
Table Access Protocol

 International

 Virtual

 Observatory

Alliance

Table Access Protocol

Version 0.5
IVOA Internal Working Draft 2009 May 16

This version:

TAP-V0.5-20090516

Latest version:

Not yet issued

Previous version(s):

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.42-20090420.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.41-20090317.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.4-20090212.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.31-20081124.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-v0.3.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf

Authors:

P. Dowler, G. Rixon, D. Tody

Contributors:

K. Andrews, J. Good, R. Hanisch, T. McGlynn, K. Noddle,

F. Ochsenbein, I. Ortiz, P. Osuna, R. Plante, J. Salgado,

- 1 -

http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf

Table Access Protocol

A. Stebe, A. Szalay

Abstract
The table access protocol (TAP) defines a service protocol for accessing general
table data, including astronomical catalogs as well as general database tables.
Access is provided for both database and table metadata as well as for actual
table data. This version of the protocol includes support for multiple query
languages, including queries specified using the Astronomical Data Query
Language (ADQL) and the Parameterised Query Language (PQL) within an
integrated interface. It also includes support for both synchronous and
asynchronous queries. Special support is provided for spatially indexed queries
using the spatial extensions in ADQL. A multi-position query capability permits
queries against an arbitrarily large list of astronomical targets, providing a simple
spatial cross-matching capability. More sophisticated distributed cross-matching
capabilities are possible by orchestrating a distributed query across multiple TAP
services.

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents
 1 Introduction .. 5

 1.1 Types of query ... 5

 1.1.1 Data, metadata, tableset and VOSI queries ... 5

 1.1.2 ADQL Queries ... 6

 1.1.3 PQL Queries .. 6

 1.1.4 Other Query Languages ... 6

 1.2 Query Execution .. 6

 1.2.1 Asynchronous Queries .. 7

 1.2.2 Synchronous Queries .. 7

 1.3 Interface Overview (informative) .. 7

- 2 -

http://www.ivoa.net/Documents/

Table Access Protocol

 2 Requirements for a TAP service (normative) .. 10

 2.1 Feature Overview .. 10

 2.2 Web resources ... 10

 2.2.1 /sync .. 11

 2.2.2 /async .. 11

 2.3 Parameters for HTTP requests .. 12

 2.3.1 REQUEST ... 12

 2.3.2 VERSION .. 13

 2.3.3 LANG ... 13

 2.3.4 QUERY .. 13

 2.3.5 Parameters for PQL .. 14

 2.3.6 FORMAT ... 15

 2.3.7 UPLOAD .. 15

 2.3.8 MAXREC ... 16

 2.3.9 MTIME ... 16

 2.3.10 RUNID ... 16

 2.3.11 Missing or null-valued parameters .. 17

 2.3.12 Case of parameters ... 17

 2.3.13 Order and cardinality of parameters ... 17

 2.4 Table names .. 17

 2.5 Table Upload .. 18

 2.5.1 UPLOAD .. 20

 2.5.2 Inline Table Upload ... 20

 2.6 Metadata Tables and TAP schema ... 20

 2.6.1 Schemas ... 21

 2.6.2 Tables .. 21

 2.6.3 Columns .. 21

 2.6.4 Keys ... 22

 2.6.5 Tableset ... 22

 2.7 Representations of results ... 22

 2.7.1 Data and metadata queries ... 22

 2.7.2 Tableset queries .. 23

 2.7.3 VOSI .. 24

 2.7.4 Errors ... 24

 2.7.5 Overflows .. 24

- 3 -

Table Access Protocol

 2.8 Versioning of the TAP protocol .. 25

 2.8.1 Version number form and value .. 25

 2.8.2 Version number changes .. 25

 2.8.3 Appearance in requests and in service metadata .. 25

 2.8.4 Version number negotiation .. 25

 2.9 Use of VOTable ... 26

 2.9.1 INFO elements .. 26

 3 Service Registration (normative) ... 29

 4 Extended capabilities (normative) ... 30

 5 Use of UWS (informative) .. 31

 6 VOSpace Integration (informative) .. 33

 7 Use of HTTP (informative) ... 34

 7.1 General HTTP request rules .. 34

 7.1.1 Introduction .. 34

 7.1.2 Reserved characters in HTTP GET URLs .. 34

 7.1.3 HTTP GET ... 35

 7.1.4 HTTP POST .. 36

 7.2 General HTTP response rules ... 36

 8 References .. 37

- 4 -

Table Access Protocol

 1 Introduction
The Table Access Protocol (TAP) is a Web-service protocol that gives access to
collections of tabular data referred to collectively as a tableset. TAP services
accept queries posed against the tableset available via the service and return the
query response as another table, in accord with the relational model. Queries
may be submitted using various query languages and may execute
synchronously or asynchronously. Support for the Astronomical Data Query
Language (ADQL) is mandatory; support for other query languages such as
Parameterised Query Language (PQL) or native SQL is optional.

The result of a TAP query is another table, returned as a VOTable or in some
other format. Support for VOTable output is mandatory; all other formats are
optional.

The table collections made accessible via TAP are typically stored in relational
database management systems (RDBMS).A TAP service exposes the database
schema to client applications so that queries can be posed directly against
arbitrary data tables available via the service.

Multi-table operations such as joins or cross matches are possible provided the
tables are all managed by the local TAP service, and provided the service
supports these capabilities. Larger scale operations such as a distributed cross
match are also possible, but require combining the results of multiple TAP
services.

 1.1 Types of query

 1.1.1 Data, metadata, tableset and VOSI queries
TAP services distinguish four different kinds of query by the information returned:
(1) data queries, (2) metadata queries, (3) tableset queries, and (4) Virtual
Observatory Service Interface (VOSI [14]) queries.

Data queries apply to the astronomical content served by a TAP service. This is
the reason for providing a TAP service. All the other kinds of query support the
ability to make data queries. Data queries may be specified in any query
language supported by the service.

Metadata queries work like data queries, using the same query languages, but
they are applied to standardized tables which explain the data model of a
particular TAP installation. Metadata queries allow a client to discover the names
of tables and columns to be used in data queries.

Tableset queries are a special case metadata queries that reveal the entire data
model in one response. They use a different output format to metadata queries.

Virtual Observatory Service Interface (VOSI [14]) specifies base service interface
common to all VO services. VOSI requests (queries) supply metadata concerning
the availability of a TAP service, its main interfaces ('VOSI-capabilities'), and its
data model ('VOSI-tables'). VOSI-capabilities and VOSI-tables outputs use the

- 5 -

Table Access Protocol

same XML schema as the IVOA registry and can be incorporated in service
registrations.

[NOTE: What is the difference between a tableset query and a
VOSI-tables query? By implication they both have VOResource
output format. -Ed.]

 1.1.2 ADQL Queries
Support for ADQL is mandatory. ADQL can be used to query a standard set of
metadata tables in order to discover the names of tables and columns, their
meanings, data types, and units, and how different tables are related and may be
joined. Using this information, queries that target the astronomical content may
be correctly written and executed. It is also possible that the service registration
(in an IVOA Registry) may include sufficient table metadata to enable queries to
be written directly.

 1.1.3 PQL Queries
Support for PQL is optional. PQL can be used to query both the standard set of
metadata tables and the data tables (as above for ADQL). It can also be used in
some cases without first querying the metadata tables by using the PQL
parameters which carry sufficient meaning to enable the service to decide which
tables and columns to use (e.g. POS, SIZE, REGION, BAND, TIME).

For example, one could perform a simple spatial query without checking the table
metadata with:

http://some.where/some/thing?POS=180,42&SIZE=0.5

This query could be translated as “from the table dataset represented by the
service at the URL http://some.where/some/thing, find all records for
which the recorded position is within 0.5 degrees of the search position (180,42),
where the coordinates are right ascension and declination in the ICRS coordinate
system, measured in degrees”. Parametric queries such as this are simple to
express and to implement for cases where the data model is sufficiently well
defined and adequate for the data to be queried, hiding many of the details
required to pose and evaluate the query.

 1.1.4 Other Query Languages
A TAP service may also support use of other query languages, including pass-
through of native SQL directly to the underlying RDBMS, by describing such
capabilities in the service metadata and allowing custom values of the service
parameters. This mechanism allows future developments within the VOQL
Working Group and outside the IVOA to be used without revising the TAP
specification.

 1.2 Query Execution
The TAP service specification defines synchronous and asynchronous query
execution. A query is synchronous if the results of the query are delivered in the

- 6 -

Table Access Protocol

HTTP response to the request that originally posed the query. Conversely, if the
service returns an immediate HTTP-response upon accepting a query and the
client later obtains the results of the query in response to a separate HTTP
request, then we say the request is asynchronous.

 1.2.1 Asynchronous Queries
Asynchronous query support is mandatory. Asynchronous queries require that
client and server share knowledge of the state of the query during its execution
and between HTTP exchanges. They are an example of stateful interactions. In
TAP, the mechanism by which the clients and services share the state of
transactions is based on the Universal Worker Service (UWS) pattern (REF).

 1.2.2 Synchronous Queries
Synchronous query support is mandatory. Synchronous queries execute
immediately and the client must wait for the query to finish. If the HTTP request
times out or the client otherwise loses the connection to the service before
receiving the response, then the query fails.

Synchronous query execution is adequate when the query will execute quickly
and with a small number of results, or when they can at least start returning
results quickly. They are generally simple to implement using standard web
technologies and easy to use from a browser or scripting environment. However,
synchronous queries are generally not sufficient and likely to fail for queries that
take a long time to execute, especially before returning any results.

Metadata queries are always executed synchronously.

 1.3 Interface Overview (informative)

TAP defines a RESTful web service with two primary URLs: one for synchronous
queries and one for asynchronous queries.1 The query language and query
constraints for a particular request are determined by HTTP request parameters.

This is an example of the URL for a synchronous ADQL query on r magnitude:
http://some.where/tap/sync?REQUEST=doQuery&LANG=ADQL \

&QUERY='SELECT * FROM magnitudes as m where m.r>10 and
m.r<16'

The URL for an equivalent PQL query would be
http://some.where/tap/sync?REQUEST=doQuery&LANG=PQL \

&SELECT=$ALL&FROM=magnitudes&WHERE=r,10/16

The REQUEST parameter indicates the kind of query required.

1 The original plan was to have just one, primary URL for all kinds of query. After investigation,
we find that a single URL cannot satisfy fully the requirements of both the DAL generation-2
conventions and the UWS standard.

- 7 -

http://some.where/tap/sync?REQUEST=ParamQuery
http://some.where/tap/sync?REQUEST=AQDLQuery&Q

Table Access Protocol

Synchronous queries return the table of results in the HTTP response to the
initial request. In the examples above, the output format defaults to VOTable; the
FORMAT parameter could be added to select a different format.

Synchronous queries can be requested using HTTP GET or HTTP POST; the
examples show the GET form. Using GET allows the query result to come from a
cache, either inside the TAP service or between the service and client.

Asynchronous queries are started in the same way as the synchronous kind,
using the other URL:

HTTP POST to http://some.where/tap/async

REQUEST=doQuery

LANG=ADQL

QUERY='SELECT * FROM magnitudes AS m WHERE m.r>10 AND m.r<16'

or
HTTP POST to http://some.where/tap/async

REQUEST=doQuery

LANG=PQL

FROM=magnitudes

WHERE=r,10/16

The service's response to these requests is an HTTP redirection (code 303 'see
other') to a URL representing the query's state and progress. The progress may
be tracked by polling a URL for the state: it will eventually go to COMPLETED or
ERROR. The results, or an error document can then be retrieved from a URL
associated with the job. This is an application of the UWS pattern.

Positional queries have special support in PQL. This is a cone search on a
specified table:

http://some.where/TAP/sync? \

REQUEST=doQuery&LANG=PQL&POS=12,34&SIZE=0.5&FROM=foo

Each TAP service has its own 'tableset': a collection of tables and columns with
locally-defined names. Those local names are the operands in the queries and
so a client needs to know the tableset for a particular service to form a query.
There are two ways of exploring the tableset. First, a description of the entire
tableset may be obtained in XML via the VOSI-tables URL, e.g.

http://some.where/TAP/sync?REQUEST=getTableMetadata

These metadata are in the format defined for the IVOA resource-registry and the
client may find a cached copy in the registry. Secondly, the structure of the
tableset is described by a set of tables with fixed names beginning with
TAP_SCHEMA. These can be queried using either ADQL or the parametric-
query language.

The service's availability can be read using VOSI:

- 8 -

Table Access Protocol

http://some.where/tap/sync?REQUEST=getAvailability

Finally, the service's capabilities can be read using VOSI:
http://some.where/tap/sync?REQUEST=getCapabilities

This output lists any extra interfaces such as legacy cone-search or built-in
VOSpace support.

- 9 -

Table Access Protocol

 2 Requirements for a TAP service (normative)
The keywords “must”, “required”, “should”, and “may” as used in this document
are to be interpreted as described in the W3C specifications (IETF RFC 2119
[2]). Mandatory interface elements are indicated as must, recommended
interface elements as should, and optional interface elements as may or simply
“may” without the bold face font.

 2.1 Feature Overview
An implementation of a TAP service provides features as follows.

synchronous asynchronous parameters

ADQL must must REQUEST, LANG

PQL may may REQUEST, LANG

Other query languages may may REQUEST, LANG

Service availability (VOSI) should n/a REQUEST

Service metadata (VOSI) should n/a REQUEST

Table metadata (VOSI) must n/a REQUEST

The parameters listed in the last column are described below; the description of
these parameters spell out how the requirements here are to be implemented.

A TAP service must be registered in the IVOA resource-registry in the form
specified in section 3 .

[Arguably, the requirements above come into force because a
service is registered as TAP. This opens the question as to
inheritance of requirements when a service derived from TAP is
registered in a different form. E.g., a service searching a catalogue
image cubes could be defined as a TAP service with a specific
data-model and a different form of registration. In this case it is not
clear that ADQL query would still be mandatory. This point was
discussed briefly at the October 2008 Interop but no conclusion
was reached. -Ed.]

 2.2 Web resources
A TAP service must be represented as a tree structure of web resources each
addressable via a URL in the http scheme, or the https scheme, or both.

- 10 -

Table Access Protocol

The web resource at the root of the tree must represent the service as a whole.
This specification defines no standard representation for this root resource.
Implementations may provide a representation, or may return a '404 not found'
response to requests for the root web-resource. One possible representation is
an HTML page describing the scientific usage and content of the service. TAP
clients must not depend on a specific representation of the root web-resource.

 2.2.1 /sync
A TAP service must provide a web resource with relative URL /sync that is a
direct child of the root web resource. This web resource represents the results of
synchronous queries, including metadata outputs defined by VOSI. The exact
form of the query, and hence the representation of the resource, is defined by the
query parameters as listed in section 2.3. Representations of results of data
queries, metadata queries and VOSI outputs are defined in sections 2.7.1, 2.7.2
and 2.7.3 respectively.

[TBD: The VOSI metadata operations are accessible via the /sync
web-resource only. Since both /async and /sync are required for
TAP this does not impose any limitation. Future DAL services that
follow this pattern would be required to have a /sync web resource
even if they do not require or even define synchronous service
activity. The alternative would be to access the VOSI metadata
directly at the base URL, but that would be incompatible with the
DAL2 style embodied in the SSA specification.]

An HTTP-GET request to the /sync web-resource may return a cached copy of
the representation. This cached copy might come from an HTTP cache between
the client and the service, and the service may also maintain its own cache.
Clients which require an up-to-date representation of volatile data or metadata
must use HTTP POST.

 2.2.2 /async
A TAP service must provide a web resource with relative URL /async that is a
direct child of the root web-resource. This web resource represents controls for
asynchronous queries. Specifically, the web resource must represent the job-list
as specified in the UWS standard [5].

A TAP service must provide web resources as specified by UWS. These are
descendants of the /async web-resource, and they include a web resource that
represents the eventual result of an asynchronous query. A client making an
asynchronous request must use the UWS facilities to monitor or control the job
and to retrieve the result. If an asynchronous query succeeds, then the table of
results must be made available as a UWS result with the formal name result.2

In addition to the web resources specified by UWS, a TAP job also includes the
following resources:

2 A 'UWS result' is a web resource for which the position in the tree of web resources is defined
by the UWS standard. See section 5 for an explanation in the context of TAP.

- 11 -

Table Access Protocol

/async/<jobid>/lang: the query language in use

/async/<jobid>/query: the complete set of query parameters/text

/async/<jobid>/format: the requested output FORMAT

/async/<jobid>/maxrec: the value of MAXREC that limits the query

/async/<jobid>/mtime: the value of MTIME that limits the query

/async/<jobid>/upload/<table name>

Requests to modify these resources and run the query on the /async web-
resource are always sent as HTTP-POST requests.

[TBD: It is not obvious what an HTTP GET of an uploaded table,
e.g. /async/<jobid>/upload/<table name> should return...]

 2.3 Parameters for HTTP requests
The /sync and /async web-resources must accept the parameters listed in the
following sub-sections. In a synchronous request, the parameters select the
representation returned in the response message. In an asynchronous request,
the parameters select the representation of the eventual query-result rather than
the response to the initial request.

Not all combinations of the parameters are meaningful. For example, if a request
carries LANG=ADQL then the SELECT parameter (from PQL) is spurious. If a
service receives a spurious parameter in an otherwise-correct request, then the
service must ignore the spurious parameter, must respond to the request
normally and must not report errors concerning the spurious parameter.

 2.3.1 REQUEST
This parameter distinguishes query requests from VOSI requests and specifies
how other parameters should be interpreted. A TAP client must set this
parameter correctly in every request (GET or POST) of the /async or /sync web
resources. If a TAP service receives a request without this parameter or with an
incorrect value for this parameter, then the service must reject the request and
return an error document as the result.

These are the allowed values of the parameter.

 doQuery: create or execute a query

 getCapabilities: return VOSI-capabilities metadata

 getAvailability: return VOSI-availability metadata

 getTableMetadata: return VOSI-tables metadata

All requests to create (/async) or execute (/sync) a query using a query language
must include REQUEST=doQuery and must include the LANG parameter. For
other values of REQUEST (VOSI operations) no other parameters are needed
and if supplied they must be silently ignored.

- 12 -

Table Access Protocol

For synchronous queries, the HTTP request must also include additional
parameters (see below) with the details of the query. This is used for metadata
queries and data queries.

For asynchronous queries, then additional parameters may be included with the
HTTP request that creates the query (the UWS job) or they may be POSTed
directly to the TAP-specific job resources as described above. The parameter
names remain the same in both cases.

[The above change to allowed REQUEST values moves the ADQL
vs PQL vs other QL into the required LANG parameter below. It
preserves the DAL-2 service operation style but decouples it from
the query payload.]

 2.3.2 VERSION
The VERSION parameter specifies the protocol version number. The format of
the version number, and version negotiation, are described in section 2.8.

A TAP service must support the VERSION parameter.

 2.3.3 LANG
The LANG parameter specifies the query language. The service must support
LANG and the client must provide a value with REQUEST=doQuery. For
example, an ADQL query would be performed with

REQUEST=doQuery&LANG=ADQL&<ADQL-specific parameters>

A PQL query would be performed with
REQUEST=doQuery&LANG=PQL-1.0&<PQL-specific parameters>

The value of LANG is a string specifying the language and optionally the
language version used for the subsequent query parameter(s), as defined by the
service capabilities. The client may specify the version of the query language,
e.g., LANG=ADQL-2.0 (the syntax should be as shown) or it may omit the
version, e.g. LANG=ADQL. The service should return an “unknown query
language” error if an unsupported and incompatible value of LANG is specified.

Example: put a real LANG error here

 2.3.4 QUERY
The QUERY parameter is used to specify the ADQL query. It may also be used
to specify the query for other values of LANG (e.g. LANG=<some RDBMS-
specific SQL variant>) which are not specified in this document but may be
described in the service metadata.

A service must support the QUERY parameter. The case sensitivity of the query
string is defined solely by the query language specification. In the case of ADQL
2.0, for example, the query is not case sensitive except for character literals;
schema, table, and column names, function names, and other ADQL keywords
are not case sensitive.

- 13 -

Table Access Protocol

Within the ADQL query, the service must support the use of timestamp values in
ISO8601 format, specifically yyyy-MM-dd HH:mm:ss.SSS.

If the tables that are queried through a service contain columns with spatial
coordinates and the services supports spatial querying via the ADQL “region”
constructs, the service must support the INTERSECTS function and it must
support the following geometry functions: REGION, POINT, BOX, CIRCLE,
COORD1, COORD2, COORDSYS. Support for the AREA, CONTAINS, and
POLYGON functions are optional. If the service supports the REGION function, it
must support region encoding in STC-S format [4]; the extent of STC-S support
within the REGION function is left up to the implementation. Coordinate system
specification for POINT, BOX, CIRCLE, and POLYGON must use values from
Table 3 (standard reference frames) in STC [4].

Although it is allowed by the ADQL syntax, clients should avoid mixing constants
and column references for coordinate system and coordinate values. For
example, POINT('ICRS', t.ra, t.dec) is likely to be an error (it does not cause t.ra
and t.dec to be transformed to ICRS). The only place where mixing constants
and column references is necessary is when using a constant for the radius in a
CIRCLE, e.g. CIRCLE(t.coordsys, t.ra, t.dec, 0.1), as this allows the caller to
control search radii for multi-position searches or source cross-matching.

 2.3.5 Parameters for PQL
A number of parameters are defined by PQL for use in parametric queries. All of
the parameters for PQL are specified in [reference to PQL-0.1-20090212] and
are used unchanged in TAP. Specific PQL parameters that are not applicable to
the content being queried must be silently ignored. For example, if a PQL query
includes TIME=2009-01-01T12:00:00/ and the content includes no time
information at all, this parameter must be ignored.

[Should this ignoring of parameters be specified here or in PQL?
Following the ADQL separation, PQL would specify the params
and TAP would specify whether or not to ignore if n/a.]

Within the PQL query, the service must support the use of datetime/timestamp
values in ISO8601 format.

If the table that is queried contains columns with spatial coordinates and the
services wants to enable the caller to perform spatial queries, the service must
support the PQL spatial constraint parameters (POS,SIZE and REGION). If a
service supports the REGION parameter, it must support region encoding in
STC-S format [4]; the extent of STC-S support within the REGION function is left
up to the implementation. Coordinate system qualifiers must use values from
Table 3 (standard reference frames) in STC [4].

PQL defines symbolic values (@something). In TAP these can be used to specify
the name of an uploaded table (see 2.5) from which a list of values should be
taken and used. This mechanism can be used to query with a large list of values
than cannot otherwise be embedded in a query string (using the PQL list syntax).
For example, a multi-position search could be performed as

- 14 -

Table Access Protocol

Example: REQUEST=doQuery&LANG=PQL \

&POS=@mytable \

&SIZE=0.05 \

&UPLOAD=mytable,<uri to a VOTable>

The ability to perform such a multi-valued search is only possible if the service
supports table upload.

[TBD: With the above example, the service would have to
automagically use the right columns from the uploaded table for
values – it may have other columns, especially if it is the output of
some other query or service. In table upload, the client specifies
the name of the table the service gets column names from the
VOTable FIELD elements (also TBD). In ADQL queries, the client
has to know the column names as specified in the FIELD elements
and use them specifically. Maybe here we should also require the
client to be explicit, e.g.

&POS=@mytable.ra,@mytable.dec

insteading trying to specify how a service should interpret the
uploaded table.]

 2.3.6 FORMAT
The FORMAT parameter indicates the client's desired format for the table of
results of a query. Its value should be a MIME type for tabular data or one of the
following shorthand forms:

 votable

 csv (comma separated values)

 tsv (tab separated values)

 fits (FITS binary table)

 text (pretty-printed text)

 html (pretty-printed Web page)

All the shorthand forms are insensitive to case.

If the parameter is omitted, the default format is VOTable.

A TAP service must support VOTable as an output format, should support CSV
output and may support other formats. A TAP service must accept a FORMAT
parameter indicating a format that the service supports and should reject queries
where the FORMAT parameter demands an unsupported format.

If the result is in VOTable format, the result table must be in TABLEDATA format.

 2.3.7 UPLOAD
The service should support table upload via the UPLOAD parameter. See
section 2.5.1 for details.

- 15 -

mailto:%26POS%3D@mytable

Table Access Protocol

 2.3.8 MAXREC
The service must accept a MAXREC parameter specifying the maximum number
of table records (rows) to be returned. If MAXREC is not specified in a query, the
service may apply a default value or may set no limit. If the result set for a query
exceeds this value, the service should only return the requested number of rows.
If the result set is truncated in this fashion,it must include an overflow indicator as
specified in section 2.7.5 .

The service must support the special value of MAXREC=0. This value indicates
that, in the event of an otherwise valid request, a valid output table be returned
containing metadata, no table data rows, and an overflow indicator as specified
in section 2.7.5 . A query with MAXREC=0 can be used with a simple query
(e.g. SELECT * FROM some_table) to extract and examine the VOTable
metadata (assuming FORMAT=votable). Note: in this version of TAP, this is the
only mechanism to learn some of the detailed metadata, such as coordinate
systems used.

 2.3.9 MTIME
The service may support an MTIME parameter, used to query a table for only
rows which were modified within a given range of times, specified as an ISO8601
open or closed range list in the UTC time system. A “modified” row is a table row
which was inserted, updated, or deleted during the indicated time interval (hence
MTIME may be used to see deleted rows which are not visible in any other
fashion). This feature may be used by a remote client to maintain a replica of a
large table, or to periodically poll a table for changes. The period of time for
which deletions are preserved is server dependent (depending upon how often
deleted rows are purged) but should be at least one week.

When the MTIME parameter is specified and supported by the service, the
service must add extra columns to the output table (in addition to that specified
in the select statement of the query), with utypes Record.Modified and
Record.Deleted. The values in these columns are the timestamps when the last
insert/update occurred or when the row was deleted respectively. One value
must be set and the other null for every row in the table; values are in ISO8601
format. Rows that are thus marked as deleted must include values for one or
more column(s) that uniquely identify the row, but other column values may be
null.

The MTIME parameter cannot be used with queries that select from multiple
tables. If MTIME is used in a such a query the service must reject the request
and return an error document.

 2.3.10 RUNID
The service should implement the RUNID parameter, used to tag service
requests with the job ID of a larger job of which the request may be part. For
example, if a cross match portal issues multiple requests to remote TAP services
to carry out a cross-match operation, all would receive the same RUNID, and the

- 16 -

Table Access Protocol

service logs could later be analyzed to reconstruct the service operations initiated
in response to the job.

The service should ensure that RUNID is preserved in any service logs.

The service should pass on the RUNID value in any calls to other services, e.g.
VOSpace.

 2.3.11 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been
specified. If a parameter is given a null value, e.g., “MAXREC=”, the parameter
value has been set and the value is the null string. The interpretation of such an
input is defined separately for each parameter, and may or may not be an error
condition.

[Note: no parameters in TAP have sensible meaning for null vs
unset, so this complication has been removed.]

 2.3.12 Case of parameters
Parameter names must not be case sensitive, but parameter values must be
case sensitive. In this document, parameter names are typically shown in
uppercase for typographical clarity, not as a requirement.

 2.3.13 Order and cardinality of parameters
Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response
from the service is undefined. The service may reject the request or it may pick
one value for for the parameter. Clients should not repeat parameters in a
request.

 2.4 Table names
A fully qualified table name has the form
[[catalog_name”.”]schema_name”.”]table_name

where catalog_name is the the name of the DB catalogue (often the “database”
name) in SQL DBMS terminology, schema_name is the name of the “schema” in
DBMS terminology (often also called a “database”; a DBMS schema is a type of
data model where the top level data model elements are tables), and
table_name is the actual table name. All elements of the table name are optional
except table_name. Depending upon the DBMS, “catalog” or “schema” may or
may not be implemented; some DBMS implement both, others one or the other,
and the simplest database systems might not implement either.

The implementation of a TAP service must define the table names acceptable in
queries and must reveal these to clients through metadata queries or through
VOSI-tables output, and the names must be identical in each of these sources. A
TAP client must determine the acceptable names from one of these sources or

- 17 -

Table Access Protocol

from the cached form of the VOSI-tables output included in the service's
registration.

 2.5 Table Upload
The service should implement the table upload capability. If upload is supported,
both the UPLOAD parameter and inline methods must be supported and the
service must accept tables in VOTable format, using a TABLEDATA element for
content. The client specifies the name of uploaded table; this name must be
legal ADQL table name with no catalog or schema (e.g. an unqualified table
name). Uploaded tables must be referred to in queries as
TAP_UPLOAD.tablename.

Tables in the TAP_UPLOAD schema are transient and persist only for the
lifetime of the query (although caching might be used behind the scenes) and are
never visible in the TAP_SCHEMA metadata.

The column names in the transient database table are taken directly from the
name attribute of the VOTable FIELD and PARAM elements. The datatypes of
the transient table are determined from the VOTable as follows:

[TODO: This mapping of ADQL to VOTable types is bidirectional
and also applies to writing the query result in VOTable format; it
should probably be moved to a better location in this document.]

- 18 -

Table Access Protocol

VOTable:
datatype

VOTable:
arraysize

VOTable: ? ADQL: type

boolean 1 BOOLEAN

short 1 SMALLINT

int 1 INTEGER

long 1 BIGINT

float 1 REAL

double 1 DOUBLE

char * ? TIMESTAMP3

char n CHAR(n)

char n* VARCHAR(n)

unsignedByte n BINARY(n)

unsignedByte n* VARBINARY(n)

char * ? POINT

char * ? REGION

char * ? CLOB

unsignedByte * ? BLOB

The VOTable attributes listed above are for FIELD or PARAM elements.

TBD: On table upload, how does a service decide when to put a
char column from a VOTable into a (VAR)CHAR column and when
to put it into a TIMESTAMP, POINT, or REGION column? In the
query result, how does the client tell from the FIELD/PARAM
metadata which columns are TIMESTAMP? POINT? REGION?

Binary values (unsignedByte in VOTable, BINARY, VARBINARY, or BLOB in
ADQL) can be expressed as specified by the VOTable standard. By default,
VOTable allows them to be written as an array of decimal numbers, e.g. 12 56 0
255 0 0 255 (one number per byte value).

TIMESTAMP values are always specified using ISO8601 format (as in 2.3.4)
and are assumed to be in UTC.

3 TIMESTAMPs without timezone; values are in UTC

- 19 -

Table Access Protocol

POINT and REGION values are specified in STC-S format (as in 2.3.4).

 2.5.1 UPLOAD
The UPLOAD parameter is used to reference read-only external tables via their
URL, to be uploaded for use as input tables to the query. The value of the
UPLOAD parameter is a list of table name-URL tuples, delimited by semicolon,
using comma to delimit each table name-URL tuple. For example:

UPLOAD=table_a,http://host_a/path;table_b,http://host_b/path

would define two input tables table_a and table_b, located at the given URLs
(URL-encoding is mandatory in this case since we embedding a URL within a
URL).

 2.5.2 Inline Table Upload
To upload a table inline the POST form of the query must be used. The content
type used is multipart/form-data, using a “file” type input element, with the “name”
attribute specifying the table name.

For example, in the POST data (following the header and input parameters) we
might have:

Content-Type: multipart/form-data; boundary=AaB03

[...]

--AaB03x

Content-disposition: form-data; name="table1";
filename="table1.xml"

Content-type: application/x-votable+xml

[...]

--AaB03x

[...]

The uploaded table would automatically propagate and could be referenced in
queries as TAP_UPLOAD.table1.

Any number of tables can be uploaded using this technique, so long as they are
assigned unique table names within the query. Although our discussion here
concerns uploading tables, any type of file can be uploaded in this fashion
provided the service can do something useful with the file.

 2.6 Metadata Tables and TAP schema
The TAP core schema defines a set of tables in the TAP_SCHEMA schema that
contain the minimal metadata required to describe and use the tables exposed
by a TAP service. Services must provide these tables and make them accessible
by all supported query mechanisms (TBD: only /sync?). The information in the
TAP core-schema is equivalent to that defined by VOSI-tables and allowed by
the registry for a VODataService.

- 20 -

Table Access Protocol

The qualified names in the tables of the TAP schema must follow the rules
defined in section 2.4. The names must be stated in a form that is acceptable as
an operand of a query. The TAP_SCHEMA may be queried for tables named
TAP_SCHEMA.* to get information about the schema itself, e.g., to determine if
any extended schema metadata is defined by the service.

 2.6.1 Schemas
The table TAP_SCHEMA.schemas must contain the following columns:

schema_name fully qualified schema name ([catalog.]schema)

description brief description of schema

utype UTYPE if schema corresponds to a data model

 2.6.2 Tables
The table TAP_SCHEMA.tables must contain the following columns:

schema_name fully qualified schema name ([catalog.]schema)

table_name fully qualified table name
([[catalog.]schema.]table)

table_type one of: base_table, view, output

description brief description of table

utype UTYPE if table corresponds to a data model

 2.6.3 Columns
The table TAP_SCHEMA.columns must contain the following columns:

column_name column name

table_name fully qualified table name
([[catalog.]schema.]table)

description brief description of column

unit unit in VO standard format

ucd UCD of column if any

utype UTYPE of column if any

datatype ADQL datatype as in section 2.5

size length of variable length datatypes

primary column is visible in default selection

indexed column is indexed on the server

std standard column (as opposed to custom)

- 21 -

Table Access Protocol

 2.6.4 Keys
The table TAP_SCHEMA.keys must contain the following columns to describe
foreign key relations between tables:

from_table fully qualified table name

from_column key column name in the <from_table>

target_table fully qualified name of the table with the
foreign key

target_column key column in the <target_table>

There may be one or more rows with a specific pair of tables to denote single or
multi-column keys.

A TAP service must provide the tables listed above and may provide other
tables in the TAP_SCHEMA namespace.

The schema naming conventions used here follow that of the registry. Data
types and how they map to VOTable datatypes are described in section 2.5 .
The “size” gives the length of variable length datatypes, for example
varchar(256); this size does not map to the VOTable arraysize attribute, which
also describes the shape of a multi-dimensional array. “Primary” indicates that
the column should be visible in the default (narrow) view of a table. “Indexed”
indicates that the column is indexed, potentially making queries run much faster if
this column is used as a constraint. “Std” is included for compatibility with the
registry, which uses this value to indicate that a given column is defined by some
standard, as opposed to a custom column defined by a particular service.

 2.6.5 Tableset

The TAP schema also defines TAP_SCHEMA.tableset, however this is not an
actual table but rather a structured view of the core schema tables above.
Special output formats are defined for queries against this view; see section
2.7.2. A simple tableset-query must return the entire tableset, but advanced
services may permit selection with a WHERE clause, e.g., to find only tables
within a given region or for which the table name matches some pattern.

 2.7 Representations of results

 2.7.1 Data and metadata queries
The result of a data query or a metadata query must be a single table.

This table must be encoded in the output format specified by the FORMAT
parameter of the query. See section 2.3.6 for required, optional and default
formats. VOTable is the default format and VOTable support is mandatory.

With the exception of the extra columns introduced by use of the MTIME
parameter (2.3.9), the output table must include the same number and order of
columns as specified in the SELECT clause of the query. For VOTable output,

- 22 -

Table Access Protocol

the name attribute of FIELD elements must be the same as the column names
(or aliases) from the query and the datatype, arraysize, and format attributes of
FIELD elements must be set using the mapping specified in section 2.5 .

VOTables must follow the rules in section 2.9 . These VOTables must be
returned with a MIME type of application/x-votable+xml.

CSV formatted data should represent the output table with one row of text per
table row, with the table column values rendered as text and separated by
commas. If a column value contains a comma the entire column value should be
enclosed in double quotes. Text lines may be arbitrarily long. The first data row
should give the column name as the data value. Header lines may optionally be
included in the first few lines of output, prior to the first data row, and should be
indicated by placing the character ‘#’ in the first character of the line. CSV data
must be returned with a MIME type of text/csv; if the optional header line (with
column names) is included, the MIME type must be text/cvs;header. Full details
of CSV format are defined in RFC 4108 [REF].

TSV formatted data should represent the output table with one row of text per
table row, with the table column values rendered as text and separated by the
TAB character. TSV data must be returned with a MIME type of text/tab-
separated-values. Column values may not contain the TAB character.

 2.7.2 Tableset queries
If the target of the query is the special table TAP_SCHEMA.tableset, then the
service must support an XML serialization of the tableset and must support a
special use of VOTable to express the structure of the tableset.

The special, XML serialization must conform to the registry standard expressed
in VODataService v1.1 [7] and the corresponding XML-schema. This serialization
format is identical to that used for VOSI tables [6].4 This format is selected by the
parameter setting FORMAT=xml in the query.

The special use of VOTable must be a data-less VOTable in which the header
elements denote the structure of the tableset. There must be one TABLE
element per table in the tableset. This is an exception to the rule that query
results contain single tables. This format is selected by the parameter setting
FORMAT=votable in the query.

[In v0.3 of the TAP standard the intent w.r.t metadata queries is clear but the
implementation details are not. I have inferred some of the detailed rules as best
I can, but may have diverged from the original intent. These details should be
cleared up in TAP 0.4 - Ed]

4 The registry-compliant-XML serialization of the tableset structure is almost the same thing as
the VOSI-tables output of the service but is not strictly identical. The format is the same, but
while the VOSI output is required to cover all the tables in the tableset (implicitly 'SELECT *
FROM TAP_SCHEMA.tableset), the result of a tableset query can be restricted by the
WHERE clause of that query.

- 23 -

Table Access Protocol

 2.7.3 VOSI
Representations of VOSI outputs (capabilities, availability, table metadata) must
be as defined in the VOSI standard [6].

The representation of table metadata must include all tables in the service's
tableset. VOSI's representation of table metadata is that mandated for the
registry in VODataService [7].

 2.7.4 Errors
If the service detects an exceptional condition, it must return an error document
with an appropriate HTTP-status code. TAP distinguishes three classes of
exceptions.

 Errors in the use of the HTTP protocol.

 Errors in the use of the TAP protocol, including both invalid requests and
failure of the service to complete valid requests.

Error documents for HTTP-level errors are not specified in the TAP protocol.
Responses to these errors are typically generated by service containers an
cannot be controlled by TAP implementations. There are several cases where a
TAP service could return an HTTP error. First, the /async endpoint could return a
404 (not found) error if the client accesses a job within the UWS joblist that does
not exist. Second, access to a resource could result in an HTTP 401 (not
authorized) error if authentication is required or an HTTP 403 (forbidden) error if
the client is not allowed to access the resource.

Error documents for TAP errors must be VOTable documents; any result-format
specified in the request is ignored. If the error document is being retrieved from
the /async/<jobid>/error resource (specified by UWS) after an asynchronous
query, the HTTP status code should be 200. If the error document is being
returned directly after a sychronous query, the service may use an appropriate
HTTP status code, including 200 (successfully returning a response to the
request) and various 4xx and 5xx values. The exception condition must be
described to the client using a status code in the VOTable header and a qualifier
in the MIME type reported in the HTTP header. Section 2.9 specifies the use
of VOTable for error documents in TAP services.

 2.7.5 Overflows
If a query is executed by a TAP service, the number of rows in the table of results
may exceed a limit requested by the user (using the MAXREC parameter) or a
limit set by the service implementation (the default or maximum value of
MAXREC). In these cases, the query is said to have 'overflowed'. Typically, a
TAP service will not detect an overflow until some part of the table of results has
been sent to the client.

If an overflow occurs, the TAP service must produce a table of results that is
valid, in the required output format, and which contains all the results up to the
point of overflow. Since an output overflow is not an error condition, the MIME

- 24 -

Table Access Protocol

type of the output must be the same as for any successful query and the HTTP
status-code must be as for a successful, complete query.

If the output format is VOTable, section 2.9.1 describes the method by which
the overflow is reported. No method of reporting an overflow is defined for
formats other than VOTable.

 2.8 Versioning of the TAP protocol
The TAP protocol provides explicitly for versioning of the interface, using the
features provided by the VOA registry and the conventions of the DAL-2
architecture.

 2.8.1 Version number form and value
The TAP protocol defines a protocol version-number. The version number
applies to all aspects of the protocol as defined in this document, including any
associated XML schema and the request encodings. The TAP version refers
only to the TAP protocol; query languages are versioned separately and TAP and
ADQL versions may differ.

Version numbers follow IVOA document conventions.

 2.8.2 Version number changes
The protocol version number will change with each published revision of this
document. The number will increase monotonically and will comprise no more
than two integers separated by decimal points, with the first integer being the
most significant. There may be gaps in the numerical sequence. Some numbers
may denote draft versions. Servers and their clients need not support all defined
versions, but must obey the negotiation rules below.

A version number change at the first level (e.g., 1.0 – 2.0) indicates a major
change. A version number change at the second level indicates a minor change
which is not necessarily backwards compatible. A version number change at the
third level is considered backwards compatible, and should not affect the pre-
existing functionality of the interface.

 2.8.3 Appearance in requests and in service metadata
The version number may appear in at least three places: in the service metadata,
as a parameter in client requests to a server, and in the query response. The
version number used in a client’s request of a particular server must be equal to
a version number which that server has declared it supports (except during
negotiation, as described below). A server may support several versions, whose
values clients may discover according to the negotiation rules.

 2.8.4 Version number negotiation
If a TAP client does not specify the version number in a request, the server
assumes the highest standard version supported by the service, and no explicit
version checking takes place. If the client specifies an explicit version number,

- 25 -

Table Access Protocol

and this does not match a version available from the service at level two, the
service returns a version number mismatch error. The client can determine what
versions of the protocol the service supports by a prior call to VOSI-capabilities
or via a registry query.

 2.9 Use of VOTable
VOTable is a general format. TAP requires that it be used in a particular way.

VOTables should comply with VOTable v1.1 or greater [9]. For columns
containing coordinate values, the coordinate system metadata should be
provided as described in [13].

VOTables resulting from successful queries, including overflowed queries (see
section 2.3.8 for a definition of overflow) must be returned with MIME type
application/x-votable+xml.

The VOTable must contain a RESOURCE element identified with the attribute
type="results", containing a single TABLE element with the results of the query.
Additional RESOURCE elements may be present, but the usage of any such
elements is not defined here and TAP clients should not depend upon them.

 2.9.1 INFO elements
The RESOURCE element must contain, before the TABLE element, an INFO
element with attribute name = "QUERY_STATUS". The value attribute must
contain one of the following values:

 “OK”, meaning that the query executed successfully and a result table is
included in the resourcecompleted successfully and did not overflow

 “ERROR”, meaning that an error was detected at the level of the TAP
protocol or the query failed to execute

The DESCRIPTION element conveying the status should be a message suitable
for display to the user describing the status.

Examples:
<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">

 <DESCRIPTION>Successful query</DESCRIPTION>

</INFO>

<INFO name="QUERY_STATUS" value="ERROR">

 <DESCRIPTION>value out of range in POS=45,91</DESCRIPTION>

</INFO>

Additional INFO elements may be provided, e.g., to echo the input parameters
back to the client in the query response (a useful feature for debugging or to self-
document the query response), but clients should not depend on these.

- 26 -

Table Access Protocol

Example:
<RESOURCE type=”results”>

<INFO name="QUERY_STATUS" value="ERROR">

 <DESCRIPTION>unrecognized operation</DESCRIPTION></INFO>

<INFO name="SERVICE_PROTOCOL" value="1.0">TAP</INFO>

<INFO name="REQUEST" value="doQuery"/>

<INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>

<INFO name="serviceVersion" value="1.0"/

<INFO name="serviceName" value="tap"/>

<INFO name="ServiceEngine"

 value="tap: TAP 1.0 DALServer version 0.4"/>

...

</RESOURCE>

If an overflow occurs, the service must close the table and append another INFO
element to the RESOURCE (after the TABLE) with name=”QUERY_STATUS”
and the value=”OVERFLOW”.

Example:
<RESOURCE type=”results”>

<INFO name="QUERY_STATUS" value="OK"/>

...

<TABLE>

...

</TABLE>

<INFO name="QUERY_STATUS" value="OVERFLOW">

<DESCRIPTION>Number of table rows exceeded MAXREC=5000</DESCRIPTION>

</INFO>

</RESOURCE>

In the above example, the TABLE should have exactly 5000 rows.

If an error occurs while writing the rows of the VOTable, the service must close
the table and append another INFO element to the RESOURCE, after the
TABLE, with name=”QUERY_STATUS” and the value=”ERROR”.

Example:
<RESOURCE type=”results”>

<INFO name="QUERY_STATUS" value="OK"/>

...

<TABLE>

- 27 -

Table Access Protocol

...

</TABLE>

<INFO name="QUERY_STATUS" value="ERROR">

<DESCRIPTION>failed to convert something</DESCRIPTION>

</INFO>

</RESOURCE>

The content of these trailing INFO elements is optional and intended for users;
client software should not depend on it.

Thus, one INFO element with name=”QUERY_STATUS” and value=”OK” or
value=”ERROR” must be included before the TABLE. If the TABLE does not
contain the entire query result, one INFO element with value=”OVERFLOW” or
value=”ERROR” must be included after the table.

 2.9.2

- 28 -

Table Access Protocol

 3 Service Registration (normative)
Publication of a service to the VO requires that it be registered with the VO
registry, including describing the identity and capabilities of the service.

The resource document for a TAP service instance must be structured according
to VOResource 1.0 [8] using the sub-type CatalogService as defined in
VODataService 1.1 [7].

The resource document must include a capability element denoting the TAP
interface and functions. The content of this element, including the value of its
standardID attribute is TBD. This element must contain the URL for the root web
resource (as defined in section 2.2) via ?. Clients would add to this URL /sync
or /async as appropriate.

The resource document must contain capability elements for the VOSI-
capabilities, VOSI-availability and VOSI-tables outputs. These must be formatted
as in the VOSI standard [6].

The resource document should include the table metadata, except where the
database-schema of the archive changes frequently.5 Where table metadata are
provided, they must be represented as XML elements drawn from
VODataService 1.1.

5 If the database schema changes faster than the changes can be propagated through the
publishing registries to the full registries, then it is pointless to register the table metadata. If
the details change hourly then clearly the registries cannot keep up; if the details change
yearly, then clearly they can. Intermediate cases are less certain, but weekly changes are
probably too fast and monthly changes probably slow enough.

- 29 -

Table Access Protocol

 4 Extended capabilities (normative)
The TAP service allows for optional extended capabilities and operations.
Extensions may be defined within an information community when needed for
additional functionality or specialization. A generic client must not be required or
expected to make use of such extensions. Extended capabilities or operations
must be defined by the service metadata. Extended capabilities provide
additional metadata about the service, and may or may not enable optional new
parameters to be included in operation requests. Extended operations may allow
additional operations to be defined.

A server must produce a valid response to the operations defined in this
document, even if parameters used by extended capabilities are missing or
malformed (i.e. the server must supply a default value for any extended
capabilities it defines), or if parameters are supplied that are not known to the
server.

Service providers must choose extension names with care to avoid conflicting
with standard metadata fields, parameters and operations.

- 30 -

Table Access Protocol

 5 Use of UWS (informative)
The UWS pattern is specified in [3] and its application to TAP in section Error:
Reference source not found . This section explains the exchange of messages
between a TAP client and service when using UWS to run an asynchronous
query.

Consider a TAP service at http://x.y.z/TAP. TAP mandates that the asynchronous
requests be directed to http://x.y.z/TAP/async. This URL points to the list of 'jobs';
i.e. the list of queries currently or recently executed.

To start a new query, the client posts a request to the job list.
HTTP POST to http://x.y.z/TAP/async

REQUEST=doQuery&LANG=ADQL&QUERY=SELECT TOP 100 * FROM foo

The service then creates a job and assigns that job a name and a URL based on
the name. Suppose that the name is j42, then the URL will be
http://x.y.z/TAP/async/j42 because the jobs are always children of the job list.

The service then issues an HTTP redirection to the job's URL.
HTTP status 303 'See other'

Location: http://x.y.z/TAP/async/j42

Beneath the job URL there are further URLs for aspects of the job:
http://x.y.z/TAP/async/j42/phase

http://x.y.z/TAP/async/j42/results

http://x.y.z/TAP/async/j42/error

(there are more, but these are the one that the client has to deal with).

The phase URL shows the progress of the job. When the job is created by the
service it will normally be set to PENDING, but might be set to ERROR if the
service has rejected the job. If the phase is ERROR, then the error URL should
lead to a an error document explaining the problem. If the phase is PENDING,
then the client needs to commit the job for execution.

The client commits the job by posting to the phase URL
HTTP POST to http://x.y.z/TAP/async/j42/phase

PHASE=RUN

The service replies with a redirection to the job URL
HTTP status 303 'see other'

Location: http://x.y.z/TAP/async/j42

The phase will now have changed to either QUEUED or EXECUTING,
depending on the service implementation. The client tracks the execution by
polling the phase URL:

HTTP GET http://x.y.z/TAP/async/j42/phase

- 31 -

Table Access Protocol

When the query is complete, the phase changes to COMPLETED. The client
then retrieves the result from the results list:

HTTP GET http://x.y.z/TAP/async/j42/results/result

The client knows that the table of results is at the URL /result relative to the
results list because the TAP protocol requires this naming.

If the service cannot run the query, then the final phase is ERROR and there is
no table of results. In this case, the client should expect an HTTP 404 'not found'
status if it tries to retrieve the result. The client should look instead at the error
URL to find out what went wrong

HTTP GET http://x.y.z/TAP/async/j42/error

The service remembers the job for a limited period after which it forgets the job
information and discards the result of the query. After job expires, the client will
receive an HTTP 404 'not found' status if it tries to get any information about the
job. The destruction time of the job is chosen by the service and the client can
read it from the job:

HTTP GET http://x.y.z/TAP/async/j42/destruction

The service may allow the client to change the destruction time:
HTTP POST to http://x.y.z/TAP/async/j42/destruction

DESTRUCTION=2008-11-11T11:11:11Z

The basic sequence can be executed from a web browser or from a shell script
using the curl utility:

curl -d 'REQUEST=doQuery&LANG=PQL&POS=12,34&SIZE=0.5&FROM=foo' \

 http://x.y.z/TAP/async

 [read Location header from curl output]

curl -d 'PHASE=RUN' http://x.y.z/TAP/async/j42

curl http://x.y.z/TAP/async/j42/phase

[repeat until phase is COMPLETED]

curl http://x.y.z/TAP/j42/results/result

- 32 -

Table Access Protocol

 6 VOSpace Integration (informative)
This version of TAP provides limited VOSpace integration, although better
support for VOSpace is planned for a later version following prototyping.
Ultimately one would like to have per-user VOSpace storage co-located with the
TAP service, allowing user queries to save output tables to the local VOSpace as
well as use them for input in subsequent queries, without having to serialize to
and from VOSpace and transfer tables over the network. Frequently-used tables
such as source lists for multi-position queries could persist between queries, and
could be arbitrarily large.

The current version of TAP does provide limited VOSpace integration via the
table UPLOAD parameter, using the upload URI to point to a table stored in
either a local or remote VOSpace.

- 33 -

Table Access Protocol

 7 Use of HTTP (informative)
A TAP service is a web service and TAP implementations are constrained by the
general rules for use of HTTP, which are contained in IETF RFC documents.
This section collates some of the requirements. For authoritative specifications,
please refer to the original RFCs.

 7.1 General HTTP request rules

 7.1.1 Introduction
This document defines the implementation of the TAP service on a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP) (see IETF RFC 2616 [11]). Thus, the Online Resource
of each operation supported by a server is an HTTP Uniform Resource Locator
(URL). The URL may be different for each operation, or the same, at the
discretion of the service provider. Each URL must conform to the description in
IETF RFC 2616 (section 3.2.2 “HTTP URL”) but is otherwise implementation-
dependent; only the query portion comprising the service request itself is defined
by this document.

While the TAP protocol currently only supports HTTP as the DCP for general
parameterized operations, data access references are more general and may
use other internet protocols, e.g., FTP, or potentially grid protocols.

HTTP supports two primary request methods: GET and POST. One or both of
these methods may be offered by a server, and the use of the Online Resource
URL differs in each case. Support for the GET method is mandatory; support for
the POST method is optional except where required for a service operation to
function, e.g., uploading a large quantity of data inline in a query, or when issuing
a request to the service which changes the server state.

 7.1.2 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396 [5]) reserves particular characters as
significant and requires that these be escaped when they might conflict with their
defined usage. This document explicitly reserves several of those characters for
use in the query portion of TAP requests. When the characters “?”, “&”, “=”, “,”
(comma), “/”, and “;” appear in one of the roles defined in Table 1, they must
appear literally in the URL. When those characters appear elsewhere (for
example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server must be prepared to decode any character
escaped in this manner.

Table 1 — Reserved characters in TAP query string

Character Reserved usage

? Separator indicating start of query string.

& Separator between parameters in query string.

- 34 -

Table Access Protocol

= Separator between name and value of parameter.

,/; Separator between individual values in list-oriented parameters

In particular, if any parameter value contains the character “#” (for example in a
dataset identifier) it must be URL encoded to be legally included in a URL.

 7.1.3 HTTP GET
A TAP service must support the “GET” method of the HTTP protocol (IETF RFC
2616 [11]).

An Online Resource URL intended for HTTP GET requests is in fact only a URL
prefix to which additional parameters are appended in order to construct a valid
Operation request. A URL prefix is defined in accordance with IETF RFC 2396
[5] as a string including, in order, the scheme (“http” or “https”), Internet Protocol
hostname or numeric address, optional port number, path, mandatory question
mark “?”, and optional string comprising one or more server-specific parameters
ending in an ampersand “&”. The prefix defines the network address to which
request messages are to be sent for a particular operation on a particular server.
Each operation may have a different prefix. Each prefix is entirely at the
discretion of the service provider.

This document defines how to construct a query part that is appended to the URL
prefix in order to form a complete request message. Every TAP operation has
several mandatory or optional request parameters. Each parameter has a
defined name . Each parameter may have one or more legal values, which are
either defined by this document or are selected by the client based on service
metadata. To formulate the query part of the URL, a client must append the
mandatory request parameters, and any desired optional parameters, as
name/value pairs in the form “name=value&” (parameter name, equals sign,
parameter value, ampersand). The “&” is a separator between name/value pairs,
and is therefore optional after the last pair in the request string.

When the HTTP GET method is used, the client-constructed query part is
appended to the URL prefix defined by the server, and the resulting complete
URL is invoked as defined by HTTP (IETF RFC 2616).

Table 2 summarizes the components of an operation request URL when HTTP
GET is used.

Table 2 — Structure of TAP request using HTTP GET

URL component Description

http://host:port]/path[?
[name[=value]

Base-URL (prefix) of service operation. [] denotes 0 or
1 occurrence of an optional part; {} denotes 0 or more
occurrences.

name=value&
One or more standard request parameter name/value
pairs as defined for each operation by this document.

- 35 -

Table Access Protocol

 7.1.4 HTTP POST
TAP uses the “POST” method of the HTTP protocol (IETF RFC 2616 [11])
whenever a large amount of data needs to be uploaded inline in the query, e.g.,
when uploading an inline table, or whenever the request may change the server
state, e.g., when requesting asynchronous execution of a query. Semantically
POST and GET are largely the same, permitting the same parameters to be
transmitted to the server to define the request. Parameters should be URL
encoded in a POST whenever they would need to be URL encoded for a GET.

 7.2 General HTTP response rules
Upon receiving a valid request, the server must send a response corresponding
exactly to the request as detailed in section Error: Reference source not found of
this document, or send a service exception if unable to respond correctly. Only in
the case of Version Negotiation (see 2.8.4) may the server offer a differing result.
Upon receiving an invalid request, the server must return an error document as
described in section 2.7.4 .

A server may send an HTTP Redirect message (using HTTP response codes as
defined in IETF RFC 2616 [11]) to an absolute URL that is different from the valid
request URL that was sent by the client. HTTP Redirect causes the client to
issue a new HTTP request for the new URL. Several redirects could in theory
occur. Practically speaking, the redirect sequence ends when the server
responds with a valid TAP response. The final response must be a TAP
response that corresponds exactly to the original request (or a service
exception).

Response objects must be accompanied by the appropriate Multipurpose
Internet Mail Extensions (MIME) type (IETF RFC 2045 [12]) for that object. A list
of MIME types in common use on the internet is maintained by the Internet
Assigned Numbers Authority (IANA) . Allowable types for operation responses
and service exceptions are discussed below. The basic structure of a MIME type
is a string of the form “type/subtype”. MIME allows additional parameters in a
string of the form “type/subtype; param1=value1; param2=value2”. A server may
include parameterized MIME types in its list of supported output formats. In
addition to any parameterized variants, the server should offer the basic
unparameterized version of the format.

Response objects should be accompanied by other HTTP entity headers as
appropriate and to the extent possible. In particular, the Expires and Last-
Modified headers provide important information for caching; Content-Length may
be used by clients to know when data transmission is complete and to efficiently
allocate space for results, and Content-Encoding or Content-Transfer-Encoding
may be necessary for proper interpretation of the results.

- 36 -

Table Access Protocol

 8 References
[1] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. Nieto- Santisteban, M.

Ohishi, W. O’Mullane, P. Osuna, VOQL-TEG & VOQL-WG, IVOA Astronomical Data
Query Language version 2, IVOA recommendation 30th October 2008.
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC
2119. http://www.ietf.org/rfc/rfc2119.txt

[3] G. Rixon & P. Harrison, Universal Worker Service Version 0.5, IVOA internal working-
draft 8th October 2008.
http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf

[4] A. Rots, Space-Time Coordinate Metadata for the Virtual ObservatoryVersion 1.33,
IVOA Recommendation 30 October 2007. http://www.ivoa.net/Documents/REC/DM/
STC-20071030.html

[5] T. Berner-Lee, R. Fielding L. Masinter, Uniform Resource Identifiers (URI): Generic
Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt

[6] G. Rixon (ed.) & GWS-WG, IVOA Support Interfaces Version 1.00, IVOA Working
Draft 2008 October 23. http://www.ivoa.net/Documents/WD/GWS/VOSI-
20081023.pdf

[7] R, Plante, (ed.), A. Stébé, K. Benson, M. Graham, G. Greene, P. Harrison, A. Linde,
G. Rixon & IVOA Registry-WG, VODataService: a VOResource Schema Extension
for Describing Collections and Services Version 1.01. IVOA Working Draft 16
October 2008.

http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html

[8] R. Plante (ed.), K. Benson, M. Graham, G. Greene, P. Harrison, G. Lemson, A.
Linde, G. Rixon, A. Stébé, & IVOA Registry-WG, VOResource: an XML Encoding
Schema for Resource MetadataVersion 1.03, IVOA Recommendation 22 February
2008. http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[9] F. Ochsenbein (ed.), R. Williams, C. Davenhall, D. Durand, P. Fernique, D. Giaretta,
R. Hanisch, T. McGlynn, A. Szalay, M. Taylor, A. Wicenec, VOTable Format
DefinitionVersion 1.1, IVOA Recommendation 11 August 2004.

http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html

[10] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[11] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext
Transfer Protocol – HTTP/1.1, IETF RFC 2616.

http://www.rfc-editor.org/rfc/rfc2616.txt

[12] N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, IETF RFC 2045.
http://www.ietf.org/rfc/rfc2045.txt

[13] F. Ochsenbein, J. McDowell, A. Rots, Referencing STC in VOTable, IVOA Note 19
October 2008. http://www.ivoa.net/Documents/latest/VOTableSTC.html[14] Grid and
Web Services Working Group, G. Rixon ed. IVOA Support Services Version 1.00, 10
October 2008. http://www.ivoa.net/Documents/cover/VOSI-20081023.html

- 37 -

http://www.ietf.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/xmlschema-2/
http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html
http://www.ivoa.net/internal/IVOA/VODataService/VODataService-v1.1wd.html
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf
http://www.ietf.org/rfc/rfc2396.txt
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.ivoa.net/internal/IVOA/AsynchronousHome/UWS-0.5.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

	 1 Introduction
	 1.1 Types of query
	 1.1.1 Data, metadata, tableset and VOSI queries
	 1.1.2 ADQL Queries
	 1.1.3 PQL Queries
	 1.1.4 Other Query Languages

	 1.2 Query Execution
	 1.2.1 Asynchronous Queries
	 1.2.2 Synchronous Queries

	 1.3 Interface Overview (informative)

	 2 Requirements for a TAP service (normative)
	 2.1 Feature Overview
	 2.2 Web resources
	 2.2.1 /sync
	 2.2.2 /async

	 2.3 Parameters for HTTP requests
	 2.3.1 REQUEST
	 2.3.2 VERSION
	 2.3.3 LANG
	 2.3.4 QUERY
	 2.3.5 Parameters for PQL
	 2.3.6 FORMAT
	 2.3.7 UPLOAD
	 2.3.8 MAXREC
	 2.3.9 MTIME
	 2.3.10 RUNID
	 2.3.11 Missing or null-valued parameters
	 2.3.12 Case of parameters
	 2.3.13 Order and cardinality of parameters

	 2.4 Table names
	 2.5 Table Upload
	 2.5.1 UPLOAD
	 2.5.2 Inline Table Upload

	 2.6 Metadata Tables and TAP schema
	 2.6.1 Schemas
	 2.6.2 Tables
	 2.6.3 Columns
	 2.6.4 Keys
	 2.6.5 Tableset

	 2.7 Representations of results
	 2.7.1 Data and metadata queries
	 2.7.2 Tableset queries
	 2.7.3 VOSI
	 2.7.4 Errors
	 2.7.5 Overflows

	 2.8 Versioning of the TAP protocol
	 2.8.1 Version number form and value
	 2.8.2 Version number changes
	 2.8.3 Appearance in requests and in service metadata
	 2.8.4 Version number negotiation

	 2.9 Use of VOTable
	 2.9.1 INFO elements

	 3 Service Registration (normative)
	 4 Extended capabilities (normative)
	 5 Use of UWS (informative)
	 6 VOSpace Integration (informative)
	 7 Use of HTTP (informative)
	 7.1 General HTTP request rules
	 7.1.1 Introduction
	 7.1.2 Reserved characters in HTTP GET URLs
	 7.1.3 HTTP GET
	 7.1.4 HTTP POST

	 7.2 General HTTP response rules

	 8 References

