
Table Access Protocol

 International

    Virtual

    Observatory

Alliance 

Table Access Protocol

Version 0.41
IVOA Internal Working Draft  2009 March 02

This version:

TAP-V0.41-20090317

Latest version:

Not yet issued

Previous version(s):

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.4-20090317.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.31-20081124.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-v0.3.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf

Lead authors:

P. Dowler, G. Rixon (editor), D. Tody

Contributors:

K. Andrews, J. Good, R. Hanisch, T. McGlynn, K. Noddle,

- 1 -

http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf


Table Access Protocol

F. Ochsenbein, I. Ortiz, P. Osuna, R. Plante, G. Rixon, J. Salgado,

A. Stebe, A. Szalay

Abstract
The table access protocol (TAP) defines a service protocol for accessing general 
table data, including astronomical catalogs as well as general database tables. 
Access is provided for both database and table metadata as well as for actual 
table  data.   This  version  of  the  protocol  includes  support  for  multiple  query 
languages,  including  queries  specified  using  the  Astronomical  Data  Query 
Language  (ADQL)  and  the  Parameterised  Query  Language  (PQL)  within  an 
integrated  interface.  It  also  includes  support  for  both  synchronous  and 
asynchronous queries.  Special support is provided for spatially indexed queries 
using the spatial extensions in ADQL. A multi-position query capability permits 
queries against an arbitrarily large list of astronomical targets, providing a simple 
spatial cross-matching capability.  More sophisticated distributed cross-matching 
capabilities are possible by orchestrating a distributed query across multiple TAP 
services.

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested  
parties. It is a draft document and may be updated, replaced, or obsoleted by  
other documents at any time. It is inappropriate to use IVOA Working Drafts as 
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/. 

Acknowledgements
“Ack here, if any”

Contents
 1   Introduction                                                                                                        ....................................................................................................  5  

 1.1  Types of query                                                                                               ...........................................................................................  5  

 1.1.1  Data, metadata, tableset and VOSI queries                                                     .................................................  5  

 1.1.2  ADQL Queries                                                                                                  ..............................................................................................  6  

 1.1.3  PQL Queries                                                                                                     .................................................................................................  6  

 1.1.4  Other Query Languages                                                                                   ...............................................................................  6  

 1.2  Query Execution                                                                                            ........................................................................................  6  

 1.2.1  Asynchronous Queries                                                                                     .................................................................................  7  

 1.2.2  Synchronous Queries                                                                                       ...................................................................................  7  

- 2 -

http://www.ivoa.net/Documents/


Table Access Protocol

 1.3  Interface Overview (informative)                                                                    ................................................................  7  

 2   Requirements for a TAP service (normative)                                                  ..............................................  10  

 2.1  Feature Overview                                                                                        ....................................................................................  10  

 2.2  Web resources                                                                                             .........................................................................................  10  

 2.2.1  /sync                                                                                                               ...........................................................................................................  11  

 2.2.2  /async                                                                                                             .........................................................................................................  11  

 2.3  Parameters for HTTP requests                                                                    ................................................................  12  

 2.3.1  REQUEST                                                                                                      ..................................................................................................  12  

 2.3.2  VERSION                                                                                                       ...................................................................................................  13  

 2.3.3  LANG                                                                                                             .........................................................................................................  13  

 2.3.4  QUERY                                                                                                          ......................................................................................................  13  

 2.3.5  Parameters for PQL                                                                                       ...................................................................................  14  

 2.3.6  FORMAT                                                                                                        ....................................................................................................  15  

 2.3.7  UPLOAD                                                                                                        ....................................................................................................  15  

 2.3.8  MAXREC                                                                                                        ....................................................................................................  16  

 2.3.9  MTIME                                                                                                           .......................................................................................................  16  

 2.3.10  RUNID                                                                                                          ......................................................................................................  17  

 2.3.11  Missing or null-valued parameters                                                                ............................................................  17  

 2.3.12  Case of parameters                                                                                      ..................................................................................  17  

 2.3.13  Order and cardinality of parameters                                                             .........................................................  17  

 2.4  Table names                                                                                                 .............................................................................................  18  

 2.5  Metadata tables and TAP schema                                                               ...........................................................  18  

 2.6  Table Uploads                                                                                              ..........................................................................................  20  

 2.7  Representations of results                                                                           .......................................................................  21  

 2.7.1  Data and metadata queries                                                                            ........................................................................  21  

 2.7.2  Tableset queries                                                                                             .........................................................................................  21  

 2.7.3  VOSI                                                                                                              ..........................................................................................................  22  

 2.7.4  Error documents                                                                                             .........................................................................................  22  

 2.7.5  Overflows                                                                                                       ...................................................................................................  23  

 2.8  Versioning of the TAP protocol                                                                    ................................................................  23  

 2.8.1  Version number form and value                                                                      ..................................................................  24  

 2.8.2  Version number changes                                                                                ............................................................................  24  

 2.8.3  Appearance in requests and in service metadata                                           .......................................  24  

 2.8.4  Version number negotiation                                                                            ........................................................................  24  

 2.9  Use of VOTable                                                                                            ........................................................................................  25  

- 3 -



Table Access Protocol

 2.9.1  INFO elements                                                                                               ...........................................................................................  25  

 2.9.2  Special Table Content                                                                                    ................................................................................  26  

 3   Service Registration (normative)                                                                     .................................................................  28  

 4   Extended capabilities (normative)                                                                   ...............................................................  29  

 5   Use of UWS (informative)                                                                                ............................................................................  30  

 6   VOSpace Integration (informative)                                                                  ..............................................................  32  

 7   Use of HTTP (informative)                                                                               ...........................................................................  33  

 7.1  General HTTP request rules                                                                        ....................................................................  33  

 7.1.1  Introduction                                                                                                    ................................................................................................  33  

 7.1.2  Reserved characters in HTTP GET URLs                                                      ..................................................  33  

 7.1.3  HTTP GET                                                                                                     .................................................................................................  34  

 7.1.4  HTTP POST                                                                                                   ...............................................................................................  35  

 7.2  General HTTP response rules                                                                     .................................................................  35  

 8   References                                                                                                      ..................................................................................................  36  

- 4 -



Table Access Protocol

 1 Introduction
The Table Access Protocol (TAP) is a Web-service protocol that gives access to 
collections of tabular data referred to collectively as a  tableset.   TAP services 
accept queries posed against the tableset available via the service and return the 
query response as another table, in accord with the relational model.  Queries 
may  be  submitted  using  various  query  languages  and  may  execute 
synchronously  or  asynchronously.  Support  for  the  Astronomical  Data  Query 
Language  (ADQL)  is  mandatory;  support  for  other  query  languages  such  as 
Parameterised Query Language (PQL) or native SQL is optional.

The result of a TAP query is another table, returned as a VOTable or in some 
other  format.  Support  for  VOTable  output  is  mandatory;  all  other  formats are 
optional. 

The table collections made accessible via TAP are typically stored in relational 
database management systems (RDBMS)., but TAP may also be implemented 
for data stored in other ways, such as in flat-file  systems. This aspect of  the 
implementation is abstracted by the protocol and is not visible to users.  A TAP 
service exposes the database schema to client applications so that queries can 
be posed directly against arbitrary data tables available via the service.

Multi-table operations such as joins or cross matches are possible provided the 
tables  are  all  managed  by  the  local  TAP  service,  and  provided  the  service 
supports these capabilities.  Larger scale operations such as a distributed cross 
match  are  also  possible,  but  require  combining  the  results  of  multiple  TAP 
services.

 1.1 Types of query

 1.1.1 Data, metadata, tableset and VOSI queries
TAP services distinguish four different kinds of query by the information returned.

Data queries apply to the astronomical content served by a TAP service. This is 
the reason for providing a TAP service. All the other kinds of query support the 
ability  to  make  data  queries.  Data  queries  may  be  specified  in  any  query 
language supported by the service.

Metadata queries work like data queries, using the same query languages, but 
they  are  applied  to  standardized  tables  which  explain  the  data  model  of  a 
particular TAP installation. Metadata queries allow a client to discover the names 
of tables and columns to be used in data queries.

Tableset queries are a special case metadata queries that reveal the entire data 
model in one response. They use a different output format to metadata queries.

VOSI 'queries' supply metadata concerning the availability of a TAP service, its 
main interfaces ('VOSI-capabilities'),  and its data model ('VOSI-tables').  VOSI-
capabilities and VOSI-tables outputs use the same XML schema as the IVOA 
registry and can be incorporated in service registrations.

- 5 -



Table Access Protocol

[NOTE:  What  is  the  difference between a tableset  query  and a  
VOSI-tables  query?  By  implication  they  both  have  VOResource  
output format. -Ed.]

 1.1.2 ADQL Queries
Support for ADQL is mandatory. ADQL can be used to query a standard set of 
metadata tables in  order  to  discover  the names of  tables and columns,  their 
meanings, data types, and units, and how different tables are related and may be 
joined. Using this information, queries that target the astronomical content may 
be correctly written and executed. It is also possible that the service registration 
(in an IVOA Registry)  may include sufficient table metadata to enable queries to 
be written directly.

 1.1.3 PQL Queries
Support for PQL is optional. PQL can be used to query both the standard set of 
metadata tables and the data tables (as above for ADQL). It can also be used in 
some  cases  without  first  querying  the  metadata  tables  by  using  the  PQL 
parameters which carry sufficient meaning to enable the service to decide which 
tables and columns to use (e.g. POS, SIZE, REGION, BAND, TIME). 

For example, one could perform a simple spatial query without checking the table 
metadata with:

http://some.where/some/thing?POS=180,42&SIZE=0.5

This query could be translated as “from the table dataset represented by the 
service  at  the  URL  http://some.where/some/thing, find  all  records  for 
which the recorded position is within 0.5 degrees of the search position (180,42), 
where the coordinates are right ascension and declination in the ICRS coordinate 
system, measured in degrees”. Parametric queries such as this are simple to 
express and to implement for cases where the data model is  sufficiently well 
defined and adequate  for  the  data  to  be  queried,  hiding  many of  the  details 
required to pose and evaluate the query.

 1.1.4 Other Query Languages
A TAP service may also support use of other query languages, including pass-
through of  native SQL directly  to  the underlying RDBMS, by describing such 
capabilities in the service metadata and allowing custom values of the service 
parameters.  This  mechanism  allows  future  developments  within  the  VOQL 
Working  Group  and  outside  the  IVOA to  be  used  without  revising  the  TAP 
specification.

 1.2 Query Execution
The  TAP service  specification  defines  synchronous  and  asynchronous  query 
execution. A query is synchronous if the results of the query are delivered in the 
HTTP response to the request that originally posed the query. Conversely, if the 
service returns an immediate HTTP-response upon accepting a query and the 

- 6 -



Table Access Protocol

client  later  obtains  the  results  of  the  query  in  response to  a  separate  HTTP 
request, then we say the request is asynchronous.

 1.2.1 Asynchronous Queries
Asynchronous query support  is  mandatory.  Asynchronous queries require that 
client and server share knowledge of the state of the query during its execution 
and between HTTP exchanges.  They are an example of stateful interactions.  In 
TAP,  the  mechanism  by  which  the  clients  and  services  share  the  state  of 
transactions is based on the Universal Worker Service (UWS) pattern (REF).

 1.2.2 Synchronous Queries
Synchronous  query  support  is  mandatory.  Synchronous  queries  execute 
immediately and the client must wait for the query to finish.  If the HTTP request 
times  out  or  the  client  otherwise  loses  the  connection  to  the  service  before 
receiving the response, then the query fails. 

Synchronous query execution is adequate when the query will execute quickly 
and with a small  number of  results,  or when they can at least start  returning 
results  quickly.  They  are  generally  simple  to  implement  using  standard  web 
technologies and easy to use from a browser or scripting environment. However, 
synchronous queries are generally not sufficient and likely to fail for queries that 
take a long time to execute, especially before returning any results. 

Metadata queries are always executed synchronously.

 1.3 Interface Overview (informative)

TAP defines a RESTful web service with two primary URLs: one for synchronous 
queries  and  one  for  asynchronous  queries.1 The  query  language  and  query 
constraints for a particular request are determined by HTTP request parameters.

This is an example of the URL for a synchronous ADQL query on r magnitude:
http://some.where/tap/sync?REQUEST=doQuery&LANG=ADQL \

&QUERY='SELECT * FROM magnitudes as m where m.r>10 and 
m.r<16'

The URL for an equivalent PQL query would be 
http://some.where/tap/sync?REQUEST=doQuery&LANG=PQL \

&SELECT=$ALL&FROM=magnitudes&WHERE=r,10/16

The REQUEST parameter indicates the kind of query required.

1 The original plan was to have just one, primary URL for all kinds of query. After investigation, 
we find that a single URL cannot satisfy fully the requirements of both the DAL generation-2 
conventions and the UWS standard.

- 7 -

http://some.where/tap/sync?REQUEST=ParamQuery
http://some.where/tap/sync?REQUEST=AQDLQuery&Q


Table Access Protocol

Synchronous queries return the table  of  results  in the HTTP response to the 
initial request. In the examples above, the output format defaults to VOTable; the 
FORMAT parameter could be added to select a different format.

Synchronous queries can be requested using HTTP GET or HTTP POST; the 
examples show the GET form. Using GET allows the query result to come from a 
cache, either inside the TAP service or between the service and client.

Asynchronous queries are started in the same way as the synchronous kind, 
using the other URL:

HTTP POST to http://some.where/tap/async 

REQUEST=doQuery

LANG=ADQL

QUERY='SELECT * FROM magnitudes as m where m.r>10 and m.r<16'

or
HTTP POST to http://some.where/tap/async

REQUEST=doQuery

LANG=PQL

FROM=magnitudes

WHERE=r,10/16

The service's response to these requests is an HTTP redirection (code 303 'see 
other') to a URL representing the query's state and progress. The progress may 
be tracked by polling a URL for the state: it will eventually go to COMPLETED or 
ERROR. The results, or an error document can then by retrieved from a URL 
associated with the job. This is an application of the UWS pattern.

Positional  queries  have special  support  in  PQL.  This  is  a  cone search  on  a 
specified table:
http://some.where/TAP/sync? \

REQUEST=doQuery&LANG=PQL&POS=12,34&SIZE=0.5&FROM=foo

Each TAP service has its  own 'tableset':  a  particular  collection  of  tables  and 
columns with locally-defined names. Those local names are the operands in the 
queries and so a client needs to know the tableset for a particular service to form 
a query. There are two ways of exploring the tableset.

First, a description of the entire tableset may be obtained in XML via the VOSI-
tables URL, e.g.
http://some.where/TAP/sync?REQUEST=getTableMetadata

These metadata are in the format defined for the IVOA resource-registry and the 
client may find a cached copy in the registry.

Secondly, the structure of the tableset is described by a set of tables with fixed 
names beginning with TAP_SCHEMA. These can be queried using either ADQL 
or the parametric-query languge.

- 8 -



Table Access Protocol

This lists the columns of table 'foo':
http://some.where/tap/sync\

?REQUEST=doQuery&LANG=PQL&FROM=TAP_SCHEMA.COLUMNS&WHERE=tablename,foo

The service's availability can be read using VOSI:
http://some.where/tap/sync?REQUEST=getAvailability

Finally, the service's capabilities can be read using VOSI:
http://some.where/tap/sync?REQUEST=getCapabilities

This  output  lists  any  extra  interfaces  such  as  legacy  cone-search  or  built-in 
VOSpace support.

- 9 -



Table Access Protocol

 2 Requirements for a TAP service (normative)
The keywords “must”, “required”, “should”, and “may” as used in this document 
are to be interpreted as described in the W3C specifications (IETF RFC 2119 
[2]).   Mandatory  interface  elements  are  indicated  as  must,  recommended 
interface elements as should, and optional interface elements as may or simply 
“may” without the bold face font.

 2.1 Feature Overview
An implementation of a TAP service provides features as follows.

synchronous asynchronous parameters

ADQL must must REQUEST, LANG

PQL may may REQUEST, LANG

Other query languages may may REQUEST, LANG

Service availability (VOSI) should n/a REQUEST

Service metadata (VOSI) should n/a REQUEST

Table metadata (VOSI) shouldmust n/a REQUEST

The parameters listed in the last column are described below; the description of 
these parameters spell out how the requirements here are to be implemented.

A TAP service  must be  registered  in  the  IVOA resource-registry  in  the  form 
specified in section  3 .

[Arguably,  the  requirements  above  come  into  force  because a 
service  is  registered  as  TAP.  This  opens  the  question  as  to  
inheritance of requirements when a service derived from TAP is  
registered in a different form. E.g., a service searching a catalogue  
image cubes could be defined as a TAP service with  a  specific  
data-model and a different form of registration. In this case it is not  
clear  that  ADQL query would still  be mandatory.  This  point  was  
discussed briefly at  the October  2008 Interop but  no conclusion  
was reached. -Ed.]

 2.2 Web resources
A TAP service must be represented as a tree structure of web resources each 
addressable via a URL in the http scheme, or the https scheme, or both.

- 10 -



Table Access Protocol

The web resource at the root of the tree must represent the service as a whole. 
This  specification  defines  no  standard  representation  for  this  root  resource. 
Implementations may provide a representation, or may return a '404 not found' 
response to requests for the root web-resource. One possible representation is 
an HTML page describing the scientific usage and content of the service. TAP 
clients must not depend on a specific representation of the root web-resource.

 2.2.1 /sync
A TAP service  must provide a web resource with relative URL /sync that is a 
direct child of the root web-source. This web resource represents the results of 
synchronous queries,  including metadata outputs defined by VOSI.  The exact 
form of the query, and hence the representation of the resource, is defined by the 
query parameters  as  listed  in  section  2.3.  Representations of  results  of  data 
queries, metadata queries and VOSI outputs are defined in sections 2.7.1, 2.7.2 
and 2.7.3 respectively.

[TBD: The VOSI metadata operations are accessible via the /sync  
web-resource only.  Since both /async and /sync are required for  
TAP this does not impose any limitation. Future DAL services that  
follow this pattern would be required to have a /sync web resource 
even if  they  do  not  require  or  even define  synchronous service 
activity.  The alternative  would  be  to  access the  VOSI  metadata 
directly at the base URL, but that would be incompatible with the  
DAL2 style embodied in the SSA specification.]

An HTTP-GET request to the /sync web-resource may return a cached copy of 
the representation. This cached copy might come from an HTTP cache between 
the client and the service, and the service  may also maintain its own cache. 
Clients which require an up-to-date representation of volatile data or metadata 
must use HTTP POST.

 2.2.2 /async
A TAP service  must provide a web resource with relative URL /async that is a 
direct child of the root web-resource. This web resource represents controls for 
asynchronous queries. Specifically, the web resource must represent the job-list 
as specified in the UWS standard [5].

A TAP service  must provide web resources as specified by UWS. These are 
descendants of the /async web-resource, and they include a web resource that 
represents  the eventual  result  of  an asynchronous query.  A client  making  an 
asynchronous request must use the UWS facilities to monitor or control the job 
and to retrieve the result. If an asynchronous query succeeds, then the table of 
results must be made available as a UWS result with the formal name result.2 

In addition to the web resources specified by UWS, a TAP job also includes the 
following resources: 

2 A 'UWS result' is a web resource for which the position in the tree of web resources is defined 
by the UWS standard. See section  5  for an explanation in the context of TAP.

- 11 -



Table Access Protocol

/async/<jobid>/lang: the query language in use

/async/<jobid>/query: the complete set of query parameters/text

/async/<jobid>/format: the requested output FORMAT

/async/<jobid>/maxrec: the value of MAXREC that limits the query

/async/<jobid>/mtime: the value of MTIME that limits the query

/async/<jobid>/upload/<table name>

Requests  to  modify  these  resources  and  run  the  query  on  the  /async web-
resource are always sent as HTTP-POST requests.

[TBD: It is not obvious what an HTTP GET of an uploaded table,  
e.g. /async/<jobid>/upload/<table name> should return...]

 2.3 Parameters for HTTP requests
The  /sync and /async web-resources  must accept the parameters listed in the 
following  sub-sections.  In  a  synchronous  request,  the  parameters  select  the 
representation returned in the response message. In an asynchronous request, 
the parameters select the representation of the eventual query-result rather than 
the response to the initial request.

Not all combinations of the parameters are meaningful. E.g., if a request carries 
LANG=ADQL then the  SELECT parameter (from PQL) is spurious. If a service 
receives a spurious parameter in an otherwise-correct request, then the service 
must ignore the spurious parameter, must respond to the request normally and 
must not report errors concerning the  spurious parameter.

 2.3.1 REQUEST
This parameter distinguishes query requests from VOSI requests and specifies 
how  other  parameters  should  be  interpreted.  A  TAP  client  must set  this 
parameter correctly in every request (GET or POST) of the /async or /sync web 
resources. If a TAP service such a receives a request without this parameter or 
with  an  incorrect  value  for  this  parameter,  then  the  service  must reject  the 
request and return an error document as the result.

These are the allowed values of the parameter.

 doQuery: create or execute a query

 getCapabilities: return VOSI-capabilities metadata

 getAvailability: return VOSI-availability metadata

 getTableMetadata: return VOSI-tables metadata

All requests to create (/async) or execute (/sync) a query using a query language 
must include REQUEST=doQuery and must include the LANG parameter. For 
other values of REQUEST (VOSI operations) no other parameters are needed 
and if supplied they must be silently ignored.

- 12 -



Table Access Protocol

For  synchronous  queries,  the  HTTP  request  must also  include  additional 
parameters (see below) with the details of the query. This is used for metadata 
queries and data queries. 

For asynchronous queries, then additional parameters may be included with the 
HTTP request that creates the query (the UWS job) or they may be POSTed 
directly to the TAP-specific job resources as described above. The parameter 
names remain the same in both cases.

[The above change to allowed REQUEST values moves the ADQL 
vs PQL vs other QL into the required LANG parameter below. It  
preserves the DAL-2 service operation style but decouples it from 
the query payload.]

 2.3.2 VERSION
The  VERSION parameter specifies the protocol version number. The format of 
the version number, and version negotiation, are described in section 2.8.

A TAP service must support the VERSION parameter. 

 2.3.3 LANG
The LANG parameter specifies the query language. The service  must support 
LANG  and  the  client  must provide  a  value  with  REQUEST=doQuery.  For 
example, an ADQL query would be performed with

REQUEST=doQuery&LANG=ADQL&<ADQL-specific parameters>

A PQL query would be performed with
REQUEST=doQuery&LANG=PQL-1.0&<PQL-specific parameters>

The  value  of  LANG  is  a  string  specifying  the  language  and  optionally  the 
language version used for the subsequent query parameter(s), as defined by the 
service capabilities.  The client  may specify the version of the query language, 
e.g.,  LANG=ADQL-2.0  (the  syntax  should  be  as  shown)  or  it  may  omit  the 
version,  e.g.  LANG=ADQL.   The  service  should return  an  “unknown  query 
language” error if an unsupported and incompatible value of LANG is specified.

Example: put a real LANG error here

 2.3.4 QUERY
The QUERY parameter is used to specify the ADQL query. It may also be used to 
specify the query for other values of LANG (e.g. LANG=<some RDBMS-specific 
SQL variant>) which are not specified in this document but may be described in 
the service metadata.

A  service  must support  the  QUERY parameter.  The  query  string  is  case 
sensitive.  In particular, the case of table and column names must be preserved 
between a metadata query and a subsequent query of a data table. The case 
sensitivity  of  the  query  string  is  defined  solely  by  the  query  language 
specification.  In  the  case  of  ADQL 2.0,  for  example,  the  query  is  not  case 

- 13 -



Table Access Protocol

sensitive  except  for  character   literals;  schema,  table,  and  column  names, 
function names, and other ADQL keywords are not case sensitive.

Within the ADQL query, the service must support the use of datetime/timestamp 
values in ISO8601 format. 

If  the  tables  that  are  queried  through a  service  contain  columns with  spatial 
coordinates and the services  supports spatial  querying via the ADQL “region” 
constructswants to enable the caller to perform spatial queries, the service must 
support the  INTERSECTS function and it  must support the following geometry 
functions:  REGION,  POINT,  BOX,  CIRCLE,  COORD1,  COORD2,  COORDSYS. 
Support for the AREA, CONTAINS, and POLYGON functions are optional. If the 
service supports the REGION function, it must support region encoding in STC-
S format [4]; the extent of STC-S support within the REGION function is left up to 
the implementation. Coordinate system specification for  POINT,  BOX,  CIRCLE, 
and  POLYGON must use values from Table 3 (standard reference frames) in 
STC [4].

Although it is allowed by the ADQL syntax, services should return an error if use 
of  POINT, BOX, CIRCLE, or  POLYGON clients should avoid  mixing constants 
and  column  references  for  coordinate  system  and  coordinate  values.  For 
example,  POINT('ICRS', t.ra, t.dec) should is likely to  be an error (it does not 
cause t.ra and t.dec to be transformed to ICRS). The only place where mixing 
constants  and  column  references  is  acceptablenecessary is  when  using  a 
constant for the radius in a CIRCLE, e.g. CIRCLE(t.coordsys, t.ra, t.dec, 0.1), as 
this allows the caller to control search radii for multi-position searches or source 
cross-matching.

 2.3.5 Parameters for PQL
A number of parameters are defined by PQL for use in parametric queries. All of 
the parameters for PQL are specified in [reference to PQL-0.1-20090212] and 
are used unchanged in TAP. Specific PQL parameters that are not applicable to 
the content being queried must be silently ignored. For example, if a PQL query 
includes  TIME=2009-01-01T12:00:00/  and  the  content  includes  no  time 
information at all, this parameter must be ignored.

[Should this ignoring of parameters be specified here or in PQL?  
Following the ADQL separation, PQL would specify the params and 
TAP would specify whether or not to ignore if n/a.]

Within the PQL query, the service  must support the use of datetime/timestamp 
values in ISO8601 format. 

If  the table that  is  queried contains columns with spatial  coordinates and the 
services wants to enable the caller to perform spatial queries, the service must 
support  the PQL spatial  constraint  parameters (POS,SIZE and REGION). If  a 
service supports the REGION parameter, it  must support region encoding in 
STC-S format [4]; the extent of STC-S support within the REGION function is left 
up to the implementation. Coordinate system qualifiers  must use values from 
Table 3 (standard reference frames) in STC [4].

- 14 -



Table Access Protocol

PQL defines symbolic values (@something). In TAP these can be used to specify 
the name of an uploaded table (see  2.3.7 ) from which a list of values should be 
taken and used. This mechanism can be used to query with a large list of values 
than can sensibly be embedded in a query string (using the PQL list syntax). For 
example, a multi-position search could be performed as

Example: REQUEST=doQuery&LANG=PQL \

&POS=@mytable \

&SIZE=0.05 \

&UPLOAD=mytable,<uri to a VOTable>

The ability to perform such a multi-valued search is only possible if the service 
supports table upload.

[TBD:  With  the  above  example,  the  service  would  have  to  
automagically use the right columns from the uploaded table for  
values – it may have other columns, especially if it is the output of  
some other query or service. In table upload, the client specifies 
the  name of  the  table  the  service gets  column names from the  
VOTable FIELD elements (also TBD). In ADQL queries, the client  
has to know the column names as specified in the FIELD elements  
and use them specifically. Maybe here we should also require the  
client to be explicit, e.g. 

&POS=@mytable.ra,@mytable.dec

insteading  trying  to  specify  how  a  service  should  interpret  the 
uploaded table.]

 2.3.6 FORMAT
The  FORMAT  parameter  indicates  the client's  desired format  for  the  table  of 
results of a query. Its value should be a MIME type for tabular data or one of the 
following shorthand forms:

 votable

 csv (comma separated values)

 fits (FITS binary table)

 text (pretty-printed text)

 html (pretty-printed Web page)

All the shorthand forms are insensitive to case.

If the parameter is omitted, the default format is VOTable.

A TAP service must support VOTable as an output format, should support CSV 
output and may support other formats. A TAP service must accept a  FORMAT 
parameter indicating a format that the service supports and should reject queries 
where the FORMAT parameter demands an unsupported format.

If the result is in VOTable format, the result table must be in TABLEDATA format.

- 15 -

mailto:%26POS%3D@mytable


Table Access Protocol

 2.3.7 UPLOAD
The service should implement an UPLOAD parameter, used to reference read-
only external tables via their URL, to be uploaded for use as input tables to the 
query.  Tables uploaded in this fashion are assumed to be encoded in VOTable 
format.  The value of the UPLOAD parameter is a list of table name-URL tuples, 
delimited by semicolon, using comma to delimit each table name-URL tuple. For 
example:

UPLOAD=table_a,http://host_a/path;table_b,http://host_b/path

would define two input tables  table_a and table_b,  located at the given URLs 
(URL-encoding is mandatory in this case since we embedding a URL within a 
URL).  The specified table names are arbitrary but  must be legal ADQL table 
names and must be unique within the upload table namespace for the lifetime of 
the query (see section 2.6). The given name for the table name shouldmust be 
an unqualified table-name; uploaded tables  can be used as if they are located 
within  the  TAP_UPLOAD schema.SCHEMAwill  automatically  be qualified with 
the schema name TAP_.   The upload table  storage area is  shared with  any 
tables uploaded in-line with the query. 

[Since  this  is  specifically  an  HTTP  REST  service,  why  is  the 
UPLOAD list done with a semi-colon-separated list rather than the 
normal multi-valued parameter use in HTTP?

e.g.  UPLOAD=table_a,http://host_a/path&UPLOAD=table_b,http://
host_b/path 

Web technologies and tools handle this transparently.]

Tables may also be uploaded directly (inline) as described in  2.6  below.

[TBD: We should try to consolidate the table upload stuff.]

 2.3.8 MAXREC
The service  should implement a  MAXREC parameter specifying the maximum 
number  of  table  records (rows)  to  be returned.   If  the  result  set  for  a  query 
exceeds  this  value  a  valid  data  table  should be  returned  with  an  overflow 
indicator as specified in section  2.7.5 .

If MAXREC is not specified in a query, the service may apply a default value or 
may  set no limit.  The default  MAXREC value defined by a service  should be 
large  enough  to  avoid  overflow  for  most  small  queries,  but  small  enough  to 
provide a response to the user reasonably quickly.  The client may override the 
default MAXREC, increasing the value up to the maximum value permitted by the 
service, as defined in the service capabilities.  A sufficiently large MAXREC may 
permit streaming of arbitrarily large output tables.  Output tables larger than the 
maximum permitted value of MAXREC must use some other technique such as 
asynchronous  computation  of  the  output  table  followed  by  retrieval  using  a 
streaming synchronous GET (VOSpace output may also be supported in a later 
version of TAP).

- 16 -



Table Access Protocol

A value of  MAXREC=0 indicates that, in the event of an otherwise successful 
query, a valid output table should be returned containing metadata but no table 
data rows.  It is up to the service whether or not to actually execute the query and 
generate table rows which will be discarded; the query status should be returned 
as “OK” so long as the query is otherwise valid. This is an example of a null 
query, that is, a query which produces an empty table.

 2.3.9 MTIME
The service  may support an  MTIME parameter, used to query a table for only 
rows which were modified within a given range of times, specified as an ISO8601 
open or closed range list in the UTC time system.  A “modified” row is a table row 
which was inserted, updated, or deleted during the indicated time interval (hence 
MTIME may be used to  see deleted rows which are not visible in any other 
fashion).  This feature may be used by a remote client to maintain a replica of a 
large table, or to periodically poll  a table for changes.  The period of time for 
which deletions are preserved is server dependent (depending upon how often 
deleted rows are purged) but should be at least one week.

When the MTIME parameter is specified, the service must add extra columns to 
the output table (in addition to that specified in the select statement of the query), 
with utypes Record.Modified and Record.Deleted. The values in this column are 
the  time-stamp  when  the  last  insert/update  occurred  or  when  the  row  was 
deleted respectively. One value must be set and the other null for every row in 
the table; values are in ISO8601 format. Rows that are thus marked as deleted 
must include values for one or more column(s) that uniquely identify the row, but 
other column values may be null.

The MTIME parameter must not be used with queries that select from multiple 
tables. If  MTIME is used in a such a query the service must reject the request 
and return an error document.

 2.3.10 RUNID
The  service  should implement  the  RUNID parameter,  used  to  tag  service 
requests with the job ID of a larger job of which the request may be part.  For 
example, if a cross match portal issues multiple requests to remote TAP services 
to carry out a cross-match operation, all would receive the same RUNID, and the 
service logs could later be analyzed to reconstruct the service operations initiated 
in response to the job.

The service should ensure that RUNID is preserved in any service logs. 

The service should pass on the RUNID value in any calls to other services, e.g. 
VOSpace.

 2.3.11 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been 
specified.  If a parameter is given a null value, e.g., “MAXREC=”, the parameter 
value has been set and the value is the null string.  The interpretation of such an 

- 17 -



Table Access Protocol

input is defined separately for each parameter, and may or may not be an error 
condition.

[TBD: What is the use/value in differentiating between unset and 
null?]

 2.3.12 Case of parameters
Parameter names  must not be case sensitive, but parameter values  must be 
case  sensitive.  In  this  document,  parameter  names  are  typically  shown  in 
uppercase for typographical clarity, not as a requirement.

 2.3.13 Order and cardinality of parameters
Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response 
from the service is undefined.  The  service may reject the request or it may pick 
one value  for  for  the  parameter.  Clients  should  not repeat  parameters  in  a 
request. 

[TBD: Why impose this restriction on multi-valued parameters when  
it  is  well  defined  in  HTTP  and  web  technologies  handle  it  
seamlessly?]

 2.4 Table names
A fully qualified table name has the form
[[catalog_name”.”][schema_name”.”]table_name]]

where catalog_name is the the name of the DB catalogue (often the “database” 
name) in SQL DBMS terminology, schema_name is the name of the “schema” in 
DBMS terminology (often also called a “database”; a DBMS schema is a type of 
data  model  where  the  top  level  data  model  elements  are  tables),  and 
table_name is the actual table name.  All elements of the table name are optional 
except table_name.  Depending upon the DBMS, “catalog” or “schema” may or 
may not be implemented; some DBMS implement both, others one or the other, 
and the simplest database systems might not implement either.

The implementation of a TAP service must define the table names acceptable in 
queries and  must reveal these to clients through metadata queries or through 
VOSI-tables output, and the names must be identical in each of these sources. A 
TAP client must determine the acceptable names from one of these sources or 
from  the  cached  form  of  the  VOSI-tables  output  included  in  the  service's 
registration. A client must use the names in the exact form given by the service, 
reserving the case of letters and the embedded punctuation.

 2.5 Metadata tables and TAP schema
The TAP core schema defines a set of tables in the TAP_SCHEMA schema that 
contain is intended to define the minimal metadata required to describe and use 
the tables exposed by a TAP service.  Services must provide these tables and 

- 18 -



Table Access Protocol

make them accessible  by the supproted query mechanisms. The information in 
the TAP core-schema is equivalent to that defined by VOSI-tables and allowed by 
the registry for a VODataService.

The qualified  names in  the  tables  of  the  TAP schema  must follow the  rules 
defined in section 2.4. The names must be stated in a form that is acceptable as 
an operand of a query.

The table TAP_SCHEMA.schemas must contain the following columns:

schema_name fully qualified schema name ([catalog.]schema)

description brief description of schema

utype UTYPE if schema corresponds to a data model

The table TAP_SCHEMA.tables must contain the following columns:

schema_name fully qualified schema name ([catalog.]schema)

table_name fully  qualified  table  name 
([[catalog.]schema.]table)

table_type one of: base_table, view, output

description brief description of table

utype UTYPE if table corresponds to a data model

The table TAP_SCHEMA.columns must contain the following columns:

column_name column name

table_name fully  qualified  table  name 
([[catalog.]schema.]table)

description brief description of column

unit unit in VO standard format

ucd UCD of column if any

utype UTYPE of column if any

datatype datatype as in VOTable/Registry

arraysize array dimensions as in VOTable/Registry

primary column is visible in default selection

indexed column is indexed on the server

std standard column (as opposed to custom)

A TAP service must provide the tables listed above and may provide other tables 
in the TAP_SCHEMA namespace.

The schema name TAP_UPLOAD should be included in the table name for any 
tables uploaded to the service by a client.

- 19 -



Table Access Protocol

The  TAP_SCHEMA may be queried for  tables named  TAP_SCHEMA.* to get 
information about the schema itself, e.g., to determine if any extended schema 
metadata is defined by the service.

The schema naming conventions used here follow that  of  the registry.   Data 
types are expressed as in VOTable and the registry, e.g., boolean, unsignedByte, 
short,  int, float,  double, and so forth.  “arraysize” specifies the dimensions of an 
array, e.g., "*", "5", "5x20" etc.  “Primary” indicates that the column should be 
visible in the default (narrow) view of a table.  “Indexed” indicates that the column 
is indexed, potentially making queries run much faster if this column is used as a 
constraint.  “Std” is included for compatibility with the registry, which uses this 
value to indicate that a given column is defined by some standard, as opposed to 
a custom column defined by a particular service.  

The TAP schema also defines  TAP_SCHEMA.tableset,  however this is not an 
actual  table  but  rather  a  structured  view  of  the  core  schema  tables  above. 
Special  output  formats  are defined for  queries against  this  view;  see section 
2.7.2.  A simple  tableset-query  must return  the  entire  tableset,  but  advanced 
services  may permit selection with a  WHERE clause, e.g.,  to find only tables 
within a given region or for which the table name matches some pattern.

 2.6 Table Uploads
TAP currently supports two methods by which a client application can upload 
table or other data for use in a query.  The simplest approach for tables which are 
Web-accessible is use of the UPLOAD parameter (section 2.3.7) to reference an 
external table by URI.  More flexible for dynamic client queries is the inline table 
upload where the table is uploaded inline as part of the query.

In  both  cases  uploaded  tables  share  the  TAP_UPLOAD schema,  and 
shouldmust be referred to in queries as  TAP_UPLOAD.tablename, where the 
tablename is specified by the client at upload time, and must be a legal ADQL 
table  name.   Tables  are  uploaded  in  VOTable  format.   Tables  in  the 
TAP_UPLOAD schema persist only for the lifetime of the query (although caching 
might be used behind the scenes).

Uploading a table at query time using the UPLOAD parameter is straightforward 
so long as the table has already been made Web-accessible.  For example, a 
table could be placed in a publicly-readable VOSpace, and the VOSpace URI of 
the table could be used with UPLOAD to reference the table in a query.

In the case of the inline table upload a table is uploaded inline as part of the 
query, used within the query like any other table, then discarded once the query 
completes.  A typical example would be a multi-position query where the user 
uploads a list of source positions.

To upload a table inline the POST form of the query must be used.  The content 
type used is multipart/form-data, using a “file” type input element, with the “name” 
attribute specifying the table name.

- 20 -



Table Access Protocol

So for example in the POST data (following the header and input parameters) we 
might have:
       Content-Type: multipart/form-data; boundary=AaB03

    [...]

    --AaB03x

   Content-disposition: form-data; name="table1"; filename="table1.xml"

   Content-type: application/x-votable+xml

   [...]

    --AaB03x

   Content-disposition: form-data; name="region"; filename="region.xml"

   Content-type: application/x-stc+xml

The uploaded table would automatically propagate and could be referenced in 
either  ADQL  or  parametric  queries  as  TAP_UPLOAD.table1.  In  the  above 
example a STC region mask is also being uploaded.

Inline table uploads may be used both with standard web-forms in a browser, as 
well as for programmatic input.

Any number of tables can be uploaded using this technique, so long as they are 
assigned unique table names within the query.  Although our discussion here 
concerns  uploading  tables,  any  type  of  file  can  be  uploaded  in  this  fashion 
provided the service can do something useful with the file.

 2.7 Representations of results

 2.7.1 Data and metadata queries
The result of a data query or a metadata query must be a single table. 

This  table  must be  encoded in  the  output  format  specified  by  the  FORMAT 
parameter  of  the  query.  See  section  Error:  Reference  source  not  found for 
required,  optional  and  default  formats.  VOTable  is  the  default  format  and 
VOTable support is mandatory.

VOTables  must follow the rules in section  Error: Reference source not found. 
These VOTables  should be returned with a MIME type of  text/xml;content=x-
votable.

CSV formatted data should represent the output table with one row of text per 
table  row,  with  the  table  column  values  rendered  as  text  and  separated  by 
commas.  If a column value contains a comma the entire column value should 
be enclosed in double quotes.  Text lines may be arbitrarily long.  The first data 
row  should give  the  column  name  as  the  data  value.   Header  lines  may 
optionally be included in the first few lines of output, prior to the first data row, 
and should be indicated by placing the character ‘#’ in the first character of the 
line.

- 21 -



Table Access Protocol

 2.7.2 Tableset queries
If the target of the query is the special table  TAP_SCHEMA.tableset, then the 
service  must support an XML serialization of the tableset and  must support a 
special use of VOTable to express the structure of the tableset.

The special, XML serialization must conform to the registry standard expressed 
in VODataService v1.1 [7] and the corresponding XML-schema. This serialization 
format is identical to that used for VOSI tables [6].3 This format is selected by the 
parameter setting FORMAT=xml in the query.

The special use of VOTable must be a data-less VOTable in which the header 
elements denote the structure of  the tableset.  There  must be one  VOTABLE 
element  per  table in the tableset.  This is an exception to the rule that  query 
results contain single tables. This format is selected by the parameter setting 
FORMAT=votable in the query.

[In v0.3 of the TAP standard the intent w.r.t metadata queries is clear but the  
implementation details are not. I have inferred some of the detailed rules as best  
I can, but may have diverged from the original intent. These details should be  
cleared up in TAP 0.4 - Ed]

 2.7.3 VOSI
Representations  of  VOSI  outputs  (service  capabilities,  availability,  table 
metadata) must be as defined in the VOSI standard [6].

The representation of  table  metadata  must include all  tables in  the service's 
tableset.

VOSI's  representation  of  table  metadata  is  that  mandated  for  the  registry  in 
VODataService [7]. 

[In  TAP v0.3,  it  was  written  that  'The  content  of  the  TAP service  availability  
description are TBD.' My understanding of VOSI is that there are no details left to  
determine. -Ed]

 2.7.4 Error documents
If the service detects an exceptional condition, it must return an error document 
with  an  appropriate  HTTP-status  code.  TAP  distinguishes  three  classes  of 
exceptions.

 Errors in the use of the HTTP protocol.

 Errors in the use of the TAP protocol, including failure of the service to 
complete valid requests.

3 The registry-compliant-XML serialization of the tableset structure is almost the same thing as 
the VOSI-tables output of the service but is not strictly identical. The format is the same, but 
while the VOSI output is required to cover all the tables in the tableset (implicitly 'SELECT * 
FROM TAP_SCHEMA.tableset),  the  result  of   a  tableset  query can  be  restricted  by  the 
WHERE clause of that query.

- 22 -



Table Access Protocol

 Overflow  conditions  where  the  number  of  rows  returned  from a  query 
would exceed a pre-set limit (set either by the client or by the service).

Error  documents for  HTTP-level  errors are not  specified in  the TAP protocol. 
Responses  to  these  errors  are  typically  generated  by  service  containers  an 
cannot be controlled by TAP implementations.

Error  documents for  TAP errors  must be VOTable documents;  in  exceptional 
conditions, any result-format specified in the query is ignored. When returning 
such a document, the service must set HTTP status-code 200 'OK' (because the 
HTTP operation  is  correct,  even though the  request  cannot  be  fulfilled).  The 
exception condition  must be signaled to the client using a status code in the 
VOTable header and a qualifier in the MIME type reported in the HTTP header. 
Section  Error: Reference source not found  specifies the exact use of these error 
documents. For Example: 

<INFO name="QUERY_STATUS" value="ERROR">

DEC out of range: DEC=91

</INFO>

Overflow conditions are not strictly errors and results from overflowed queries are 
not strictly error-documents. Therefore, a response to an overflowed query must 
contain the results table truncated at the row limit and  must be in the format 
requested by the client. A response to an overflowed query  should contain an 
indication  of  the  overflow  if  the  output  format  allows  this.  Section  Error:
Reference  source  not  found specifies  the  means  of  reporting  overflows  in 
VOTables. No reporting mechanism is specified for other formats.

 2.7.5 Overflows
If a query is executed by a TAP service, the number of rows in the table of results 
may exceed a limit set by the user (using the  MAXREC parameter or the TOP 
keyword in ADQL) or a limit set by the service implementation. In these cases, 
the query is said to have 'overflowed'. Typically, a TAP service will not detect an 
overflow until some part of the table of results has been sent to the client.

On detecting an overflow, a TAP service  must produce a table of results that 
valid in the required output format and which contains all the results up to the 
point of overflow. Since an output overflow is not an error condition, the MIME 
type of the output VOTable must be the same as for any successful query and 
the HTTP status-code must be as for a successful, complete query.

If  the service detects  the overflow before sending the query response to  the 
client, and if the output format is VOTable, then the service must include in the 
table of results an INFO element with name attribute set to QUERY_STATUS and 
value  element  set  to  OVERFLOW.  The  service  should  set  the  value  of  this 
element to an error message explaining the overflow. The error message should 
state the number of rows at which the output was truncated.

If the output format is VOTable, and if the service detects the overflow after the 
header for the table of results has been sent to the client, then the service must, 

- 23 -



Table Access Protocol

after closing the  TABLE element for the table of results, write another  TABLE 
element to indicate the overflow. This latter table must not include data but must 
an  INFO element announcing the overflow. This element  must have attributes 
and content as specified for the case where the overflow was detected before 
starting to write the VOTable.

<INFO name="QUERY_STATUS" value="OVERFLOW">

Number of table rows exceeds default limit of 5000

</INFO>

No method of reporting an overflow is defined for formats other than VOTable.

[Discussion with FO in Baltimore indicated that we can append an 
INFO after the  TABLE tag to indicate overflow.]

 2.8 Versioning of the TAP protocol
The TAP protocol  provides explicitly  for  versioning of  the interface,  using the 
features  provided  by  the  VOA registry  and  the  conventions  of  the  DAL-2 
architecture.

 2.8.1 Version number form and value
The TAP protocol defines a protocol version-number. The version number applies 
to  all  aspects  of  the  protocol  as  defined  in  this  document,  including  any 
associated XML schema and the request encodings.  The TAP version refers 
only to the TAP protocol; query languages is versioned separately and TAP and 
ADQL versions may differ.

Version  numbers  follow  IVOA document  conventions  and  contains  two  non-
negative integers, separated by decimal points, in the form  “x.y”, for example, 
“1.0”, or “1.13”.  This is actually a three level version number encoded as two 
digits, e.g., “1.23” is logically the same as “1.2.3”.  One result of this syntax is that 
second level version numbers cannot be greater than 9, for example “1.9” is a 
higher  version  number than “1.10”  (logically  “1.9.0  vs.  “1.1.0”).   Hence IVOA 
version numbers cannot be numerically compared without first being parsed.

 2.8.2 Version number changes
The protocol  version number will  change with each published revision of  this 
document. The number will  increase monotonically and will  comprise no more 
than two integers separated by decimal points, with the first integer being the 
most significant.  There may be gaps in the numerical sequence. Some numbers 
may denote draft versions. Servers and their clients need not support all defined 
versions, but must obey the negotiation rules below.

A version number change at the first  level  (e.g.,  1.0 – 2.0) indicates a major 
change.  A version number change at the second level indicates a minor change 
which is not necessarily backwards compatible.  A version number change at the 
third level is considered backwards compatible, and should not affect the pre-
existing functionality of the interface.

- 24 -



Table Access Protocol

 2.8.3 Appearance in requests and in service metadata
The version number may appear in at least three places: in the service metadata, 
as a parameter in client requests to a server, and in the query response. The 
version number used in a client’s request of a particular server must be equal to 
a  version  number  which  that  server  has  declared  it  supports  (except  during 
negotiation, as described below). A server may support several versions, whose 
values clients may discover according to the negotiation rules.

 2.8.4 Version number negotiation
If  a  TAP client  does not  specify  the version number in  a  request,  the server 
assumes the highest standard version supported by the service, and no explicit 
version checking takes place.   If the client specifies an explicit version number, 
and this does not match a version available from the service at level two, the 
service returns a version number mismatch error.  The client can determine what 
versions of the protocol the service supports by a prior call to VOSI-capabilities 
or via a registry query.

 2.9 Use of VOTable
VOTable is a general format. TAP requires that it be used in a particular way.

VOTables should comply with VOTable v1.1 or greater [9].

VOTables resulting from successful queries, including overflowed queries (see 
section Error: Reference source not found for a definition of overflow) must be 
returned  with  MIME  type  text/xml;content=x-votable.  A  base  MIME-type  of 
text/xml is used for synchronous queries to enable display of query results in 
browsers using direct rendering of the XML or an optional style sheet.  VOTables 
which are manipulated as file data should instead use the MIME type application/
x-votable+xml.

The VOTable must contain a RESOURCE element identified with the tag type = 
"results",  containing  a  single  TABLE element  with  the  results  of  the  query. 
Additional  RESOURCE elements may be present,  but the usage of any such 
elements is not defined here and TAP clients should not depend upon them.

 2.9.1 INFO elements
The  RESOURCE element  must contain, before the  TABLE element, an  INFO 
element  with  attribute  name  =  "QUERY_STATUS".  The  value attribute  must 
contain one of the following values:

 “OK”, meaning that the query completed successfully and did not overflow;

 “ERROR”, meaning that an error was detected at  the level  of  the TAP 
protocol;

 “OVERFLOW”,  meaning  that  the  query  completed  without  error  but 
overflowed;

- 25 -



Table Access Protocol

 “STREAM”,  meaning that neither error nor overflow had been detected 
when the service started to write the results to the client, but that either 
condition could still arise before the response is completed.

[TAP 0.3 also says this  concerning status reporting in  streamed 
responses:  'Alternatively,  the initial  query status could be OK or 
ERROR and  a  failure  later  on  would  require  just  the  additional  
INFO with OVERFLOW or ERROR - then we do not have to add 
STREAM... that might be a more general solution' – Ed.]

The STREAM status covers the case where the service streams a long table of 
results to the client rather than buffering it.  In this situation, the data typically 
come from an SQL cursor and the service does not know the number of rows in 
the  response  when  starting  to  write  the  TABLE element;  overflow cannot  be 
reported in the initial INFO element. When the initial status is set to STREAM, the 
service must write a second INFO element, with name=”QUERY_STATUS”, after 
the end of the TABLE element. This element must have its value attribute set to 
“OK”, “ERROR” or “OVERFLOW”.

The value  of  the  INFO element  conveying  the  status  should be  a  message 
suitable for display to the user describing the status.

Examples:
<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name="QUERY_STATUS" value="ERROR">

  DEC out of range: DEC=91</INFO>

<INFO name="QUERY_STATUS" value="OVERFLOW">

Number of table rows exceeds default limit of 5000

</INFO>

Additional  INFO elements  may be provided, e.g., to echo the input parameters 
back to the client in the query response (a useful feature for debugging or to self-
document the query response), but clients should not depend on these. 

Example: 
 <INFO name="QUERY_STATUS" value="ERROR">unrecognized operation</INFO>

 <INFO name="SERVICE_PROTOCOL" value="1.0">TAP</INFO>

 <INFO name="REQUEST" value="doQuery"/>

 <INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>

 <INFO name="serviceVersion" value="1.0"/

 <INFO name="serviceName" value="tap"/>

 <INFO  name="ServiceEngine"  value="tap:  TAP  1.0  DALServer  version 
0.4"/>

- 26 -



Table Access Protocol

 2.9.2 Special Table Content
If  the output of a query includes column(s) of type datetime/timestamp(?), the 
values must be specified in ISO8601 format.

If the output of a query includes columns of type region (e.g. a column of type 
POINT, CIRCLE, POLYGON, or REGION as defined by ADQL), the value must 
be output in a single column and encoded in STC-S format (Rots 2007). If the 
underlying tables (as described by the table metadata) store spatial information 
in multiple columns (e.g. RA and DEC in separate columns), then the output may 
also use multiple columns (and, in the case of VOTable, the coordinate system 
can usually be specified by a PARAM rather than a FIELD). In either case, the 
result should be presented in the same number of columns as were present in 
the SELECT (applicable to ADQL and PQL).

Where possible output table columns should be assigned UCDs (uniform content 
descriptors) to indicate the type of quantity stored in the column.  If  the table 
contains a data model  columns may also be assigned UTYPEs, and may be 
aggregated with  the  VOTable  GROUP construct  to  identify  a  subset  of  table 
columns as a data model instance.

- 27 -



Table Access Protocol

 3 Service Registration (normative)
Publication of  a  service to  the VO requires that  it  be  registered with  the VO 
registry, including describing the identity and capabilities of the service.

The resource document for a TAP service instance must be structured according 
to  VOResource 1.0  [8]  using  the  sub-type  CatalogService as  defined  in 
VODataService 1.1 [7].

The resource document  must include a  capability element  denoting the TAP 
interface and functions. The content of this element, including the value of its 
standardID attribute is TBD.

[In the debate leading to TAP 0.3, it was suggested that the capability might list  
as interface the URL for  the root  web-resource of  the service (as defined in  
section Error: Reference source not found). Clients would add to this URL /sync  
or /async as appropriate. This arrangement was not confirmed in the text of v0.3 
and should be confirmed or replaced in TAP 0.4 – Ed.]

The  resource  document  must contain  capability  elements  for  the  VOSI-
capabilities, VOSI-availability and VOSI-tables outputs. These must be formatted 
as in the VOSI standard [6].

[This requirement  is not stated in TAP 0.3.  I  have added it  since VOSI itself  
requires it – Ed.]

The resource document  should include the table metadata, except where the 
database-schema of the archive changes frequently.4 Where table metadata are 
provided,  they  must be  represented  as  XML  elements  drawn  from 
VODataService 1.1. 

4 If  the database schema changes faster  than the changes can be propagated through the 
publishing registries to the full registries, then it is pointless to register the table metadata. If 
the details change hourly then clearly the registries cannot keep up;  if  the details change 
yearly, then clearly they can. Intermediate cases are less certain, but weekly changes are 
probably too fast and monthly changes probably slow enough.

- 28 -



Table Access Protocol

 4 Extended capabilities (normative)
The  TAP  service  allows  for  optional  extended  capabilities  and  operations. 
Extensions may be defined within an information community when needed for 
additional functionality or specialization.  A generic client must not be required or 
expected to make use of such extensions.  Extended capabilities or operations 
must be  defined  by  the  service  metadata.  Extended  capabilities  provide 
additional metadata about the service, and may or may not enable optional new 
parameters to be included in operation requests.  Extended operations may allow 
additional operations to be defined.

A server  must produce  a  valid  response  to  the  operations  defined  in  this 
document,  even  if  parameters  used  by  extended  capabilities  are  missing  or 
malformed  (i.e.  the  server  must supply  a  default  value  for  any  extended 
capabilities it defines), or if parameters are supplied that are not known to the 
server.

Service providers  must choose extension names with care to avoid conflicting 
with standard metadata fields, parameters and operations.

- 29 -



Table Access Protocol

 5 Use of UWS (informative)
The UWS pattern is specified in [3] and its application to TAP in section  Error:
Reference source not found . This section explains the exchange of messages 
between a TAP client  and service when using UWS to run an asynchronous 
query.

Consider a TAP service at http://x.y.z/TAP. TAP mandates that the asynchronous 
requests be directed to http://x.y.z/TAP/async. This URL points to the list of 'jobs'; 
i.e. the list of queries currently or recently executed.

To start a new query, the client posts a request to the job list.
HTTP POST to http://x.y.z/TAP/async

REQUEST=doQuery&LANG=ADQL&QUERY=SELECT TOP 100 * FROM foo

The service then creates a job and assigns that job a name and a URL based on 
the  name.  Suppose  that  the  name  is  j42,  then  the  URL  will  be 
http://x.y.z/TAP/async/j42 because the jobs are always children of the job list.

The service then issues an HTTP redirection to the job's URL.
HTTP status 303 'See other'

Location: http://x.y.z/TAP/async/j42

Beneath the job URL there are further URLs for aspects of the job:
http://x.y.z/TAP/async/j42/phase

http://x.y.z/TAP/async/j42/results

http://x.y.z/TAP/async/j42/error

(there are more, but these are the one that the client has to deal with).

The phase URL shows the progress of the job. When the job is created by the 
service it will normally be set to  PENDING, but might be set to  ERROR if the 
service has rejected the job. If the phase is ERROR, then the error URL should 
lead to a an error document explaining the problem. If the phase is  PENDING, 
then the client needs to commit the job for execution.

The client commits the job by posting to the phase URL
HTTP POST to http://x.y.z/TAP/async/j42/phase

PHASE=RUN

The service replies with a redirection to the job URL
HTTP status 303 'see other'

Location: http://x.y.z/TAP/async/j42

The  phase  will  now  have  changed  to  either  QUEUED or  EXECUTING, 
depending  on  the  service  implementation.  The client  tracks  the  execution  by 
polling the phase URL:

HTTP GET http://x.y.z/TAP/async/j42/phase

- 30 -



Table Access Protocol

When the query is complete,  the phase changes to  COMPLETED.  The client 
then retrieves the result from the results list:

HTTP GET http://x.y.z/TAP/async/j42/results/result

The client knows that the table of results is at  the URL /result  relative to the 
results list because the TAP protocol requires this naming.

If the service cannot run the query, then the final phase is ERROR and there is 
no table of results. In this case, the client should expect an HTTP 404 'not found' 
status if it tries to retrieve the result. The client should look instead at the error 
URL to find out what went wrong

HTTP GET http://x.y.z/TAP/async/j42/error

The service remembers the job for a limited period after which it forgets the job 
information and discards the result of the query. After job expires, the client will 
receive an HTTP 404 'not found' status if it tries to get any information about the 
job. The destruction time of the job is chosen by the service and the client can 
read it from the job:

HTTP GET http://x.y.z/TAP/async/j42/destruction

The service may allow the client to change the destruction time:
HTTP POST to http://x.y.z/TAP/async/j42/destruction

DESTRUCTION=2008-11-11T11:11:11Z

The basic sequence can be executed from a web browser or from a shell script 
using the curl utility:

curl -d 'REQUEST=doQuery&LANG=PQL&POS=12,34&SIZE=0.5&FROM=foo' \

       http://x.y.z/TAP/async

 [read Location header from curl output]

curl -d 'PHASE=RUN' http://x.y.z/TAP/async/j42

curl http://x.y.z/TAP/async/j42/phase

[repeat until phase is COMPLETED]

curl http://x.y.z/TAP/j42/results/result

- 31 -



Table Access Protocol

 6 VOSpace Integration (informative)
This  version  of  TAP  provides  limited  VOSpace  integration,  although  better 
support  for  VOSpace  is  planned  for  a  later  version  following  prototyping. 
Ultimately one would like to have per-user VOSpace storage co-located with the 
TAP service, allowing user queries to save output tables to the local VOSpace as 
well as use them for input in subsequent queries, without having to serialize to 
and from VOSpace and transfer tables over the network.  Frequently-used tables 
such as source lists for multi-position queries could persist between queries, and 
could be arbitrarily large.

The current  version of  TAP does provide limited VOSpace integration via the 
table  UPLOAD parameter,  using the upload URI to  point  to  a table stored in 
either a local or remote VOSpace.

- 32 -



Table Access Protocol

 7 Use of HTTP (informative)
A TAP service is a web service and TAP implementations are constrained by the 
general rules for use of HTTP, which are contained in IETF RFC documents. This 
section  collates  some  of  the  requirements.  For  authoritative  specifications, 
please refer to the original RFCs.

 7.1 General HTTP request rules

 7.1.1 Introduction
This document defines the implementation of the TAP service on a distributed 
computing platform (DCP) comprising Internet hosts that support the Hypertext 
Transfer Protocol (HTTP) (see IETF RFC 2616 [11]). Thus, the Online Resource 
of each operation supported by a server is an HTTP Uniform Resource Locator 
(URL).   The  URL  may  be  different  for  each  operation,  or  the  same,  at  the 
discretion of the service provider.  Each URL must conform to the description in 
IETF RFC 2616 (section 3.2.2 “HTTP URL”) but is otherwise implementation-
dependent; only the query portion comprising the service request itself is defined 
by this document.

While the TAP protocol currently only supports HTTP as the DCP for general 
parameterized operations, data access references are more general  and may 
use other  internet protocols, e.g., FTP, or potentially grid protocols.

HTTP supports two primary request methods: GET and POST.  One or both of 
these methods may be offered by a server, and the use of the Online Resource 
URL differs in each case.  Support for the GET method is mandatory; support for 
the POST method is optional except where required for a service operation to 
function, e.g., uploading a large quantity of data inline in a query, or when issuing 
a request to the service which changes the server state.

 7.1.2 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396 [5])  reserves particular characters as 
significant and requires that these be escaped when they might conflict with their 
defined usage.  This document explicitly reserves several of those characters for 
use in the query portion of TAP requests. When the characters “?”, “&”, “=”, “,” 
(comma), “/”, and “;”  appear in one of the roles defined in Table 1, they  must 
appear  literally  in  the  URL.  When  those  characters  appear  elsewhere  (for 
example, in the value of a parameter), they should be encoded as defined in 
IETF  RFC  2396.   The  server  must be  prepared  to  decode  any  character 
escaped in this manner.

Table 1 — Reserved characters in TAP query string

Character Reserved usage

? Separator indicating start of query string.

& Separator between parameters in query string.

- 33 -



Table Access Protocol

= Separator between name and value of parameter.

,/; Separator between individual values in list-oriented parameters

In particular, if any parameter value contains the character “#” (for example in a 
dataset identifier) it must be URL encoded to be legally included in a URL.

 7.1.3 HTTP GET
A TAP service must support the “GET” method of the HTTP protocol (IETF RFC 
2616 [11]).

An Online Resource URL intended for HTTP GET requests is in fact only a URL 
prefix to which additional parameters are appended in order to construct a valid 
Operation request.  A URL prefix is defined in accordance with IETF RFC 2396 
[5] as a string including, in order, the scheme (“http” or “https”), Internet Protocol 
hostname or numeric address, optional port number, path, mandatory question 
mark “?”, and optional string comprising one or more server-specific parameters 
ending in an ampersand “&”. The prefix defines the network address to which 
request messages are to be sent for a particular operation on a particular server. 
Each  operation  may  have  a  different  prefix.  Each  prefix  is  entirely  at  the 
discretion of the service provider.

This document defines how to construct a query part that is appended to the URL 
prefix in order to form a complete request message.  Every TAP operation has 
several  mandatory  or  optional  request  parameters.   Each  parameter  has  a 
defined name . Each parameter may have one or more legal values, which are 
either defined by this document or are selected by the client based on service 
metadata.  To formulate the query part of the URL, a client  must append the 
mandatory  request  parameters,  and  any  desired  optional  parameters,  as 
name/value  pairs  in  the  form  “name=value&”  (parameter  name,  equals  sign, 
parameter value, ampersand).  The “&” is a separator between name/value pairs, 
and is therefore optional after the last pair in the request string.

When  the  HTTP  GET  method  is  used,  the  client-constructed  query  part  is 
appended to the URL prefix defined by the server, and the resulting complete 
URL is invoked as defined by HTTP (IETF RFC 2616).

Table 2 summarizes the components of an operation request URL when HTTP 
GET is used.

Table 2 — Structure of TAP request using HTTP GET

URL component Description

http://host:port]/path[?
[name[=value]

Base-URL (prefix) of service operation. [] denotes 0 or 
1 occurrence of an optional part; {} denotes 0 or more 
occurrences.

name=value&
One or more standard request parameter name/value 
pairs as defined for each operation by this document.

- 34 -



Table Access Protocol

 7.1.4 HTTP POST
TAP uses  the  “POST”  method  of  the  HTTP protocol  (IETF  RFC  2616  [11]) 
whenever a large amount of data needs to be uploaded inline in the query, e.g., 
when uploading an inline table, or whenever the request may change the server 
state, e.g., when requesting asynchronous execution of a query.  Semantically 
POST and GET are largely the same, permitting the same parameters to  be 
transmitted  to  the  server  to  define  the  request.   Parameters  should  be  URL 
encoded in a POST whenever they would need to be URL encoded for a GET.

 7.2 General HTTP response rules
Upon receiving a valid request, the server must send a response corresponding 
exactly to the request as detailed in section Error: Reference source not found of 
this document, or send a service exception if unable to respond correctly. Only in 
the case of Version Negotiation (see 2.8.4) may the server offer a differing result. 
Upon receiving an invalid request, the server must issue a service exception as 
described in section Error: Reference source not found.

A server may send an HTTP Redirect message (using HTTP response codes as 
defined in IETF RFC 2616 [11]) to an absolute URL that is different from the valid 
request URL that was sent by the client.  HTTP Redirect causes the client to 
issue a new HTTP request for the new URL.  Several redirects could in theory 
occur.  Practically  speaking,  the  redirect  sequence  ends  when  the  server 
responds  with  a  valid  TAP  response.  The  final  response  must be  a  TAP 
response  that  corresponds  exactly  to  the  original  request  (or  a  service 
exception).

Response  objects  must be  accompanied  by  the  appropriate  Multipurpose 
Internet Mail Extensions (MIME) type (IETF RFC 2045 [12]) for that object.  A list 
of  MIME types in  common use on the  internet  is  maintained by  the  Internet 
Assigned Numbers Authority (IANA) . Allowable types for operation responses 
and service exceptions are discussed below.  The basic structure of a MIME type 
is a string of the form “type/subtype”.  MIME allows additional parameters in a 
string of the form “type/subtype; param1=value1; param2=value2”. A server may 
include  parameterized  MIME types  in  its  list  of  supported  output  formats.  In 
addition  to  any  parameterized  variants,  the  server  should  offer  the  basic 
unparameterized version of the format.

Response  objects  should  be  accompanied  by  other  HTTP entity  headers  as 
appropriate  and  to  the  extent  possible.  In  particular,  the  Expires  and  Last-
Modified headers provide important information for caching; Content-Length may 
be used by clients to know when data transmission is complete and to efficiently 
allocate space for results, and  Content-Encoding or  Content-Transfer-Encoding 
may be necessary for proper interpretation of the results.

- 35 -



Table Access Protocol

 8 References
[1] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. Nieto- Santisteban, M. 

Ohishi, W. O’Mullane, P. Osuna, VOQL-TEG & VOQL-WG, IVOA Astronomical Data 
Query Language version 2, IVOA recommendation 30th October 2008. 
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC 
2119. http://www.ietf.org/rfc/rfc2119.txt

[3] G. Rixon & P. Harrison, Universal Worker Service Version 0.5, IVOA internal working-
draft 8th October 2008.  
http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf

[4] A. Rots, Space-Time Coordinate Metadata for the Virtual ObservatoryVersion 1.33, 
IVOA Recommendation 30 October 2007. http://www.ivoa.net/Documents/REC/DM/
STC-20071030.html

[5] T. Berner-Lee, R. Fielding  L. Masinter, Uniform Resource Identifiers (URI): Generic 
Syntax, IETF RFC 2396.  http://www.ietf.org/rfc/rfc2396.txt

[6] G. Rixon (ed.) & GWS-WG, IVOA Support Interfaces Version 1.00, IVOA Working 
Draft 2008 October 23. http://www.ivoa.net/Documents/WD/GWS/VOSI-
20081023.pdf

[7] R, Plante, (ed.), A. Stébé, K. Benson, M. Graham, G. Greene, P. Harrison, A. Linde, 
G. Rixon & IVOA Registry-WG, VODataService: a VOResource Schema Extension 
for Describing Collections and ServicesVersion 1.01. IVOA Working Draft 16 October 
2008. http://www.ivoa.net/internal/IVOA/VODataService/VODataService-
v1.1wd.html

[8] R. Plante (ed.), K. Benson, M. Graham, G. Greene, P. Harrison, G. Lemson, A. Linde, 
G. Rixon, A. Stébé, & IVOA Registry-WG, VOResource: an XML Encoding Schema 
for Resource MetadataVersion 1.03, IVOA Recommendation 22 February 2008. 
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[9] F. Ochsenbein (ed.), R. Williams, C. Davenhall, D. Durand, P. Fernique, D. Giaretta, 
R. Hanisch, T. McGlynn, A. Szalay, M. Taylor, A. Wicenec, VOTable Format 
DefinitionVersion 1.1, IVOA Recommendation 11 August 2004. 

http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html

[10] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C 
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[11] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext  
Transfer Protocol – HTTP/1.1, IETF RFC 2616. 

http://www.rfc-editor.org/rfc/rfc2616.txt

[12] N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: 
Format of Internet Message Bodies, IETF RFC 2045. 
http://www.ietf.org/rfc/rfc2045.txt

- 36 -

http://www.ietf.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/xmlschema-2/
http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html
http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html
http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf
http://www.ietf.org/rfc/rfc2396.txt
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

