
 International

 Virtual

 Observatory

Alliance

TAP/QL

Version 0.1

IVOA internal working-draft 2008 May 12

This version:
0.1-2008-05-12

Latest version:
(not yet published)

Previous version(s):
None.

Author(s):
Kona Andrews, Patrick Dowler, Keith Noddle, Francois Ochsenbein, Iñaki Ortiz,
Pedro Osuna, Guy Rixon (editor), Jesus Saldago, Aurélien Stébé

Abstract
We define the TAP/QL service-protocol which allows ADQL queries on tabular
archives. The queries may be executed synchronous or asynchronously and the
results may be directed to VOSpace. We also describe how to lay out the
metadata for both the service and the tables in its archive.

Status of This Document

This is a working draft internal to DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Contents
1 Introduction...3
2 Query protocol..4
2.1 Specification..4

2.1.1 Synchronously-executed queries...4
2.1.2 Asynchronously-executed queries..4
2.1.3 ADQL query-parameter..5
2.1.4 FORMAT query-parameter...5
2.1.5 DEST query-parameter..5
2.1.6 table result-parameter..6
2.1.7 Error handling...6

2.2 Discussion...6
3 Metadata and registration...7
3.1 Normative specification...7

3.1.1 Table metadata...7
3.1.2 Service metadata...8
3.1.3 Availability metadata..8

3.2 Discussion...8
4 Security...9
4.1 Specification..9
4.2 Discussion...9

 Appendix A: Draft specification for VOSI table-metdata....................................9
 References...10

http://www.ivoa.net/Documents/
http://www.ivoa.net/Documents/
http://www.ivoa.net/Documents/

1 Introduction
TAP/QL stands for “Table Access Protocol, Query Language”. It is a web-service
protocol for querying tabular data using Astronomical Data Query Language
(ADQL) [1]. The protocol is intended primarily for querying relational-database
systems and includes elements that exploit common RDBMS features. However,
TAP/QL could also be implemented for an archive of tables stored in flat files.
The basic operation of TAP/QL is this:

1. The client sends an ADQL query as an HTTP request to an endpoint,
specifying the output format and where to send the results.

2. The service implementation executes the query on its internal database-
engine, receiving the results as a single table.

3. The service sends the results to the specified location, serializing them
into the requested format.

The query can be executed asynchronously or asynchronously. In a synchronous
execution, the query is finished and the results delivered when the client receives
a response to its initial request. In an asynchronous execution, the response to
the initial request is received before the query completes and the client then
tracks and controls the execution using the Universal Worker Service (UWS)
pattern [2].
The results of a query may be sent directly to the client (synchronous query),
cached in the service for the client to download (asynchronous query) or sent to
VOSpace (either mode).
In order to phrase the ADQL query, the client needs to know something of the
schema of the database. TAP/QL allows a client to download a description of this
schema from an HTTP endpoint. As ADQL evolves, it may also become possible
to query the schema directly.
There is a related protocol called TAP/PARAM in which the query is expressed
differently. That protocol is not defined here.
In the following text, the “specification” sections are normative and the
“discussion” sections are not.

2 Query protocol

2.1 Specification
A TAP/QL service SHALL expose its querying capability as a tree of web
resources accessible by HTTP or HTTPS. The resource at the root of the tree
represents the TAP/QL service as a whole and its URI shall be written in the
service's registration as described below.

2.1.1 Synchronously-executed queries
The service SHALL provide a resource representing the results of synchronously-
executed queries. The URI relative to the root resource SHALL be /sync.

On receiving a request at this resource, the service SHALL obtain the table
resulting from the query stated in the ADQL parameter and shall write it to the
location stated in the DEST parameter, serializing the table into the encoding
specified by the FORMAT parameter (see below for details of these parameters).
If the request method is HTTP-GET, the service MAY take the results from a
cache, but if the method is HTTP-POST then the service MUST execute the
query on the underlying database to obtain fresh data.
If the DEST parameter is not present in the request, the table of results SHALL
be returned as the body of the response to the original HTTP-request. If the
DEST parameter is present in the query, then the HTTP response to the query-
request SHALL be a redirection to the given location of the results.

2.1.2 Asynchronously-executed queries
The service SHALL provide a resource representing the process of performing
queries asynchronously. The URI relative to the root resource shall by /async.
This resource shall be structured as a job-list object as specified in the UWS
pattern [2].
On receiving a request at this resource via HTTP method POST, the service
SHALL obtain the table resulting from the query stated in the ADQL parameter
and shall write it to the location stated in the DEST parameter, serializing the
table into the encoding specified by the FORMAT parameter. The service SHALL
treat this query-format-deliver process as a UWS job and SHALL record that job
as a new web-resource subordinate to the job-list, as specified by UWS; the
service shall then return a response to the original query-request while the job is
in progress and the details of the response shall be as specified by UWS.
The client MAY then monitor and control the job using the controls specified by
UWS.

2.1.3 ADQL query-parameter
The value of this parameter SHALL be the ADQL query to be executed, encoded
as a UTF-8 string. All query requests MUST include this parameter.

2.1.4 FORMAT query-parameter
The value of this parameter SHALL be the MIME type in which the table of
results is to be encoded.
When the output format is VOTable [ref], the MIME type shall be one of the
following values;

● application/x-votable+xml;tabledata for VOTable with data written in XML
as a TABLEDATA element;

● application/x-votable+xml;fits for VOTable with data written as an
embedded FITS-file;

● application/x-votable+xml;binary for VOTable with data written as an
embedded, binary structure.

The service SHOULD NOT produce VOTables in which the data are in a
separate file from the metadata.
Where the output is to be a FITS table, the MIME type shall be application/fits.
A TAP/QL service MUST accept requests for application/x-votable+xml;tabledata
and SHOULD accept requests for application/x-votable+xml;fits and
application/x-votable+xml;binary.
This parameter is optional for the client. If the client does not provide the
parameter then the service should assume application/x-votable+xml;tabledata
as a default.

2.1.5 DEST query-parameter
The value of this parameter SHALL be the URI of the location to which the table
of results is to be written.
This parameter is optional for the client. If the client does not include the
parameter in the request, then the service SHALL use a default destination as
specified above (synchronous execution) and below (asynchronous execution).

2.1.6 table result-parameter
When a query is executed and recorded as a UWS job, the table of results
SHALL be represented as the output parameter named table.
If the parameter DEST was not given in the request that started the job, the
service SHALL store the table of results internally. The client MAY then retrieve
them from the web-resource for the parameter.
If the parameter DEST was present in the query request, then a request to the
web-resource for this parameter shall be redirected to the URI specified by
DEST.

2.1.7 Error handling
When a query is executed synchronously, the service SHALL use HTTP status-
codes and error documents to indicate failed requests. Status codes MUST be
used in strict accordance with RFC 2616 [3]. Error documents SHALL be of
MIME type text/plain.
When a query is executed asynchronously the error handling is defined by UWS.

2.2 Discussion
The tree of web resources for a service might look something like this.

http://host/service/sync
http://host/service/sync?ADQL=SELECT *...&FORMAT=...&DEST=...
http://host/service/async
http://host/service/async/666
http://host/service/async/666/phase

http://host/service/async/666/phase
http://host/service/async/666/phase
http://host/service/async/666/phase
http://host/service/sync/666
http://host/service/sync/666
http://host/service/sync/666
http://hostname/service-name/async/
http://hostname/service-name/async/
http://hostname/service-name/async/
http://host/service/sync?ADQL=SELECT
http://host/service/sync?ADQL=SELECT
http://host/service/sync?ADQL=SELECT
http://hostname/service-name/sync
http://hostname/service-name/sync
http://hostname/service-name/sync

http://host/service/async/666/termination
http://host/service/async/666/quote
http://host/service/async/666/results
http://host/service/async/666/results/table

where “666” is a UWS job; typically, there might be several jobs recorded at this
level. “table”, inside “666” is the output parameter holding the table of results; an
HTTP-get to this resource will either produce the results directly or will produce a
redirection to the results (probably via VOSpace).
The various URIs obtained by extending “sync” with an HTTP query-string
effectively point to different, potential tables of results. They are a kind of
enumeration across the results space. The representation of each of these
resources may be cached independently, either by the TAP/QL service or by
HTTP proxies. The resource “sync” itself, with no query string, does not have a
standard representation and should not be requested by the client.
The results of synchronously-executed queries may sometimes be cached but
sometimes should not be cached; consider, e.g., a database of transient events
where new records are added frequently. Therefore, the protocol treats HTTP-get
and HTTP-post differently for the “sync” resource.
Early suggestions for TAP/QL had a single endpoint for synchronous and
asynchronous execution of queries. An HTTP-get request caused synchronous
execution and HTTP-post started an asynchronous job. Because we distinguish
get and post even for synchronous queries, this arrangement cannot work.
Instead, the asynchronous and synchronous queries have separate web-
resources.
“Query parameters” are normal parameters of HTTP requests. “Result
parameters” are a mechanism from the UWS pattern and are represented by
web resources.
“Status codes must be used in strict accordance with RFC 2616” effectively
restricts the set of codes that the service can return. E.g., 401 “unauthorized”
requires a challenge response specific to HTTP authentication, so cannot be
used to denote a failed authorization check; 403 “forbidden” should be used
instead. The useful codes seem to be as follows.
400 “bad request” for invalid query-parameters, including invalid ADQL.
403 “forbidden” for security failures.
404 “not found” for invalid URIs.
503 “service unavailable” for services not accepting new jobs.
500 “internal server error” for anything else.
All the other codes seem to have specific semantics that do not match our use
case.

http://host/service/async/666/results/table
http://host/service/async/666/results/table
http://host/service/async/666/results/table
http://host/service/async/666/results
http://host/service/async/666/results
http://host/service/async/666/results
http://host/service/async/666/quote
http://host/service/async/666/quote
http://host/service/async/666/quote
http://host/service/async/666/termination
http://host/service/async/666/termination
http://host/service/async/666/termination

3 Metadata and registration

3.1 Specification

3.1.1 Table metadata
A TAP/QL service SHALL provide metadata describing the relational schema
against which queries can be written. These metadata SHALL be provided on
demand according to the VOSI standard: i.e. the service shall provide a web-
resource for which the representation is an XML document containing suitable
elements from the VODataService [4] XML-schema. Please refer to Appendix A
for a discussion of “suitable elements”. The client should obtain the
representation using HTTP-get.
The metadata MUST list all the standard functions of ADQL in addition to any
functions defined locally.

3.1.2 Service metadata
A TAP/QL service SHALL provide service metadata according to the VOSI
standard [5]. These metadata consist in a sequence of capability elements as
defined by the VOResource schema [6].
The service metadata SHALL include one capability specific to the TAP/QL
protocol. This SHALL be written as an XML element of type
{http://www.ivoa.net/xml/VOResource/1.0}Capability with its standardID attribute
set to ivo://ivoa.net/std/TAP/QL. This capability SHALL include an interface
element of type {http://www.ivoa.net/xml/VODataService/1.0}ParamHTTP in
which the value of the accessURL element is the URI for the root web-resource
specified for the query protocol, above.
A TAP/QL SHOULD make its service metadata available as a web resource, as
defined by VOSI.

3.1.3 Availability metadata
A TAP/QL service SHOULD provide availability metadata according to the VOSI
standard. On each availability request, the service SHOULD check that it is still in
contact with its underlying database and report itself as unavailable if not.

3.2 Discussion
Although the tables part of VOSI is optional for services in general, it is
mandatory for implementations of TAP/QL.
“Functions” here refers to functions that may be included in ADQL that are not
inhertited from SQL 92.
VODataService 1.0 defines elements to describe tables, columns of tables and
catalogues (i.e. groups of related tables). It does not address relational
schemata, functions or joins. We hope that the missing elements can be added in
VODataService 1.1.

http://www.ivoa.net/xml/VODataService/1.0
http://www.ivoa.net/xml/VODataService/1.0
http://www.ivoa.net/xml/VODataService/1.0
http://www.ivoa.net/xml/VOResource/1.0
http://www.ivoa.net/xml/VOResource/1.0
http://www.ivoa.net/xml/VOResource/1.0

This is a sample capability defining the TAP/QL endpoint:
<capability standardID=”ivo://ivoa.net/std/TAP/QL”>
 <interface xsi:type=”vs:ParamHTTP” role=”std”>
 <accessURL use=”base”>http://host/service</accessURL>
 </interface>
</capabilty>

Here, the access URL matches the example URIs shown above. Note that it
does not end in /sync or /async: the client must add those suffices to find the
query endpoints.
Normally, a TAP/QL service should emit its service metadata on demand from a
suitable, VOSI endpoint. However, this standard allows the service to define the
metadata but not to make them available via a web resource. In this case, one
assumes that the metadata are somehow entered into the registry by some other
means and that all clients look in the registry to find the endpoints.

4 Security

4.1 Specification
A TAP/QL service MAY require users to identify themselves and MAY further
restrict access according to the user's identity, either denying access altogether
or limiting the extent of the query that may run. If a TAP/QL service authenticates
users' identities it MUST do so according to the IVOA single-sign-on standard [7]
using the method TLS-with-client-certificate defined in that standard.

4.2 Discussion
“TLS-with-client-certificate” means that the query endpoints are in the https URI-
scheme, that the encryption protocol is TLS (as opposed to the earlier SSL
versions) and that the client is expected to authenticate with the user's certificate
chain and private key.
TAP/QL services are not allowed to use password protection on their standard,
registered query-endpoints. If passwords are needed for local operations, the
service can have them on some extra, non-standard endpoints.

Appendix A: Draft specification for VOSI table-metdata
At the time of writing, the table-metadata part of VOSI has not been drafted. Here
is an outline of what is needed.
Writing an ADQL query for a TAP service requires knowledge of the catalog(s),
schema(s), table(s), column(s), function(s), and possible join(s) between tables.
Catalog, schema, and table metadata MUST include names that follow the
allowed syntax in the ADQL specification [1] and SHOULD include descriptive
text aimed at users and a short display-name for each.

http://host/service
http://host/service
http://host/service

Column metadata MUST include a name that follows the allowed syntax in the
ADQL specification (Section ?), the data type stored in the column, and the units
for numeric values. Column metadata SHOULD include descriptive text and a
UCD to describe the semantic meaning and a short display-name.
Function metadata MUST include the list of supported functions that are defined
in the ADQL specification; no other metadata should be included for standard
ADQL functions. Metadata for additional service-specific functions MUST include
a name that follows the allowed syntax in the ADQL specification [1], the data
type of the return value, and the units for numeric return values. It MUST also
include the name, position, data type and units for each parameter. It SHOULD
include descriptive text to describe the semantics of the operation.
Join metadata specifies that tables can be joined and how to specify the join. It
MUST include a name and one or more pairs of fully qualified column names (or
identifiers?). It SHOULD contain descriptive text to describe the semantics of the
join.
A different method name/endpoint for each metadata type is used with an HTTP
GET call to retrieve the XML encoded result. Method names/endpoints should be
defined in coordination with the VOSI authors (GWS WG), and follow the
example of the AstroGrid's DSA prototype: e.g.
http://wfaudata.roe.ac.uk/ukidssWorld-dsa/wsa/vosi/tables.
The Table and Column metadata MUST be encoded in XML using the "Table"
and "TableParam" elements from the VODataService schema [4], wrapped in a
"Tables" element as specified in the XSD schema provided.
The Function metadata MUST be encoded in XML using the "InputParam"
element from the VODataService schema [4] inside the defined "Function"
element, wrapped in a "Functions" element as specified in the XSD schema
provided.
The encoding of the Joins metadata is still to be decided, but the format will also
follow a similar XML encoding.

References
[1] P. Osuna & I. Ortiz (eds.) ,Astronomical Data Query Language Version 2.00
http://www.ivoa.net/Documents/cover/ADQL-20080430.html
[2] G. Rixon, Universal Worker Service v0.3
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol – HTTP/1.1 (IETF RFC 2616)
http://www.ietf.org/rfc/rfc2616.txt
[4] IVOA registry working-group, VODataService: VOResource extension for Data and
Services v1.0, http://www.ivoa.net/xml/VODataService/VODataService-v1.0.xsd
[5] G. Rixon (ed.) IVOA Support Interfaces: Mandatory Interfaces, (VOSI v0.4)
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfaces
Mandatory-0.4.pdf

http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOSupportInterfacesMandatory-0.4.pdf
http://www.ivoa.net/xml/VODataService/VODataService-v1.0.xsd
http://www.ivoa.net/xml/VODataService/VODataService-v1.0.xsd
http://www.ivoa.net/xml/VODataService/VODataService-v1.0.xsd
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
http://www.ivoa.net/Documents/cover/ADQL-20080430.html
http://www.ivoa.net/Documents/cover/ADQL-20080430.html
http://www.ivoa.net/Documents/cover/ADQL-20080430.html
http://wfaudata.roe.ac.uk/ukidssWorld-dsa/wsa/vosi/tables
http://wfaudata.roe.ac.uk/ukidssWorld-dsa/wsa/vosi/tables
http://wfaudata.roe.ac.uk/ukidssWorld-dsa/wsa/vosi/tables

[6] IVOA registry working-group, VOResource: resource description v1.0,
http://www.ivoa.net/xml/VOResource/VOResource-v1.0.xsd
[7] M. Graham & G. Rixon (eds.) IVOA Single-Sign-On Profile: Authentication
Mechanisms Version 1.0, http://www.ivoa.net/Documents/latest/SSOAuthMech.html

http://www.ivoa.net/Documents/latest/SSOAuthMech.html
http://www.ivoa.net/Documents/latest/SSOAuthMech.html
http://www.ivoa.net/Documents/latest/SSOAuthMech.html
http://www.ivoa.net/xml/VOResource/VOResource-v1.0.xsd
http://www.ivoa.net/xml/VOResource/VOResource-v1.0.xsd
http://www.ivoa.net/xml/VOResource/VOResource-v1.0.xsd

	1Introduction
	2Query protocol
	2.1Specification
	2.1.1Synchronously-executed queries
	2.1.2Asynchronously-executed queries
	2.1.3ADQL query-parameter
	2.1.4FORMAT query-parameter
	2.1.5DEST query-parameter
	2.1.6table result-parameter
	2.1.7Error handling

	2.2Discussion

	3Metadata and registration
	3.1Specification
	3.1.1Table metadata
	3.1.2Service metadata
	3.1.3Availability metadata

	3.2Discussion

	4Security
	4.1Specification
	4.2Discussion

	Appendix A: Draft specification for VOSI table-metdata
	References

