
International
Virtual
Observatory

Alliance

Table Access Protocol

Version 1.1

IVOA Working Draft 2014-05-12

Working group
Data Access Layer Working Group

This version
http://www.ivoa.net/documents/TAP/20140512

Latest version
http://www.ivoa.net/documents/TAP

Previous versions
TAP-1.0

Author(s)
Patrick Dowler, ...

Editor(s)
Patrick Dowler

http://www.ivoa.net/documents/TAP/20140512
http://www.ivoa.net/documents/TAP
http://www.ivoa.net/Documents/TAP/1.0

Abstract
The table access protocol (TAP) defines a service protocol for access-

ing general table data, including astronomical catalogs as well as general
database tables. Access is provided for both database and table metadata as
well as for actual table data. This version of the protocol includes support for
multiple query languages, including queries specified using the Astronomical
Data Query Language ([std:ADQL]) within an integrated interface. It also
includes support for both synchronous and asynchronous queries. Special
support is provided for spatially indexed queries using the spatial exten-
sions in ADQL. A multi-position query capability permits queries against
an arbitrarily large list of astronomical targets, providing a simple spatial
cross-matching capability. More sophisticated distributed cross-matching ca-
pabilities are possible by orchestrating a distributed query across multiple
TAP services.

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents

1 Introduction 4
1.1 Role within the VO Architecture 5
1.2 Motivating Use Cases . 6

1.2.1 Discover Metadata . 6
1.2.2 Query Custom Tables 6
1.2.3 Query Standard Tables 6
1.2.4 Query Standard Data Models 6
1.2.5 ADQL Queries . 6
1.2.6 Other Query Languages 7
1.2.7 Asynchronous Queries 7
1.2.8 Synchronous Queries 7

2

http://www.ivoa.net/Documents/

1.3 Interface Overview – move to examples section? 7

2 Resources 9
2.1 {sync} . 10
2.2 {async} . 10
2.3 /availability . 12
2.4 /capabilities . 12
2.5 /tables . 14
2.6 /examples . 15
2.7 Parameters . 15

2.7.1 REQUEST - remove? 16
2.7.2 LANG . 16
2.7.3 QUERY . 17
2.7.4 FORMAT and RESPONSEFORMAT 18
2.7.5 MAXREC . 18
2.7.6 RUNID . 18
2.7.7 VERSION . 19
2.7.8 UPLOAD . 19

3 Use of VOTable 20
3.1 INFO elements . 20
3.2 Successful Queries . 22
3.3 Errors . 23
3.4 Overflows . 23
3.5 VOTable vs RDBMS Tables and Columns 24

4 Metadata: TAP_SCHEMA 25
4.1 Schemas . 26
4.2 Tables . 26
4.3 Columns . 27
4.4 Foreign Keys . 28

5 Examples 28
5.1 Example: Asynchronous Query 28

5.1.1 Creating a Query . 29
5.1.2 Running a Query . 30
5.1.3 Example: Synchronous Query 32
5.1.4 Example: DALI-examples Document 32

3

6 Use of STC-S in TAP - deprecated 32

7 VOSpace Integration - deprecated 32

8 Use of HTTP - deprecated 32

A Changes from Previous Versions 33
A.1 Changes from TAP-1.0 . 33

Acknowledgments

The authors would like to acknowledge all contributors to this and previous
versions of this standard, especially: K. Andrews, J. Good, R. Hanisch, G.
Lemson, T. McGlynn, K. Noddle, F. Ochsenbein, I. Ortiz, P. Osuna, R.
Plante, G. Rixon, J. Salgado, A. Stebe, and A. Szalay.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, Bradner (1997).

The Virtual Observatory (VO) is general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

The Table Access Protocol (TAP) is a web-service protocol that gives ac-
cess to collections of tabular data referred to collectively as a tableset. TAP
services accept queries posed against the tableset available via the service
and return the query response as another table, in accord with the rela-
tional model. Queries may be submitted using various query languages and
may execute synchronously or asynchronously. Support for the Astronomical
Data Query Language ([std:ADQL]) is mandatory; support for other query
languages is supported but optional.

4

http://www.ivoa.net

Figure 1: Architecture diagram for this document

The result of a TAP query is another table, normally returned as a
VOTable. Support for VOTable output is mandatory; all other formats
are optional.

The table collections made accessible via TAP are typically stored in
relational database management systems (RDBMS). A TAP service exposes
the database schema to client applications so that queries can be posed
directly against arbitrary data tables available via the service.

Multi-table operations such as joins or cross matches are possible pro-
vided the tables are all managed by the local TAP service, and provided
the service supports these capabilities. Larger scale operations such as a
distributed cross match are also possible, but require combining the results
of multiple TAP services.

1.1 Role within the VO Architecture

NOTE: not in TAP-1.0
Fig. section 1 shows the role this document plays within the IVOA ar-

chitecture (Arviset et al. 2010).

5

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the TAP specification. While this is not complete, it helps
to understand the problem area covered by this specification.

1.2.1 Discover Metadata

Since content in relational databases is often custom and project-specific,
users of a TAP service must be able to discover the names of tables and
columns, datatypes, units, and other information necessary to construct
meaningful correct queries.

1.2.2 Query Custom Tables

A large amount of astronomical data and metadata is stored in tables in
relational databases. Historically, users could query these tables through
custom user interfaces (usually web page forms), but such approaches could
not provide support for truly ad-hoc querying. A TAP service should enable
users to discover and query custom tables with a flexible and expressive input
that supports ad-hoc querying: selecting output, filtering the result, joining
multiple tables, computing aggregate quantities, etc.

1.2.3 Query Standard Tables

A TAP service should enable users to query externally defined standard
tables in a uniform way such that the same web service request can be
sent to multiple services. Services must be able to declare their support for
standard tables in the service metadata.

1.2.4 Query Standard Data Models

A TAP service should enable users to query (parts of) externally defined
data models that are (partially or fully) implemented by the service. Services
must be able to declare their support for data models as well as the way that
model elements are mapped to tables and columns.

1.2.5 ADQL Queries

The Astronomical Data Query Language ([std:ADQL]) is the standard query
language for the IVOA. Support for ADQL queries is mandatory. ADQL

6

can be used to specify queries that access one or more tables provided by
the TAP service, including the standard metadata tables. In general, the
client must access table metadata in order to discover the names of tables
and columns and then formulate queries. ADQL queries provide a direct
(low-level) access to the tables; a query will be written for a specific TAP
service and will not be usable with other services unless the query refers
only to common tables and columns. It is also possible that the service
registration (in an IVOA Registry) may include sufficient table metadata to
enable queries to be written directly.

1.2.6 Other Query Languages

A TAP service must be able to support use of other query languages, such
pass-through of native SQL directly to an underlying DBMS or simple key-
vale (parameter-based) constraints. The service interface must allow for this
and the service capabilities must be able to describe it. This mechanism also
allows future developments within and outside the IVOA to be used without
revising the TAP specification.

1.2.7 Asynchronous Queries

Asynchronous queries allow for long running queries to complete without
the client maintaining a connection to the service. Results are stored by
the service for later retrieval by the client. Asynchronous query execution
is generally more robust and not susceptible to time-outs or other transient
failures. They are especially suited to queries that run for a long time before
producing output (e.g. queries that compute or aggregate values).

1.2.8 Synchronous Queries

Synchronous queries execute immediately and the client must wait for the
query to finish. Synchronous query execution is generally simpler and pro-
vides a faster (low latency) response and should be adequate when the query
will execute and start returning results quickly. Even with large query re-
sults, synchronous queries are a good approach as long as the service can
stream the output and consume modest internal resources.

1.3 Interface Overview – move to examples section?

Table Access Protocol (TAP) is implemented over the HTTP protocol using
standard HTTP GET and POST requests and conventions. A TAP request

7

specifies one or more parameter key/value pairs; both keys and values are
strings. The keys used are discussed in this specification and in the speci-
fications for query languages supported by a service. The values may need
to be encoded, using standard URL-encoding. For the following examples,
http://example.com/tap/ is the base URL for a TAP service.

This is an example of a synchronous ADQL query on r magnitude:

HTTP POST htp://example.com/tap/sync
REQUEST=doQuery
LANG=ADQL
QUERY=SELECT * FROM magnitudes as m where m.r>=10 and m.r<=16

Synchronous queries return the table of results in the HTTP response
to the initial request. In the examples above, the output format defaults
to VOTable; the FORMAT parameter could be added to select a different
format.

Asynchronous queries are created in the same way as the synchronous
kind, using the /async endpoint:

HTTP POST http://example.com/tap/async
REQUEST=doQuery
LANG=ADQL
QUERY=SELECT * FROM magnitudes AS m WHERE m.r>=10 AND m.r<=16

The service’s response to these requests is a URL representing the query’s
state and progress and where the state may be monitored and controlled.
The query result or an error document can then be retrieved from a URL
associated with the job. This is an application of the UWS pattern. The
query is then executed with a separate request to run the job URL:

HTTP POST http://example.com/tap/async/<jobid>/phase
PHASE=RUN

The state of the job can be retrieved from the phase resource:

HTTP GET http://example.com/tap/async/<jobid>/phase

The client may have to check the phase multiple times until the job fin-
ishes. Once the returned value is COMPLETED, the results can be obtained
from the results resource:

HTTP GET http://example.com/tap/async/<jobid>/results/result

8

In addition to the sync and async resources for query execution, a TAP
service also has metadata resources defined by the VOSI standard. The
availability of a service can be monitored by accessing:

HTTP GET http://example.com/tap/availability

The complete table metadata can be obtained:

HTTP GET http://example.com/tap/tables

The capabilities can be obtained by:

HTTP GET http://example.com/tap/capabilities

The capabilities are also accessible via a service request to the syn-
chronous query resource:

HTTP GET http://example.com/tap/sync?REQUEST=getCapabilities

This output lists support for optional TAP functionality and additional
implemented interfaces.

2 Resources

An implementation of a TAP service provides the following RESTful re-
sources under the base URL.

resource type resource name required
sync /sync must (anonymous)
async /async must (anonymous)
sync service-specific may (alternate authentication method)
async service-specific may (alternate authentication method)
VOSI-availability /availability should
VOSI-capabilities /capabilities must
VOSI-tables /tables should
DALI-examples /examples should

At least one set of sync and async resources must be named /sync and
/async respectively for backwards compatibility with TAP-1.0 (which re-
quired these names. These resources must be used for anonymous query
execution. Other sync and async resources may have service specific names,
but all resources listed above must be siblings so that a client with one such

9

URL can find the VOSI-capabilities URL and thus discover other available
resources.

A TAP service must be represented as a set of sibling web resources each
addressable via a URL in the http scheme, or the https scheme, or both.

The web resource at the root of the tree must represent the service as
a whole. This specification defines no standard representation for this root
resource. Implementations may provide a representation, or may return a
’404 not found’ response to requests for the root web-resource. One possible
representation is an HTML page describing the scientific usage and content
of the service. TAP clients must not depend on a specific representation of
the root web-resource.

2.1 {sync}

A TAP service must provide a web resource with relative URL /sync that
is a direct child of the root web resource. This web resource represents the
results of synchronous requests. The exact form of the query, and hence the
representation of the resource, is defined by the query parameters as listed
in section 2.7. Representations of results of queries if defined in section 2.7.4
and section 3.

For query languages that produce a single result (e.g. ADQL) executed
using the /sync endpoint, the result of a successful query is returned in the
response or the response includes an HTTP redirect (303: See Other) to a
resource from which the result may be retrieved.

An HTTP-GET request to the /sync web resource may return a cached
copy of the representation. This cached copy might come from an HTTP
cache between the client and the service, and the service may also maintain
its own cache. Clients which require an up-to-date representation of volatile
data or metadata must use HTTP POST.

2.2 {async}

A TAP service must provide a web resource with relative URL /async that is
a direct child of the root web resource. This web resource represents controls
for asynchronous queries. Specifically, the web resource must represent the
job-list as specified in the UWS standard [std:UWS].

The child web resources of the /async resource are as specified by UWS.
These are descendants of the /async web-resource, and they include a web
resource that represents the eventual result of an asynchronous query, e.g.:

10

http://example.com/tap/async/42/results/result

where the base URL for the TAP service is:

http://example.com/tap

the UWS job list is:

http://example.com/tap/async

and the job resource is

http://example.com/tap/async/42

where 42 is the job identifier. A client making an asynchronous request must
use the UWS facilities to monitor or control the job. In addition to the job
list and job resource above, UWS specifies the name and semantics of the a
small set of child resources used to view and control the job, e.g.:

http://example.com/tap/async/42/phase
http://example.com/tap/async/42/quote
http://example.com/tap/async/42/executionduration
http://example.com/tap/async/42/destruction
http://example.com/tap/async/42/error
http://example.com/tap/async/42/parameters
http://example.com/tap/async/42/results
http://example.com/tap/async/42/owner

Successful TAP queries produce results which must be accessible as resources
under the UWS result list, e.g.:

http://example.com/tap/async/42/results/

Failed TAP queries produce an error document (see section 3.3) which must
be accessible as the error resource, e.g.:

http://example.com/tap/async/42/error

For query languages that produce a single result executed using the /async
endpoint, the result of a successful query can be found within the result
list specified by UWS [std:UWS]; the result must be named result and thus
clients are able to access it directly, e.g.:

http://example.com/tap/async/42/results/result

11

Access of this resource must deliver the result, either directly or as an HTTP
redirect (303: See Other) to a resource from which the result may be re-
trieved.

For query languages that may produce multiple result resources, the
names of the results are not specified (they may be specified in the specifica-
tion for the language). The client can always access the result list resource
as specified by UWS [3].

If the query returned no rows, the result resource must exist and contain
no data rows. Details on interacting with these resources are specified in the
UWS standard; for examples specific to TAP see section 5 below.

2.3 /availability

The VOSI availability metadata should be accessible from a web resource
with relative URL /availability that is a direct child of the root web resource.
If implemented, the /availability resource must be accessible via the http
GET method. The content is described by [std:VOSI].

Services which do not implement the /availability resource must respond
with an HTTP response code of 404 when this resource is accessed.

2.4 /capabilities

The TAP-1.0 standard is identified using

ivo://ivoa.net/std/TAP

For TAP-1.1 we define new standard identifiers for each of the features.
Asynchronous query resources (section 2.2) are described by standardID:

ivo://ivoa.net/std/TAP#async-1.1

Synchronous query resources (section 2.1) are described by standardID:

standardID="ivo://ivoa.net/std/TAP#sync-1.1

In TAP-1.0 the base URL was described with a single standard identifier;
in TAP-1.1 and beyond, individual resources are described with their on
standardID. This allows service providers to describe multiple resources that
deliver the specified feature (e.g. with different authentication methods) in
the VOSI-capabilities resource.

12

The VOSI standard specifies that the capability metadata is encoded as
an XML document which lists each of the service’s capabilities as a <ca-
pability> element. The type of this element (which defines the contents)
is http://www.ivoa.net/xml/VOResource/v1.0Capability from the VORe-
source XML standard [8].

In addition, the capabilities output must also comply with the following
requirements:

* the returned document must include <capability> elements that de-
scribes the service’s support for the TAP protocol using the TAP and VOSI
standardID values

* this capability element must include at least one <interface> element
with its "role" attribute set to "std",

Note: VO registries recognize a service’s support for a standard proto-
col through this capability description. In particular, a different standard
Capability sub-type is used for each standard protocol to provide capabil-
ity metadata that is specific to that protocol. At the time of this writing,
a Capability sub-type for TAP has not yet been defined. Thus for com-
pliance with this standard, any legal Capability description that meets the
above restrictions is sufficient. However, once a VOResource extension for
TAP is standardized, it is strongly recommended that TAP services emit its
capabilities using that the Capability sub-type specialized for TAP.

For example, the returned capabilities document for a service supporting
TAP might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<vosi:capabilities xmlns=""
xmlns:vosi="http://www.ivoa.net/xml/VOSI/v1.0"
xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ivoa.net/xml/VOSI/v1.0

http://www.ivoa.net/xml/VOSI/v1.0
http://www.ivoa.net/xml/VODataService/v1.0
http://www.ivoa.net/xml/VODataService/v1.0">

<vosi:capability standardID="ivo://ivoa.net/std/TAP#async-1.1">
<interface xsi:type="vs:ParamHTTP" role="std">
<accessURL use="base"> http://myarchive.net/myTAP/async </accessURL>

</interface>
</vosi:capability>

<vosi:capability standardID="ivo://ivoa.net/std/TAP#sync-1.1">

13

<interface xsi:type="vs:ParamHTTP" role="std">
<accessURL use="base"> http://myarchive.net/myTAP/sync </accessURL>

</interface>
</vosi:capability>

<vosi:capability standardID="ivo://ivoa.net/std/VOSI#capabilities">
<interface xsi:type="vs:ParamHTTP">
<accessURL use="full">
http://myarchive.net/myTAP/capabilities </accessURL>

</interface>
</vosi:capability>

<vosi:capability standardID="ivo://ivoa.net/std/VOSI#availability">
<interface xsi:type="vs:ParamHTTP">
<accessURL use="full">
http://myarchive.net/myTAP/availability

</accessURL>
</interface>

</vosi:capability>

<vosi:capability standardID="ivo://ivoa.net/std/VOSI#tables">
<interface xsi:type="vs:ParamHTTP">
<accessURL use="full">
http://myarchive.net/myTAP/tables </accessURL>

</interface>
</vosi:capability>

</vosi:capabilities>

The service capabilities must be accessible from a web resource with
relative URL /capabilities that is a direct child of the root web resource.
The /capabilities resource must be accessible via the http GET method.
The content is described by [8].

2.5 /tables

The table metadata should be accessible from a web resource with relative
URL /tables that is a direct child of the root web resource. The /tables
resource must be accessible via the http GET method. The content is de-
scribed by [std:VODataService] and is equivalent to the metadata from the
TAP_SCHEMA described in section 4.

Services which do not implement the /tables resource must respond with
an HTTP response code of 404 when this resource is accessed.

14

2.6 /examples

A GET from this endpoint MUST yield a document with a MIME type of
either application/xhtml+xml or text/html. A service that does not provide
examples MUST return a 404 HTTP status on accessing this resource.

If present, the endpoint must be represented in a capability in the
TAP service’s registry record. The capability’s standardID is defined by
[std:DALI]. A capability element could hence look like this:

<capability standardID="ivo://ivoa.net/std/DALI#examples">
<interface xsi:type="vr:WebBrowser">
<accessURL use="full">http://myarchive.net/myTAP/examples</accessURL>

</interface>
</capability>

TAP defines two additional properties for the examples vocabulary:
* query – each example MUST have a unique child element with simple

text content having a property attribute valued query. It contains the query
itself, preferably with extra whitespace for easy human consumption and
editing. This will usually be a HTML pre element.

* table – examples MAY also have descendants with property attributes
having the value table. These must have pure text content and contain fully
qualified table names to which the query is somehow "pertaining". Suitable
HTML elements holding these include span, or a (which would allow linking
to further information on the table).

When using elements with src or href attributes to carry the property
attributes, note that the element content must be repeated in a content at-
tribute, as otherwise RDFa clients would interpret the embedded link rather
than the element content as the object in the triple.

TODO: add example(s) here

2.7 Parameters

The {async} and {sync} web-resources must accept the parameters listed in
the following sub-sections. In a synchronous request, the parameters select
the representation returned in the response message. In an asynchronous
request, the parameters select the representation of the eventual query result
rather than the response to the initial request.

Requirements on the presence and values of parameters described below
are enforced only when the TAP request is executed (not when individual
HTTP requests are handled). Thus, for asynchronous TAP queries, the

15

parameter requirements must be satisfied (and errors returned if not) only
when the query is run in (in the sense of UWS job execution). Specifically,
asynchronous queries may be created with with no parameters and multiple,
subsequent HTTP POST actions may specify the parameters in any order.

Not all combinations of the parameters are meaningful. For example, if
a request carries LANG=ADQL then the SELECT parameter (from PQL)
is spurious. If a service receives a spurious parameter in an otherwise correct
request, then the service must ignore the spurious parameter, must respond
to the request normally and must not report errors concerning the spurious
parameter.

2.7.1 REQUEST - remove?

This parameter distinguishes current service operations, makes it possible
to extend the service specification (with additional or custom operations),
and specifies how other parameters should be interpreted. If a TAP service
attempts to execute a TAP request without this parameter or with an incor-
rect value for this parameter, then the service must reject the request and
return an error document as the result.

These are the standard values of the parameter:
doQuery: execute a query
getCapabilities: return VOSI-capabilities metadata
All requests to execute a query using a query language must include

REQUEST=doQuery and must include the LANG parameter. For other
values of REQUEST, additional parameters may or may not be required.
The REQUEST=getCapabilities service operation must be supported for
synchronous (/sync) requests and is not defined for asynchronous (/async)
requests.

For synchronous queries, the HTTP request must also include additional
parameters (see below) with the details of the query. These are used for
metadata queries and data queries.

For asynchronous queries, the additional parameters may be included
with the HTTP request that creates the query (the UWS job) or they may
be POSTed directly to the created job resource, in one or more separate
HTTP requests. The parameter names remain the same in both cases.

2.7.2 LANG

The LANG parameter specifies the query language. The service must sup-
port LANG and the client must provide a value with REQUEST=doQuery.

16

The only standard values for the LANG parameter is ADQL (a required
language). Support for other languages and the LANG value to use with
them is described in the service capabilities.

For example, an ADQL query would be performed with

REQUEST=doQuery
LANG=ADQL
QUERY=<ADQL query string>

A PQL query would be performed with

REQUEST=doQuery
LANG=PQL
<PQL-specific parameters>

The value of LANG is a string specifying the language and optionally the
language version used for the query parameter(s), as defined by the service
capabilities. The client may specify the version of the query language, e.g.
LANG=ADQL-2.0 (the syntax should be as shown) or it may omit the ver-
sion, e.g. LANG=ADQL. The service should return an “unknown query
language” error as described in section 3.3 if an unsupported language or an
incompatible language version is specified.

2.7.3 QUERY

The QUERY parameter is used to specify the ADQL query. It may also be
used to specify the query for other values of LANG (e.g. LANG=<some
RDBMS-specific SQL variant>) which are not specified in this document
but may be described in the service capabilities.

A service must support the QUERY parameter because ADQL is a re-
quired language. The case sensitivity of the query string is defined solely
by the query language specification. In the case of ADQL 2.0, for example,
the query is not case sensitive except for character literals; schema, table,
and column names, function names, and other ADQL keywords are not case
sensitive.

Within the ADQL query, the service must support the use of timestamp
values as described in [std:DALI].

If the tables that are queried through a service contain columns with
spatial coordinates and the service supports spatial querying via the ADQL
“region” constructs, the service must support the INTERSECTS function
and it must support the following geometry functions: REGION, POINT,
BOX, CIRCLE, COORD1, COORD2, COORDSYS. Support for the AREA,

17

CONTAINS, and POLYGON functions are optional. If the service supports
the REGION function, it must support region encoding in STC-S format
(see section 6); the extent of STC-S support within the REGION function
is left up to the implementation. Coordinate system specification for POINT,
BOX, CIRCLE, and POLYGON must use values from STC-S as described
in ???.

Note: Although it is allowed by the ADQL syntax, clients should be
careful when mixing constants and column references for coordinate system
and coordinate values. For example, POINT(’ICRS’, t.ra, t.dec) does not
cause t.ra and t.dec to be transformed to ICRS; it simply tells the service to
treat the values as being expressed in that coordinate system.

2.7.4 FORMAT and RESPONSEFORMAT

The RESPONSEFORMAT parameter is fully described in [std:DALI]. For
backwards compatibility, TAP-1.1 must also accept the FORMAT parameter
as equivalent to RESPONSEFORMAT.

2.7.5 MAXREC

The MAXREC parameter and its effect on the query result is fully described
in [std:DALI]. If the result set is truncated in this fashion, it must include
an overflow indicator as specified in section XREF.

For the special value of MAXREC=0, the service is not required to exe-
cute the query; a successful MAXREC=0 request does not necessarily mean
that the query is valid and the overflow indicator does not necessarily mean
that there is at least one row satisfying the query. The service may perform
validation and may try to execute the query, in which case a MAXREC=0
request can fail. A query with MAXREC=0 can be used with a simple query
(e.g. SELECT * FROM some_table) to extract and examine the VOTable
metadata (assuming FORMAT=votable). Note: in this version of TAP,
this is the only mechanism to learn some of the detailed metadata, such as
coordinate systems used.

2.7.6 RUNID

The RUNID parameter is fully described in [std:DALI].

18

2.7.7 VERSION

The VERSION parameter is fully described in std:DALI].

2.7.8 UPLOAD

The UPLOAD parameter is described in [std:DALI]. Services should support
the upload of temporary tables (in [std:VOTable] format) via the standard
UPLOAD parameter. The table-name(s) must be legal ADQL table names
as defined in [std:ADQL] but restricted as described below XREF. URIs
maybe be simple URLs (e.g. with a URI scheme of http) or URIs (e.g. with
a URI scheme of vos or param) that must be resolved to give the location of
the table content. See section XREF for details.

If table upload supported, the service must accept tables in VOTable for-
mat. The client specifies the name of the uploaded table; this name must be
a legal ADQL table name with no catalog or schema (i.e., a string following
the regular identifier production of [std:ADQL]). Uploaded tables must be
referred to in queries as TAP_UPLOAD.<tablename>, where <tablename>
is the specified by the user. Tables in the TAP_UPLOAD schema are tran-
sient and persist only for the lifetime of the query (although caching might
be used behind the scenes) and are never visible in the TAP_SCHEMA
metadata.

The [std:DALI] UPLOAD parameter supports both external resources
and in-line content. For external resources, one provides a URI (usually
an HTTP URL) the TAP service can use to obtain the table content. For
example,

HTTP POST http://example.com/tap/async/42
UPLOAD=mytable,http://otherplace.com/path/votable.xml

The service would retrieve the table from the provided URL and make it
visible to the query as TAP_UPLOAD.mytable.

If the TAP service supports VOSpace (TBD: how to declare this?), one
may specify an upload table using a URI to a table stored in a VOSpace, for
example:

HTTP POST http://example.com/tap/async/42
UPLOAD=mytable,vos://space/path/votable.xml

The service would resolve the URI, contact the VOSpace, retrieve the table,
and make it visible to the query as TAP_UPLOAD.mytable.

19

UPLOADs are accumulating, i.e., each UPLOAD parameter given will
create one or more tables in TAP_UPLOAD. When the table names from
two or more upload items agree after case folding, the service behaviour
is unspecified. Clients thus cannot reliably overwrite uploaded tables; to
correct errors, they have to tear down the existing job and create a new
one. In principle, any number of tables can be uploaded using the UPLOAD
parameter and any combination of URI schemes supported by the service as
long as they are assigned unique table names within the query. Services may
limit the size and number of uploaded tables; if the service refuses to accept
the entire table it must respond with an error as described in section 3.3.

3 Use of VOTable

The [std:VOTable] format is the standard format for output (query results)
and input (table upload) in a TAP service.

3.1 INFO elements

The RESOURCE element must contain an INFO element with attribute
name="QUERY_STATUS" indicating the success of the operation. For
RESOURCE elements that contain a TABLE element, this INFO element
must appear lexically before the TABLE. The following values are defined
for this INFO element’s value attribute:

“OK”, meaning that the query executed successfully and a result table is
included in the resource

"ERROR”, meaning that an error was detected at the level of the TAP
protocol or the query failed to execute

The content of the INFO element conveying the status should be a mes-
sage suitable for display to the user describing the status.

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name="QUERY_STATUS" value="ERROR">
value out of range in POS=45,91

</INFO>

20

Additional INFO elements may be provided, e.g., to echo the input pa-
rameters back to the client in the query response (a useful feature for debug-
ging or to self-document the query response), but clients should not depend
on these.

<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="ERROR">

unrecognized operation
</INFO>
<INFO name="SPECIFICATION" value="TAP"/>
<INFO name=”VERSION” value=”1.0”/>
<INFO name="REQUEST" value="doQuery"/>
<INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>
<INFO name="serviceVersion" value="1.0"/
...
</RESOURCE>

If an overflow occurs (result exceeds MAXREC), the service must close
the table and append another INFO element to the RESOURCE (after the
TABLE) with name=”QUERY_STATUS” and the value=”OVERFLOW”.

<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
</RESOURCE>

In the above example, the TABLE should have exactly MAXREC rows.
If an error occurs while writing the rows of the VOTable, the service must

close the table and append another INFO element to the RESOURCE, after
the TABLE, with name=”QUERY_STATUS” and the value=”ERROR”.

<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="ERROR" />
</RESOURCE>

The content of these trailing INFO elements is optional and intended for
users; client software should not depend on it.

Thus, one INFO element with name=”QUERY_STATUS” and value=”OK”
or value=”ERROR” must be included before the TABLE. If the TA-
BLE does not contain the entire query result, one INFO element with

21

value=”OVERFLOW” or value=”ERROR” must be included after the ta-
ble.

3.2 Successful Queries

The result of a query depends on the query language used and may be one
or more tables in one or more resources. Unsupportable combinations of
query result and FORMAT (e.g. queries that produce multiple tables and
an inherently single-table format like CSV) will cause the request to fail.
Currently, an ADQL query result must be a single table (in a single file).

The output table must include the same number and order of columns
as specified in the SELECT clause of the query. For VOTable output, the
name attribute of FIELD elements must be the same as the column names (or
aliases if specified in the query) from the query and the datatype, arraysize,
and xtype attributes of FIELD elements must be set using the mapping
specified in section 2.5 . The xtype attribute in the output must match the
datatype for the column in the TAP_SCHEMA.

VOTable structure follows the rules in section 2.9 and must be re-
turned with an allowed VOTable MIME type (application/x-votable+xml
or text/xml). If the RESPONSEFORMAT parameter (section 2.7.4) of the
request specified a specific VOTable MIME type, the requested MIME type
must be used in the HTTP response.

CSV formatted data should represent the output table with one row
of text per table row, with the table column values rendered as text and
separated by commas. If a column value contains a comma the entire col-
umn value should be enclosed in double quotes. Text lines may be arbi-
trarily long. The first data row should give the column name as the data
value. CSV data must be returned with a MIME type of text/csv; if the
optional header line (with column names) is included, the MIME type must
be text/csv;header=present. Full details of CSV format are defined in RFC
4180 [std:CSV].

TSV formatted data should represent the output table with one row
of text per table row, with the table column values rendered as text and
separated by the TAB character. TSV data must be returned with a MIME
type of text/tab-separated-values [std:TSV]. Column values may not contain
the TAB character.

22

3.3 Errors

If the service detects an exceptional condition, it must return an error doc-
ument with an appropriate HTTP-status code. TAP distinguishes three
classes of exceptions.

Errors in the use of the HTTP protocol.
Errors in the use of the TAP protocol, including both invalid requests

and failure of the service to complete valid requests.
Error documents for HTTP-level errors are not specified in the TAP pro-

tocol. Responses to these errors are typically generated by service containers
and cannot be controlled by TAP implementations. There are several cases
where a TAP service could return an HTTP error. First, the /async end-
point could return a 404 (not found) error if the client accesses a job within
the UWS joblist that does not exist. Second, access to a resource could
result in an HTTP 401 (not authorized) error if authentication is required
or an HTTP 403 (forbidden) error if the client is not allowed to access the
resource.

Error documents for TAP errors must be VOTable documents; any result-
format specified in the request is ignored. If the error document is being re-
trieved from the /async/<jobid>/error resource (specified by UWS) after an
asynchronous query, the HTTP status code should be 200. If the error doc-
ument is being returned directly after a synchronous query, the service may
use an appropriate HTTP status code, including 200 (successfully returning
a response to the request) and various 4xx and 5xx values. The exception
condition must be described to the client using a status code in the VOTable
header. Section 2.9 specifies the use of VOTable for error documents in TAP
services.

3.4 Overflows

If a query is executed by a TAP service, the number of rows in the table of
results may exceed a limit requested by the user (using the MAXREC param-
eter) or a limit set by the service implementation (the default or maximum
value of MAXREC). In these cases, the query is said to have ’overflowed’.
Typically, a TAP service will not detect an overflow until some part of the
table of results has been sent to the client.

If an overflow occurs, the TAP service must produce a table of results that
is valid, in the required output format, and which contains all the results up
to the point of overflow. Since an output overflow is not an error condition,

23

the MIME type of the output must be the same as for any successful query
and the HTTP status-code must be as for a successful, complete query.

If the output format is VOTable, section 2.9.1 describes the method by
which the overflow is reported. No method of reporting an overflow is defined
for formats other than VOTable.

3.5 VOTable vs RDBMS Tables and Columns

TODO: describe the bi-directional mapping of VOTable <-> RDBMS table
aka the old section on uploading tables... should this come earlier in the
doc?

The column names in the transient database table are taken directly from
the name attribute of the VOTable FIELD and PARAM elements. TODO:
add column name restrictions here to avoid quoted identifiers. The datatypes
of the transient table are determined from the FIELD and PARAM attributes
as follows:

TODO: something like the table from TAP-1.0
The default mapping of data types are shown above (no arraysize or

xtype). If the xtype attribute is set, this is the preferred internal datatype.
If xtype is not set, then the datatype and arraysize indicate the most suitable
internal datatype. Note that the last column of Table (x) is not normative.
Implementations SHOULD try to make sure that the actual types chosen
are at least signature-compatible with the recommended types (i.e., integers
should remain integers, floating-point values floating-point values, etc.), such
that clients can reliably write queries against uploaded tables.

For columns with xtype adql:REGION, this is particularly critical, since
databases typically use different types to represent various STC-S objects.
Clients are advised to assume that such columns will be approximated with
polygons in the actual database table.

In the arraysize column above, [1] means the arraysize is not set or is set
to 1, n means arraysize is set to a specific value, * means arraysize=”*”, and
n* means arraysize=”n*” (variable size up to length n). A blank means the
arraysize is not set.

Binary values (unsignedByte in VOTable, BINARY, VARBINARY, or
BLOB in ADQL) can be expressed as specified by the VOTable standard. By
default, VOTable allows them to be written as an array of decimal numbers,
e.g. 12 56 0 255 0 0 255 (one number per byte value).

For columns of type BLOB or CLOB, most database systems support
reference to these columns in the select clause but not in any other part

24

of the query. Services may use these types to indicate that columns may
only be selected. For example, if service implementors want to make URL(s)
available as column values in the results, but do not actually store the URL(s)
in the database, they would specify a column with xtype=”adql:CLOB” and
the column with URL(s) could be referenced in the SELECT clause of a
query, but could not be used in the WHERE clause. The service could then
process the query result and insert the URL(s) or, more likely, transform a
column value (an identifier) into a URL while writing the results.

TIMESTAMP values are specified as described in [std:DALI]. The
xtype=”adql:TIMESTAMP” attribute must be specified in an uploaded
VOTable in order for the values to be inserted in a column of type TIMES-
TAMP; without the xtype, the values would be inserted into a CHAR(n) or
VARCHAR column.

POINT and REGION values are specified in STC-S format (see section
6). The xtype=”adql:POINT” attribute must be specified in an uploaded
VOTable in order for the char values to be parsed and treated as POINTs
(e.g. to be used with some of the ADQL region functions). For regions, the
xtype=”adql:REGION” attribute must be specified in an uploaded VOTable
in order for the char values to be parsed and treated as REGIONs (e.g. to
be used with some of the ADQL region functions).

4 Metadata: TAP_SCHEMA

There are several approaches to getting metadata for a given TAP ser-
vice. All TAP services must support a set of tables in a schema named
TAP_SCHEMA that describe the tables and columns included in the ser-
vice. In addition to the TAP_SCHEMA, there are two other ways to get
metadata from a TAP service. First, the VOSI tables resource provides
metadata on all tables and columns; this resource is described in 2.2.5 . The
VOSI tables resource provides the same metadata as the TAP_SCHEMA
but in a rigorously controlled format; the information in the TAP_SCHEMA
is equivalent to that defined by the VODataService [7]. Second, the client
may specify a query of one or more tables setting the MAXREC parameter
to 0 so that only the metadata regarding the requested fields is returned.
Use of MAXREC is described in section 2.7.5.

The TAP_SCHEMA provides access to table, column, and join key meta-
data through the TAP query mechanisms themselves. Users can discover
tables or columns that meet their specific criteria by querying the tables
described below. The service may enhance the TAP_SCHEMA with ad-

25

ditional metadata where that seems appropriate; since it is self-describing,
the TAP_SCHEMA may be queried to determine if any extended schema
metadata is defined by the service. Services must provide these tables and
make them accessible by all supported query mechanisms.

The qualified names in the tables of the TAP schema must follow the
rules defined in section 2.4. The names must be stated in a form that is
acceptable as an operand of a query.

All columns in the TAP_SCHEMA tables are of type VARCHAR ex-
cept for size, principal, indexed, and std (in Columns) which are INTEGER
values.

Implementors are permitted to include additional tables in the TAP_SCHEMA
to describe additional aspects of their service not covered by this specifica-
tion. Implementors may also include additional columns in the standard
tables described below. For example, one could include a column with a
timestamp saying when metadata values were was last modified.

4.1 Schemas

The table TAP_SCHEMA.schemas must contain the following columns:
column name datatype not-null
schema_name VARCHAR true
utype VARCHAR false
description VARCHAR false

The schema_name values must be unique and may be qualified by the
catalog name or not depending on the implementation requirements. The
fully qualified schema name is defined by the ADQL language and follows the
pattern [catalog.]schema. The schema metadata are included for reference
and are not used directly to construct queries.

4.2 Tables

The table TAP_SCHEMA.tables must contain the following columns:
column name datatype not-null
schema_name VARCHAR true
table_name VARCHAR true
table_type VARCHAR true
utype VARCHAR false
description VARCHAR false

The table_name values must be unique. The value of the table_name
should be the string that is recommended for use in querying the table; it

26

may or may not be qualified by schema and catalog name(s) depending on
the implementation requirements. The fully qualified table name is defined
by the ADQL language and follows the pattern [[catalog.]schema.]table.

4.3 Columns

The table TAP_SCHEMA.columns must contain the following columns:
column name datatype not-null
table_name VARCHAR true
column_name VARCHAR true
datatype VARCHAR true
"size" arraysize? datasize? INTEGER false
description VARCHAR false
utype VARCHAR false
unit VARCHAR false
ucd VARCHAR false
indexed BOOLEAN? true
principal BOOLEAN? true
std BOOLEAN? true

The table_name,column_name (pair) values must be unique.
Data types and how they map to VOTable datatypes are described in Sec-

tion xrefsec:vot-rdbms above. The “size” gives the length of variable length
datatypes, for example varchar(256); this size does not map to the VOTable
arraysize attribute when the latter specifies the size and shape of a multi-
dimensional array. To use the size column in a query, it must be put in
double quotes since it collides with an ADQL reserved word. Since delim-
ited identifiers are case-sensitive, for the size column both clients and servers
MUST always (in particular, in the DDL for TAP_SCHEMA) use lower
case exclusively. In the next major version of TAP, this column will be
called arraysize.

The “principal” flag indicates that the column is considered a core part
the content; clients can use this hint to make the principal column(s) visible,
for example by selecting them by default in generating an ADQL query. In
cases where the services selects the columns to return (such as PQL without
a SELECT parameter), the principal column indicates those columns that
are returned by default.

The “indexed” flag indicates that the column is indexed, potentially mak-
ing queries run much faster if this column is used in a constraint.

The “std” is included for compatibility with the registry, which uses this

27

value to indicate that a given column is defined by some standard, as opposed
to a custom column defined by a particular service.

4.4 Foreign Keys

The table TAP_SCHEMA.keys must contain the following columns to de-
scribe foreign key relations between tables:

column name datatype not-null
key_id VARCHAR true
from_table VARCHAR true
target_table VARCHAR true
description VARCHAR false
utype VARCHAR false

The key_id values are unique and used only to join with the TAP_SCHEMA.key_columns
table below. There may be one or more rows with different key_id values
and a pair of tables to denote one or more ways to join the tables.

The table TAP_SCHEMA.key_columns must contain the following
columns to describe the columns that make up a foreign key:

column name datatype not-null
key_id VARCHAR true
from_column VARCHAR true
target_column VARCHAR true

There may be one or more rows with a specific key_id to denote single
or multi-column keys.

A TAP service must provide the tables listed above and may provide
other tables in the TAP_SCHEMA namespace.

5 Examples

The UWS pattern is specified in [std:UWS] and its application to TAP in
section section 2.2. This section gives examples of the exchange of messages
between a TAP client and service when using UWS to run an asynchronous
query.

5.1 Example: Asynchronous Query

Consider a TAP service at http://example.com/tap. TAP mandates that the
asynchronous requests be directed to http://example.com/tap/async (e.g.

28

for anonymous queries). This URL points to the list of ’jobs’; i.e. the list of
queries currently or recently executed.

5.1.1 Creating a Query

To create a new query, the client POSTs a request to the job list:

HTTP POST http://example.com/tap/async
REQUEST=doQuery
LANG=ADQL
QUERY=SELECT TOP 100 * FROM foo

The service then creates a job and assigns that job a name and a URL
based on the name. Suppose that the name is 42, then the URL will be
http://example.com/tap/async/42 because the jobs are always children of
the job list. While the job is in the PENDING phase, additional parameters
may be specified by additional POSTs to the job resource, for example:

HTTP POST http://example.com/tap/async/42
UPLOAD=mytable,http://a.b.c/mytable.xml

After each such POST, the service issues an HTTP redirection to the
job’s URL, where the modified state may be accessed:

HTTP status 303 ’See other’
Location: http://example.com/tap/async/42

All TAP-specific parameters are stored using the paramList mechanism
of UWS and are included in the XML representation of the job:

HTTP GET http://example.com/tap/async/42

or directly from the parameters resource:

HTTP GET http://example.com/tap /async/42/parameters

Individual parameters cannot be accessed as separate web resources.
The UWS pattern requires the following resources to describe and control

the job:

http://example.com/tap/async/42/phase
http://example.com/tap/async/42/quote
http://example.com/tap/async/42/executionduration
http://example.com/tap/async/42/destruction
http://example.com/tap/async/42/results
http://example.com/tap/async/42/error

29

The quote resource specifies the predicted completion time for the job
(query), assuming it is started immediately. In practice, it is very hard
to estimate the time a query will take; for TAP services it is recommended
that this be set to the current time plus the maximum amount of time the
query will be allowed to run (see termination below).

The termination resource specifies the amount of time (in seconds) the
job (query) will be allowed to run before being aborted by the service. The
termination time is set by the service and can be read from the job or directly
from the termination resource:

HTTP GET http://example.com/tap/async/42/executionduration

The service may allow the client to change the termination:

HTTP POST http://example.com/tap/async/42/executionduration
TERMINATION=600

The destruction resource specifies when the service will destroy the job. The
service is only required to keep a job for a finite period of time, after which
it may destroy the job, including the result. After this time, the client will
receive an HTTP 404 ’not found’ status if it tries to get any information
about the job. The destruction time of the job is chosen by the service and
the client can read it from the job or directly from the destruction resource:

HTTP GET http://example.com/tap/async/42/destruction

The service may allow the client to change the destruction time:

HTTP POST http://example.com/tap/async/42/destruction
DESTRUCTION=2008-11-11T11:11:11Z

5.1.2 Running a Query

The phase URL shows the progress of the job. When the job is created by
the service it will normally be set to PENDING, but might be set to ERROR
if the service has rejected the job. If the phase is ERROR, then the error
URL should lead to a an error document explaining the problem. If the
phase is PENDING, then the client needs to commit the job for execution.

The client runs the job by posting to the phase URL:

HTTP POST http://example.com/tap /async/42/phase
PHASE=RUN

30

The service replies with a redirection to the job URL

HTTP status 303 ’see other’
Location: http://example.com/tap /async/42

The phase will now have changed to either QUEUED or EXECUTING,
depending on the service implementation. The client tracks the execution
by polling the phase URL:

HTTP GET http://example.com/tap/async/42/phase

A job in the QUEUED or EXECUTING phase may be aborted by posting
to the phase URL:

HTTP POST http://example.com/tap/async/42/phase
PHASE=ABORT

When the query is complete, the phase changes to COMPLETED. The
client then retrieves the result from the results list:

HTTP GET http://example.com/tap/async/42/results/result

The client knows that the table of results is at the URL /result relative to
the results list because the TAP protocol requires this naming. A generic
UWS client could find the name of the result and retrieve it by examining
either the job description:

HTTP GET http://example.com/tap/async/42

or by looking specifically at the result list:

HTTP GET http://example.com/tap/async/42/results

If the service cannot run the query, then the final phase is ERROR and there
is no table of results. In this case, the client should expect an HTTP 404
’not found’ status if it tries to retrieve the result. The client should look
instead at the error resource to find out what went wrong:

HTTP GET http://example.com/tap/async/42/error

If the job was aborted (by the client or the service), the final phase will be
ABORTED and there is no table or results. As with errors, the client should
look at the error resource to find out what went wrong.

The basic sequence can be executed from a web browser or from a shell
script using the curl utility:

31

curl -d ’REQUEST=doQuery&LANG=PQL&POS=12,34&SIZE=0.5&FROM=foo’ \
http://example.com/tap/async

[read Location header from curl output]

curl -d ’PHASE=RUN’ http://example.com/tap/async/42

curl http://example.com/tap/async/42/phase

[repeat until phase is COMPLETED]

curl http://example.com/tap/42/results/result

5.1.3 Example: Synchronous Query

TODO

5.1.4 Example: DALI-examples Document

TODO

6 Use of STC-S in TAP - deprecated

NOTE: The old section 6 is not included from TAP-1.0 since it was informa-
tive and does not belong in this document. If we need to define syntax for
points, circles, and polygons then that should be done in [std:DALI], which
already defines timestamp syntax.

7 VOSpace Integration - deprecated

Note: some text moved to the UPLOAD section; may propose DEST pa-
rameter for outout.

8 Use of HTTP - deprecated

Note: This section is in or belongs in DALI.

32

A Changes from Previous Versions

A.1 Changes from TAP-1.0

Restructured the document and removed text that duplicates material from
DALI. Rewrite the overly long introduction with some basic use cases to help
define the scope and tell readers what TAP is supposed to accomplish.

Made clarifications: restricted allowed table names for UPLOAD, clari-
fied that multiple UPLOAD pamaters accumulate, deprecated the size col-
umn in TAP_SCHEMA.columns and added advice to quote it as a delimited
identifier, made presence of a TABLE element on VOTable output only re-
quired for successful queries, added optional DALI-examples endpoint (text
TBD).

Defined standardID values for the async and sync resource types and
explicitly allow for multiple of each resource (typically to support authen-
tication). The fixed paths /async and /sync are still required and are to
provide anonymous query access, which should be compatible with existing
services.

References

Arviset, C., Gaudet, S. & the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
URL: http://www.ivoa.net/documents/Notes/IVOAArchitecture

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
URL: http://www.ietf.org/rfc/rfc2119.txt

33

	Introduction
	Role within the VO Architecture
	Motivating Use Cases
	Discover Metadata
	Query Custom Tables
	Query Standard Tables
	Query Standard Data Models
	ADQL Queries
	Other Query Languages
	Asynchronous Queries
	Synchronous Queries

	Interface Overview – move to examples section?

	Resources
	{sync}
	{async}
	/availability
	/capabilities
	/tables
	/examples
	Parameters
	REQUEST - remove?
	LANG
	QUERY
	FORMAT and RESPONSEFORMAT
	MAXREC
	RUNID
	VERSION
	UPLOAD

	Use of VOTable
	INFO elements
	Successful Queries
	Errors
	Overflows
	VOTable vs RDBMS Tables and Columns

	Metadata: TAP_SCHEMA
	Schemas
	Tables
	Columns
	Foreign Keys

	Examples
	Example: Asynchronous Query
	Creating a Query
	Running a Query
	Example: Synchronous Query
	Example: DALI-examples Document

	Use of STC-S in TAP - deprecated
	VOSpace Integration - deprecated
	Use of HTTP - deprecated
	Changes from Previous Versions
	Changes from TAP-1.0

