
TAP Protocol Analysis

 International

 Virtual

 Observator
y

Alliance

Table Access Protocol Design Analysis

Version 0.1
IVOA Note 2007 September 20

This version:
ThisVersion-YYYYMMDD

Latest version:
http://www.ivoa.net/Documents/latest/latest-version-name

Previous version(s):

Author(s):
D.Tody, ohers TBD

Abstract

This document presents a proposal for a basic Table Access Protocol
(TAP) interface, noting motivations, describing interface elements which
are thought to be understood, and identifying issues which are as yet
unresolved. This attempts to build upon the work done by the ESAC
group within the VOQL-TEG in early 2007, while conforming to the basic
service profile and common service elements developed by the IVOA
DAL, DM, Registry, and GWS working groups, and incorporating
experience gained by the NVO and CADC with the SkyNode prototype
and various related data center protocols.

1

TAP Protocol Analysis

Status of This Document
This is an IVOA Note. The first release of this document was 2007
September 20.

This is an IVOA Note expressing suggestions from and opinions of the
authors. It is intended to share best practices, possible approaches, or
other perspectives on interoperability with the Virtual Observatory. It
should not be referenced or otherwise interpreted as a standard
specification.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents

1 Introduction 3
2 Interface Summary 4
3 Service Operations 4
3.1 AdqlQuery 5

3.1.1 AdqlQuery Parameters ... 5
3.1.2 UTYPE and UCD in Queries ... 6
3.1.3 Multi-Position Queries ... 6
3.1.4 Data Staging .. 8
3.1.5 Asynchronous Queries .. 8

3.2 SimpleQuery 8
3.2.1 Motivation 9
3.2.2 SimpleQuery Parameters .. 10
3.2.3 Field Names ... 11
3.2.4 Metadata Queries ... 12
3.2.5 Simple Cone Search ... 13
3.2.6 Minimal TAP Service ... 13

3.3 GetCapabilties 14
3.4 GetAvailability 14

4 Basic Service Elements 14
 Appendix A: Database and Table Metadata 15

2

http://www.ivoa.net/Documents/

TAP Protocol Analysis

 References 19

1 Introduction
This document presents a proposed draft interface for the IVOA Table
Access Protocol (TAP), describing those interface elements which we feel
are fairly well understood while identifying issues which need further
study. This is intended only as a draft to expose the issues and provoke
discussion. The draft interface proposed here is based upon that
developed in the spring of 2007 by ESAC and the VOQL-TEG, as well as
work done within the DAL working group in the same time period, and
reflects the experience of the NVO project with the earlier SkyNode
prototype and various related data center query interfaces.

The following goals are addressed in the draft TAP interface presented
here:

• The primary focus of TAP is to provide a standard interface for
ADQL (SQL)-based queries, including providing support for large
queries and distributed queries, and multi-table operations.

• At the same time TAP should define a minimal implementation
which makes it as easy as possible for a small data provider to
publish and individually query a few tables; ideally this will
ultimately replace the legacy Cone Search interface. This minimal
implementation need not require ADQL support, although a SQL
DBMS might still be used at the back end.

• Both data access and metadata access are essential for any data
access interface, and should be provided natively within the
interface.

• Scalability is required, in particular, support for multi-position
queries, where a table containing potentially thousands of source
positions is input as part of the query (in effect this provides the
first stage of a distributed cross match capability).

• Ultimately, integral support for asynchronous execution, data
staging (e.g., via VOSpace), and SSO authentication are required,
based upon IVOA GWS standards in this area, although the
simplest version of the interface may not require any of these.

3

TAP Protocol Analysis

• For reasons of consistency and to enable code re-use, the basic
form of the TAP interface should be consistent where possible with
the other IVOA DAL interfaces.

• Registry integration is required to register service capabilities and
possibly some information about the tables available via a TAP
service, in order to support data and service discovery at the
registry level.

2 Interface Summary
The basic TAP service interface described here is composed of multiple
independent service operations. HTTP is adopted as the basis for the
service protocol, using both GET and POST for service operations where
appropriate, consistent with REST semantics (other protocols such as
SOAP could optionally be supported as well). Data is returned in a
variety of output formats including VOTable, CSV/TSV, and native XML
(support for other formats such as HTML, FITS binary table, etc., is also
possible but is not addressed here). A restricted subset of the SQL
information schema, with the addition of VO specific extensions (UTYPE,
UCD, etc.) is proposed for describing database and table metadata.

3 Service Operations
The following set of TAP service operations are suggested:

• AdqlQuery ADQL-based queries, full functionality
• SimpleQuery Simple parameter-based queries,

metadata queries
• GetCapabilities Return metadata describing the service
• GetAvailability Monitor runtime service function and health

It appears that everything we want to do, including both synchronous
and asynchronous ADQL queries, very large queries, multi-position
queries, data staging, simple cone search type queries, general
metadata queries, registry integration and service capability querying,
service monitoring, etc., can be done with these few operations. This
service interface is also thought to be adequate to support development
of a higherl level large scale distributed cross match portal or
application which relies upon TAP services for access to remote data.

There is some discussion of whether we need a "Simple" (non-ADQL)
query, since in principle ADQL can provide everything required.
Everyone agrees that the main focus of TAP should be to support ADQL-

4

TAP Protocol Analysis

based queries. However, requiring ADQL, REGION, UTYPE-based
queries, etc. just to do a cone search, or a simple query of a single data
or metadata table, essentially requires a full-up ADQL implementation to
do anything at all, and would violate our requirement that a minimal TAP
service be defined which is easy for a small data provider to implement.
For these reasons we feel that a SimpleQuery operation (described
below) is still warranted.

3.1 AdqlQuery
The AdqlQuery operation provides a capability for ADQL (SQL)-based
queries. Most of the complexity of the AdqlQuery operation involves the
specification and processing of the ADQL expression itself; the service
interface itself is fairly straightforward. The AdqlQuery operation has
the following characteristics:

• Provides a capability for general ADQL-based queries, including
large queries, multi-position queries, multi-table joins, etc.

• Both GET and POST versions are defined. The GET version permits
only synchronous execution, and URL-encodes the ADQL query
string, allowing arbitrary SQL syntax to be used. Both versions
share the same parameters and semantics, although the GET
version is a subset of what is permitted with the POST version.

• Use of the POST version is required for asynchronous queries, for
multi-position queries which require upload of a source table, or
for queries which are too large to compose as a GET.

3.1.1AdqlQuery Parameters
The following parameters are defined for the AdqlQuery operation::

QUERY The query string (ADQL; URL-encoded)
FORMAT Output data format (VOTable, CSV, XML, etc.)
<staging Params> Only used in POST version; for VOSpace
<async Params> Only used in POST version; for driving UWS
MAXREC Maximum records in the output table
RUNID Pass-through; used for logging

(others TBD)

The query string specifies all table-related aspects of the query hence no
additional parameters are required to specify the query. Only ADQL
queries are address here; if other SQL dialects or native SQL are
supported by a service, this could be added as an optional capability

5

TAP Protocol Analysis

with the dialect specified by an additional parameter (the use of native
host SQL features within the ADQL query might however be a better
approach).

FORMAT specifies the output format as for other DAL interfaces, with
VOTable being the default output format.

MAXREC, provided primarily for synchronous queries, can be used to
increase the maximum number of output records permitted in a query to
prevent overflow. Overflow is indicated in the output table with the
QUERY_STATUS INFO element, as for other DAL interfaces. MAXREC is
unrelated to the SQL TOP construct.

3.1.2UTYPE and UCD in Queries
We suggest that, rather than provide a separate query operation for
UTYPE or UCD-based queries, these be handled instead in the process of
field name resolution within a query. Although how it is handled is up to
the internal processing of a query, all field references in queries
normally resolve to individual table fields. By default table fields are
secified by name, using the field or column name given in the table
metadata. If a field name in a query includes a UTYPE reference to a
field of a data model, this is resolved by the service (if it supports the
associated data model) into a literal table field, and processing proceeds
normally. UCD can be handled the same way, and can be considered
(for the purposes of table name resolution), as a special case of UTYPE.
This is discussed further in section 3.2.3 below.

The proposed UFI syntax could also be used to specify table fields in
terms of data model UTYPEs. While this could be a useful feature for
automated resolution of UTYPEs, strictly speaking it is not required as
the client could query the table metadata and resolve the data model
reference to a literal table field on the client side. UTYPE and literal field
name references could be mixed within the same ADQL expression.

3.1.3Multi-Position Queries
Multi-position queries are required for scalability, as querying repeatedly
by individual spatial positions is too slow when thousands of positions
are involved (this is true for other interfaces such as SIA and SSA as
well). The case of querying by spatial position requires special
treatment as it is multidimensional and conventional SQL table indexes
cannot easily be used. The use of custom indexing algorithms based
upon HTM and other techniques greatly speeds up positional queries.
The combination of custom spatial indexing algorithms plus the ability

6

TAP Protocol Analysis

to process multiple spatial positions in a single query allows multi-
position queries involving thousands of positions to be handled
efficiently.

There are two main approaches for large multi-position queries: upload
the source table as part of the query, or reference a previously uploaded
or otherwise generated source table in the query.

To upload a source table directly as part of a query one would use the
POST version of AdqlQuery, with a POST encoding of Multipart/form-
data, which permits a mix of string parameters (as for GET) and file
uploads to be packaged in the same request. Hence we can have
request parameters as for the GET version of AdqlQuery, and at the
same time upload a VOTable (or any other file, including binary files)
containing any number of positions plus possibly other table fields to be
passed through to the query output. Multi-position queries of this form
are fully parallelizable and could be arbitrarily large (many thousands of
positions).

While there are various ways that source data could be input for a multi-
position query, we suggest that the standard format be VOTable, as this
is already the format for the output of queries, as well as for storage of
intermediate tables in a series of queries. In this case each source
position is tagged with a source or position ID. The query output may
contain multiple records per input source; the records would be tagged
with the source ID, allowing all data to be returned in a single table.

The HTTP Multipart/formdata mechanism allows submission of POST
queries from any Web browser form, much as we already do for GET
queries. In this case the VOTable of source positions could either be
generated in advance, or on the fly by the Web form. User input would
normally not be in the form of a VOTable, and would need to be
converted for input to TAP.

This mechanism is also capable of uploading any auxiliary files which are
referenced in a query. The REGION function in ADQL would reference
the uploaded position table as a named table. VOSpace tables would be
referenced with the same mechanism.

Execution of a multi-position query may be either synchronous or
asynchronous, although POST must be used in both cases. Large multi-
position queries may require asynchronous execution. Staging of the
output is required only for the asynchronous version.

7

TAP Protocol Analysis

3.1.4Data Staging
By data staging we mean staging data local to a TAP service for input to
a query, or storage of any output data resulting from the query. Data
staging is required for asynchronous queries (to define where the service
should store the data) and is optional otherwise. Data would normally
be staged to a VOSpace co-located with the service, or (for output) to a
remote VOSpace, however other forms of data storage are also possible.
In particular, output data staged local to a service could use some
internal mechanism (such as a DBMS or file system) which is transparent
to the client application. This means that asynchronous execution does
not necessarily require VOSpace support.

Although the details are not yet clear, probably a similar mechanism can
be used in queries to refer to all forms of data storage: staged user
tables, normal archive data tables, or tables which are uploaded directly
in a query request. For example, REGION might refer equivalently to
data stored in any of these ways.

The details of data staging, including the parameters used to control
staging in the AdqlQuery operation, are TBD. This is an advanced
capability which does not have to be provided initially in TAP, although
we would like to prototype this as soon as a basic TAP interface has been
specified.

3.1.5Asynchronous Queries
Use of the POST form of AdqlQuery would be required to initiate
asynchronous queries. The details, including the parameters used to
initiate asynchronous execution, are TBD (as for the data staging
capability). To a first approximation one would merely submit the query,
including any staging instructions, and request that it execute
asynchronously. The service would either return a job ID which could be
used via the UWS mechanism to monitor job execution, or an error of
some sort if there is a problem with the request. As with data staging,
this does not have to be implemented in the initial version of TAP, but
should be prototyped (along with data staging and SSO authentication)
once the basic TAP interface has been specified.

3.2 SimpleQuery
The SimpleQuery operation provides a simple table data query
mechanism and is also the primary mechanism provided in TAP for
database and table metadata queries. The SimpleQuery operation has
the following characteristics:

8

TAP Protocol Analysis

• The same interface is used to query both table data and
metadata. In other words, data-oriented metadata is represented
as tables. Service metadata is handled separately via a different
mechanism (3.3).

• Only a single table (or view) can be queried at a time.

• Only a GET version is provided; input is via parameters, hence
query parsing is not required.

• Only synchronous execution is permitted.

• Output may be returned in any supported output format.

Some of these limitations are not strictly necessary, .e.g., a POST form
could also be permitted with support for multi-position queries and
optional data staging; this would not complicate things much,
particularly if the service also supports AdqlQuery. However, since our
objective here is to define a simple query mechanism we will not
consider such optional advanced capabilties further.

3.2.1Motivation
The primary motivation for SimpleQuery is to provide a table access
method which is both simple to implement, and easy to use by client
applications for simple queries which do not require ADQL. Experience
with real-world queries at our data centers shows that most (> 90%) of
actual table data queries seen are simple queries selecting all or a few
fields from a single table, with a minimal WHERE clause. In addition we
would like to provide a simple mechanism to query database and table
metadata which does not require ADQL.

Although some would argue that VO only requires full-function interfaces
and that defining minimal implementations is not important, we feel that
it is still important to keep the needs of small data providers in mind. A
small survey team for example, will want to publish data to the VO
during the operational phase of the survey. Although the data may
ultimately end up at a large data center (which can afford to implement
complex, full-function services), during survey operations it is best if the
survey team directly curates their data and makes new data accessible
as soon as it is available from the survey pipeline.

Small data providers with limited resources and only a few tables to
publish are more likely to implement a correct, robust TAP interface if it
defines a simple interface; a full-up ADQL version is much more likely to

9

TAP Protocol Analysis

either be incomplete or buggy, or not be implemented at all. A simple
parameter-based, filter-type table query interface is much simpler to
implement for non-SQL based systems; even for SQL-based systems it
will be easier to parse and translate than ADQL-based input.

We may be able to ease this situation eventually by providing ready to
use service frameworks, however we do not have these yet, and support
will always be limited due to the number of target platforms out there.

3.2.2SimpleQuery Parameters
The following parameters are defined for the SimpleQuery operation:

SELECT Table fields to be returned (default all)
FROM The table (or view) to be accessed
WHERE A filter to be applied to the table (default none)
POS,SIZE Find data only in this spatial region
FORMAT Output data format
MAXREC Maximum records out
RUNID Pass-through for logging

(other params TBD)

The SELECT FROM WHERE parameters have an obvious motivation from
SQL and will map directly upon an SQL back-end, but can be easily used
with a non-SQL DBMS as well. The simplest possible query specifies only
the FROM parameter, naming a single table or view to be queried. This
may be all that is required for small data tables or for metadata tables.
SELECT is a simple comma-delimited list of the table fields to be output;
UTYPE/UCD field name resolution could be optionally performed upon
these fields.

The POS, SIZE fields define a spatial region used to constrain the query.
A query which specifies only FROM plus a spatial region is a simple cone
search query. Both POS, SIZE and WHERE can be used in the same
query. (TIME and BAND could also be provided, but we are concerned
that these are not sufficiently well defined or useful for general tables
hence have omitted them).

Various alternatives to POS, SIZE are possible, e.g., RA, DEC, SR, or use
of a UTYPE or UCD to reference the spatial position. POS, SIZE is
suggested because it is dimensionless and allows various coordinate
systems to be specified, and because it is compatible with the other DAL
interfaces allowing common code and semantics to be exploited. A
UTYPE reference would also work, but only for the spatial position and
not for the region size, which would still require a parameter. Use of

10

TAP Protocol Analysis

parameters for all of the region-specific information seems simpler and
more consistent.

The only parameter here of any complexity is the WHERE parameter.
We want to keept this as simple as possible, as if any significant parsing
is required we may as well use ADQL instead. A simple syntax would be
to use a comma-delimited range list, where each field name is followed
by a value which is either a fixed value (equality) or an open or close
range list (range of valid values). For example,

FROM=foo&WHERE=objectType,galaxy,flux,5/&FORMAT=csv

would return all fields from table “foo” where the object type is “galaxy”
and the value of the “flux” attribute is greater than or equal to 5, in CSV
format. In this proposal only the AND relationship would be permitted in
the WHERE clause.

Other schemes for WHERE are possible and should be explored, but
something similar to this approach would work for many simple queries.

3.2.3Field Names
As mentioned already in connection with AdqlQuery, we suggest that the
choice of literal field names or UTYPEs be made individually for each
field, using some predefined syntax (such as prepending a name space
qualifier) to distinguish between the two. A possible field name syntax
might be

FieldName = “<literal-name> | <name-space> ‘:’ <UTYPE>”

where “<literal>” is the literal field name as used in the table, and
UTYPE is the UTYPE specifier for a field of the data model indicated by
“<name-space>”. For the purposes of field name resolution, UCDs
could be considered a special case of a data model, with its own name
space “ucd”. All forms of field name would be resolved to literal field
names prior to evaluating the query.

For example, the field TargetName from the SSA data model could be
referred to by UTYPE as “ssa:Target.Name” or by UCD as
“ucd:meta.id;src”. Any of these references would resolve to the literal
table field name TargetName (whether this syntax might conflict with
SQL syntax for field names is TBD but no doubt some solution can be
found if this is the case).

11

TAP Protocol Analysis

3.2.4Metadata Queries
We suggest that database, table, and query engine metadata be based
upon (but not equivalent to) the information schema standard defined
by SQL92. In this approach, standard views are defined to describe the
database, its contents, and some aspects of the query engine, and the
standard database query mechanism is used to query such metadata
just as one would query actual data tables.

While the SQL information schema has some issues, we need something
like this, it is a standard, and the concept of using the standard DBMS
query mechanisms to query database metadata is an elegant approach.
We cannot use the SQL information schema directly as, while it is
implemented by most DBMS products (MySQL, PostgreSQL, SQL Server,
etc.), it is not implemented by all, and each typically implements only a
subset while adding its own custom metadata. This is essentially what
we need to do for TAP as well, i.e., define a minimum subset of the
information schema which a TAP service should provide, and extend this
with additional custom metadata such as UTYPE, UCD, UNIT, etc. as
required for our applications.

Aside from making use of an existing standard which is implemented in
most SQL implementations, this approach has the advantage that the
entire data path from the client application to the back-end DBMS can
be the same for both data and metadata queries, allowing all related
code, query facilities, output data formats, etc., to be used for both. In
addition, the approach is easily extensible; if we want to describe some
new aspect of the database, table, query engine, etc., we can add this
by changing only the information schema without any changes to the
service interface. The information schema is important not only to
describe the database and the tables and views it contains, but to
provide the information required for query optimization. This includes
details such as the primary and foreign keys defined for each table
(important for joins), any user defined functions, optional SQL/ADQL
features, and so forth.

While ADQL could be useful for querying the information schema as an
advanced optional capability, we are reluctant to require something as
complex as ADQL for simple table metadata queries; the SimpleQuery
operation is all that is needed in most cases.

A more complete view of the draft information schema recommended for
TAP is provided in Appendix A. The most important elements of this are
SCHEMA.tables and SCHEMA.columns, which list the database tables
and describe their columns, respectively. Simple examples of queries
against these tables are the following:

12

TAP Protocol Analysis

FROM=SCHEMA.tables
FROM=SCHEMA.columns&WHERE=tableName,foo
FROM=SCHEMA.columns&WHERE=tableName,foo&FORMAT=xml

The first merely lists the tables (or views) which the TAP service provides
access to. The second lists the columns defined by table “foo”, in the
default output format (VOTable). The third example does the same,
except that the output format is native XML, which we could make
compliant with whatever schema the Registry requires. This could be
done for example, by implementing the registry view of a table as an
actual View table in the database, allowing the registry to have its own
custom view of the metadata for a table.

3.2.5Simple Cone Search
In the proposal descrbed here, the TAP version of simple cone search
reduces to a SimpleQuery using POS,SIZE:

REQUEST=SimpleQuery&FROM=foo&POS=180.0,12.5&SIZE=0.2

Additional constraints may be added, for example, if table “foo” has a
field called “flux”, we could add WHERE=flux,5/ to find only sources for
which Flux is greater than or equal to 5.0. A FORMAT could be added to
specify the desired output format. UCDs should be returned consistent
with the UCD 1.1 specification or greater.

Note that the table to be queried is specified by name (this was missing
in the legacy cone search interface). A SELECT clause could optionally
be added to list the fields to be returned. POS defaults to ICRS, but
other coordinate systems could be specified if supported by the service,
e.g., to specify galactic coordinates, or to work with solar or planetary
data.

If the TAP service supports AdqlQuery and REGION this could also be
used to perform a cone search, with the option of more sophisticated
expressions for the WHERE clause. In most cases this would still reduce
to a simple GET query. By including a source table in the query a multi-
position “cone search” could be performed.

3.2.6Minimal TAP Service
The minimal TAP service supports SimpleQuery, including metadata
queries over at least SCHEMA.tables and SCHEMA.columns. No data
models need be supported other than that implied by POS, SIZE (i.e., no
UTYPEs). The “ucd:” UTYPE could easily be supported even by a

13

TAP Protocol Analysis

minimal service however. At least VOTable output format should be
provided. An advanced service supports AdqlQuery as well. It is not
clear whether or not getCapabilities and getAvailability should be
required for a minimal service – probably they should since they should
be simple to provide once defined.

3.3 GetCapabilties
The getCapabilities operation returns the Capabilities element of a
registry VOResource descriptor, formatted as an XML document. A
client application may call getCapabilities directly to query the
capabilities of a TAP service instance. A special case of this is the
registry itself, which calls the getCapabilities operation to download the
service Capability element which is cached or updated in the registry
description of the service.

An open question is how much information to include in the service
Capability element. The main guideline is that this should be sufficient
to describe the capabilities of the service in sufficient detail to permit
service discovery. For example, does the service support the AdqlQuery
operation, or any coordinate systems other than ICRS? Details on
specific ADQL features should be given in the service Capabilities if they
are needed for service discovery, but the main mechanism for
describing ADQL or local SQL features, table columns, etc., is the
information schema.

The details of the getCapabilities operation are TBD and are part of the
emerging VOSI standard (GWS).

3.4 GetAvailability
The getAvailability operation is used to monitor service function, i.e., to
determine if a service goes down. The details of the getAvailability
operation are TBD and are part of the emerging VOSI standard (GWS).

4 Basic Service Elements
The basic form of a TAP service conforms to the standard service profile
and HTTP semantics defined for the second generation DAL services and
introduced with SSA V1.0 (see section 8, Basic Service Elements, of the
SSA specification [1]). For example, REQUEST is used to specify the
service operation to be invoked, and VERSION may be specified to
enable runtime version checking or to select the version of an interface
to be used, if the service supports multiple versions of a protocol. TAP
protocol errors are returned as VOTable-formatted XML, using a

14

TAP Protocol Analysis

QUERY_STATUS INFO element to return the query status and identify the
error condition should error or overflow occur. Low level errors may
result in an HTTP level error response. Range list syntax is used to
specify list-valued parameters or ranges. Ultimately most of the
mechanism used for asyncronous execution (based upon UWS), and
data staging with VOSpace, will probably be common to all the DAL
services as well, although this functionality has yet to be specified.

Appendix A: Database and Table Metadata
The following represents a first attempt (mainly by Pat Dowler) to
identify a useful and widely available subset of the SQL information
schema. Selected VO-specific metadata such as UTYPE, UCD, and UNIT
has been added. This is very rough at this point and should not be
considered as a serious proposal, but should illustrate the nature of what
such a schema would provide.

// Available databases (schemata)
information_schema.schemata
(

catalog_name // physical database
schema_name // logical view of database
schema_owner // owner of schema or logical view
sql_path

)

// Tables or views defined for a database
information_schema.tables
(

table_catalog // physical database
table_schema // logical view of database
table_name // owner of schema or logical view
table_type // base table, view, etc.
table_description // added for VO – purpose of table

)

// Describes all columns in all tables
information_schema.columns
(

table_catalog
table_schema
table_name
column_name
ordinal_position
column_default
is_nullable
data_type
utype // added for VO
ucd // added for VO
unit // added for VO

15

TAP Protocol Analysis

character_maximum_length
character_octet_length
numeric_precision
numeric_precision_radix
numeric_scale
datetime_precision
domain_catalog
domain_schema
domain_name
udt_catalog?
udt_schema? P
udt_name? P
dtd_identifier

)

// JOIN declaration? two rows with same constraint_* values, eg:
// catalog1.schema1.table1.col1 = catalog2.schema2.table2.col2

information_schema.key_column_usage
(

constraint_catalog
constraint_schema
constraint_name
table_catalog
table_schema
table_name
column_name
ordinal_position

)

// UDF declaration
information_schema.routines
(

specific_catalog
specific_schema
specific_name
routine_catalog
routine_schema
routine_name
routine_type

// describes return type:
udt_catalog
udt_schema
udt_name
data_type
character_maximum_length
character_octet_length
numeric_precision
numeric_precision_radix
numeric_scale
datetime_precision
// end of return type description

dtd_identifier

16

TAP Protocol Analysis

routine_body
routine_definition
external_name
external_language
parameter_style
is_deterministic
sql_data_access
sql_path
created
last_altered

)

// UDF argument declaration
information_schema.parameters (M: n/a)
(

specific_catalog
specific_schema
specific_name
ordinal_position
parameter_mode
parameter_name
is_result
as_locator
data_type
character_maximum_length
character_octet_length
numeric_precision
numeric_precision_radix
numeric_scale
datetime_precision
udt_catalog | user_defines_type_catalog
udt_schema | user_defines_type_schema
udt_name | user_defines_type_name
dtd_identifier?

)

// Declaration of support for features/options?
information_schema.sql_features
(

feature_id
feature_name
sub_feature_id
sub_feature_name
is_supported
is_verified_by
comments

)

For comparison, a graphical view of the SQL information schema as
defined for the MySQL database is illustrated in Figure 1.

17

TAP Protocol Analysis

Figure 1. This illustrates the information schema as defined by the
MySQL database. This represents only a subset of the full SQL92
information schema, and much of the metadata should is custom
metadata specific to MySQL. These customizations are typical of SQL
information schema in the real world so it is a realistic example!

18

TAP Protocol Analysis

References

[1] D.Tody, M.Dolensky, et.al, Simple Spectral Access Protocol ,
http://www.ivoa.net/Documents/latest/SSA.html
[2] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html
[3] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management:
Guidelines and Procedure ,
http://www.ivoa.net/Documents/latest/DocStdProc.html

19

http://www.ivoa.net/Documents/latest/DocStdProc.html
http://www.ivoa.net/Documents/latest/RM.html
http://www.ivoa.net/Documents/latest/SSA.html

	1Introduction
	2Interface Summary
	3Service Operations
	3.1AdqlQuery
	3.1.1AdqlQuery Parameters
	3.1.2UTYPE and UCD in Queries
	3.1.3Multi-Position Queries
	3.1.4Data Staging
	3.1.5Asynchronous Queries

	3.2SimpleQuery
	3.2.1Motivation
	3.2.2SimpleQuery Parameters
	3.2.3Field Names
	3.2.4Metadata Queries
	3.2.5Simple Cone Search
	3.2.6Minimal TAP Service

	3.3GetCapabilties
	3.4GetAvailability

	4Basic Service Elements
	Appendix A: Database and Table Metadata
	References

