited VOSpace integration, although better
support for VOSpace is planned for a later version following prototyping.
Ultimately one would like to have per-user VOSpace storage co-located with the
TAP service, allowing user queries to save output tables to the local VOSpace as
well as use them for input in subsequent queries, without having to serialize to
and from VOSpace and transfer tables over the network. Frequently-used tables
such as source lists for multi-position queries could persist between queries, and
could be arbitrarily large.

The current version of TAP does provide limited VOSpace integration via the
table UPLOAD parameter, using the upload URI to point to a table stored in either
a local or remote VOSpace.

7 Use of HTTP (informative)

A TAP service is a web service and TAP implementations are constrained by the
general rules for use of HTTP, which are contained in IETF RFC documents. This
section collates some of the requirements. For authoritative specifications, please
refer to the original RFCs.

7.1 General HTTP request rules

7.1.1 Introduction

This document defines the implementation of the TAP service on a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP) (see IETF RFC 2616 [11]). Thus, the Online Resource
of each operation supported by a server is an HTTP Uniform Resource Locator
(URL). The URL may be different for each operation, or the same, at the
discretion of the service provider. Each URL must conform to the description in
IETF RFC 2616 (section 3.2.2 “HTTP URL’) but is otherwise implementation-
dependent; only the query portion comprising the service request itself is defined
by this document.

-36-

Table Access Protocol

While the TAP protocol currently only supports HTTP as the DCP for general
parameterized operations, data access references are more general and may
use other internet protocols, e.g., FTP, or potentially grid protocols.

HTTP supports two primary request methods: GET and POST. One or both of
these methods may be offered by a server, and the use of the Online Resource
URL differs in each case. Support for the GET method is mandatory; support for
the POST method is optional except where required for a service operation to
function, e.g., uploading a large quantity of data inline in a query, or when issuing
a request to the service which changes the server state.

7.1.2 Reserved characters in HTTP GET URLs

The URL specification (IETF RFC 2396 [5]) reserves particular characters as
significant and requires that these be escaped when they might conflict with their
defined usage. This document explicitly reserves several of those characters for
use in the query portion of TAP requests. When the characters “?”, “&”, “=”,)"
(comma), “”, and “;” appear in one of the roles defined in Table 1, they must
appear literally in the URL. When those characters appear elsewhere (for
example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server must be prepared to decode any character escaped
in this manner.

Table 1 — Reserved characters in TAP query string

Character [Reserved usage

? Separator indicating start of query string.

& Separator between parameters in query string.

= Separator between name and value of parameter.

/5 Separator between individual values in list-oriented parameters (such
as POS. BAND. TIME, etc.).

In particular, if any parameter value contains the character “#” (for example in a
dataset identifier) it must be URL encoded to be legally included in a URL.

71.3 HTTP GET

A TAP service must support the “GET” method of the HTTP protocol (IETF RFC
2616 [11]).

An Online Resource URL intended for HTTP GET requests is in fact only a URL
prefix to which additional parameters are appended in order to construct a valid
Operation request. A URL prefix is defined in accordance with IETF RFC 2396
[5] as a string including, in order, the scheme (“http” or “https”), Internet Protocol
hostname or numeric address, optional port number, path, mandatory question
mark “?”, and optional string comprising one or more server-specific parameters

-37-

Table Access Protocol

ending in an ampersand “&”. The prefix defines the network address to which
request messages are to be sent for a particular operation on a particular server.
Each operation may have a different prefix. Each prefix is entirely at the
discretion of the service provider.

This document defines how to construct a query part that is appended to the URL
prefix in order to form a complete request message. Every TAP operation has
several mandatory or optional request parameters. Each parameter has a
defined name . Each parameter may have one or more legal values, which are
either defined by this document or are selected by the client based on service
metadata. To formulate the query part of the URL, a client must append the
mandatory request parameters, and any desired optional parameters, as
name/value pairs in the form “name=value&” (parameter name, equals sign,
parameter value, ampersand). The “&” is a separator between name/value pairs,
and is therefore optional after the last pair in the request string.

When the HTTP GET method is used, the client-constructed query part is
appended to the URL prefix defined by the server, and the resulting complete
URL is invoked as defined by HTTP (IETF RFC 2616).

Table 2 summarizes the components of an operation request URL when HTTP
GET is used.

Table 2 — Structure of TAP request using HTTP GET

URL component

Description

http://host:port]/path[?

namel—valiel

Base-URL (prefix) of service operation. [] denotes 0 on
1 occurrence of an optional part; {} denotes 0 or more
occurences.

name=value&

One or more standard request parameter name/value
pairs as defined for each operation by this document.

7.1.4 HTTP POST

TAP uses the “POST” method of the HTTP protocol (IETF RFC 2616 [11])
whenever a large amount of data needs to be uploaded inline in the query, e.g.,
when uploading an inline table, or whenever the request may change the server
state, e.g., when requesting asynchronous execution of a query. Semantically
POST and GET are largely the same, permitting the same parameters to be
transmitted to the server to define the request. Parameters should be URL
encoded in a POST whenever they would need to be URL encoded for a GET.

-38-

Table Access Protocol

7.2 General HTTP response rules

Upon receiving a valid request, the server must send a response corresponding
exactly to the request as detailed in section of this document, or send a service
exception if unable to respond correctly. Only in the case of Version Negotiation
(see 2.9.4) may the server offer a differing result. Upon receiving an invalid
request, the server must issue a service exception as described in section .

A server may send an HTTP Redirect message (using HTTP response codes as
defined in IETF RFC 2616 [11]) to an absolute URL that is different from the valid
request URL that was sent by the client. HTTP Redirect causes the client to
issue a new HTTP request for the new URL. Several redirects could in theory
occur. Practically speaking, the redirect sequence ends when the server
responds with a valid TAP response. The final response must be a TAP response
that corresponds exactly to the original request (or a service exception).

Response objects must be accompanied by the appropriate Multipurpose
Internet Mail Extensions (MIME) type (IETF RFC 2045 [12]) for that object. A list
of MIME types in common use on the internet is maintained by the Internet
Assigned Numbers Authority (IANA) . Allowable types for operation responses
and service exceptions are discussed below. The basic structure of a MIME type
is a string of the form “type/subtype”. MIME allows additional parameters in a
string of the form “type/subtype; param1i=valuel; param2=value2”. A server may
include parameterized MIME types in its list of supported output formats. In
addition to any parameterized variants, the server should offer the basic
unparameterized version of the format.

Response objects should be accompanied by other HTTP entity headers as
appropriate and to the extent possible. In particular, the Expires and Last-
Modified headers provide important information for caching; Content-Length may
be used by clients to know when data transmission is complete and to efficiently
allocate space for results, and Content-Encoding or Content-Transfer-Encoding
may be necessary for proper interpretation of the results.

8 References

[1]1. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. Nieto- Santisteban, M.
Ohishi, W. O’Mullane, P. Osuna, VOQL-TEG & VOQL-WG, IVOA Astronomical Data
Query Language version 2, INOA recommendation 30" October 2008.
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC
2119. http://www.ietf.org/rfc/rfc2119.txt

[3] G. Rixon & P. Harrison, Universal Worker Service Version 0.5, IVOA internal working-
draft 8" October 2008.
http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf

-39 -

http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

Table Access Protocol

[4] A. Rots, Space-Time Coordinate Metadata for the Virtual ObservatoryVersion 1.33,
IVOA Recommendation 30 October 2007. http://www.ivoa.net/Documents/REC/DM/
STC-20071030.html

[5] T. Berner-Lee, R. Fielding L. Masinter, Uniform Resource Identifiers (URI): Generic
Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt

[6] G. Rixon (ed.) & GWS-WG, IVOA Support Interfaces Version 1.00, IVOA Working
Draft 2008 October 23.
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf

[7]1 R, Plante, (ed.), A. Stébe, K. Benson, M. Graham, G. Greene, P. Harrison, A. Linde,
G. Rixon & IVOA Registry-WG, VODataService: a VOResource Schema Extension
for Describing Collections and ServicesVersion 1.01. IVOA Working Draft 16 October
2008. http://www.ivoa.net/internal/[VOA/VODataService/VODataService-
vi.iwd.html

[8] R. Plante (ed.), K. Benson, M. Graham, G. Greene, P. Harrison, G. Lemson, A. Linde,
G. Rixon, A. Stébé, & IVOA Registry-WG, VOResource: an XML Encoding Schema
for Resource MetadataVersion 1.03, IVOA Recommendation 22 February 2008.
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[9] F. Ochsenbein (ed.), R. Williams, C. Davenhall, D. Durand, P. Fernique, D. Giaretta,
R. Hanisch, T. McGlynn, A. Szalay, M. Taylor, A. Wicenec, VOTable Format
DefinitionVersion 1.1, IVOA Recommendation 11 August 2004.

http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html

[10] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[11] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext
Transfer Protocol — HTTP/1.1, IETF RFC 2616. http://www.rfc-
editor.org/rfc/rfc2616.txt

[12] N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, IETF RFC 2045.
http://www.ietf.org/rfc/rfc2045.ixt

-40 -

http://www.ietf.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/xmlschema-2/
http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html
http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html
http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf
http://www.ietf.org/rfc/rfc2396.txt
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html

	 1 Introduction
	 1.1 Types of query
	 1.1.1 Data, metadata, tableset and VOSI queries
	 1.1.2 Parametric and ADQL queries
	 1.1.3 Synchronous and asynchronous queries

	 1.2 Interface Overview (informative)

	 2 Requirements for a TAP service (normative)
	 2.1 Principal functions
	 2.2 Web resources
	 2.3 TAP operations
	 2.4 Parameters for HTTP requests
	 2.4.1 REQUEST
	 2.4.2 QUERY
	 2.4.3 Parameters for parametric query
	 2.4.4 LANG
	 2.4.5 FORMAT
	 2.4.6 UPLOAD
	 2.4.7 MAXREC
	 2.4.8 MTIME
	 2.4.9 RUNID
	 2.4.10 VERSION
	 2.4.11 Range-list parameters
	 2.4.12 Missing or null-valued parameters
	 2.4.13 Case of parameters
	 2.4.14 Order and cardinality of parameters

	 2.5 Table names
	 2.6 Metadata tables and TAP schema
	 2.7 Table Uploads
	 2.8 Representations of results
	 2.8.1 Data and metadata queries
	 2.8.2 Tableset queries
	 2.8.3 VOSI
	 2.8.4 Error documents
	 2.8.5 Overflows

	 2.9 Versioning of the TAP protocol
	 2.9.1 Version number form and value
	 2.9.2 Version number changes
	 2.9.3 Appearance in requests and in service metadata
	 2.9.4 Version number negotiation

	 2.10 Parametric query-language
	 2.10.1 POS, SIZE
	 2.10.2 REGION
	 2.10.3 SELECT
	 2.10.4 FROM
	 2.10.5 WHERE

	 2.11 Numeric and boolean values
	 2.12 Use of VOTable

	 3 Service Registration (normative)
	 4 Extended capabilities (normative)
	 5 Use of UWS (informative)
	 6 VOSpace Integration (informative)
	 7 Use of HTTP (informative)
	 7.1 General HTTP request rules
	 7.1.1 Introduction
	 7.1.2 Reserved characters in HTTP GET URLs
	 7.1.3 HTTP GET
	 7.1.4 HTTP POST

	 7.2 General HTTP response rules

	 8 References

