
Table Access Protocol

 International

 Virtual

 Observatory

Alliance

Table Access Protocol

Version 0.3
IVOA Internal Working Draft 2008 October 23

This version:
TAP-V0.3-20081023

Latest version:
Not yet issued

Previous version(s):
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf

Editors:
P. Dowler, G. Rixon, D. Tody

Author(s):
K. Andrews, P. Dowler, J. Good, R. Hanisch, T. McGlynn, K. Noddle,
F. Ochsenbein, I. Ortiz, P. Osuna, R. Plante, G. Rixon, J. Salgado,
A. Stebe, D. Tody

Abstract
The table access protocol (TAP) defines a service protocol for accessing general
table data, including astronomical catalogs as well as general database tables.
Access is provided for both database and table metadata as well as for actual
table data. Both simple filtering operations on individual tables as well as more
general multi-table operations such as relational joins are supported. This version
of the protocol includes support for both ADQL-based queries and parameterized

- 1 -

http://www.ivoa.net/internal/IVOA/TableAccess/TAP-QL-0.1.pdf
http://www.ivoa.net/internal/IVOA/TableAccess/tap-v0.2.pdf

Table Access Protocol

queries within an integrated interface, and includes support for both synchronous
and asynchronous queries. Special support is provided for spatially indexed
queries using astronomical coordinate systems. A multi-position query capability
permits queries against an arbitrarily large list of astronomical targets, providing a
simple spatial cross-matching capability. More sophisticated distributed cross-
matching capabilities are possible by orchestrating a distributed query across
multiple TAP services.

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents

1 Introduction 4
1.1 Parametric and ADQL-based Queries 5
1.2 Synchronous and Asynchronous Queries 5
1.3 Requirements for Compliance 6

2 Interface Overview 7
2.1 Architecture 7
2.2 Service Operations 8
2.3 Service Profile 9

2.3.1 Request Format ... 9
2.3.2 Parameters ... 10
2.3.3 Parameter Values ... 10
2.3.4 Use of GET and POST ... 11
2.3.5 URL Encoding .. 11
2.3.6 Error Response .. 11

2.4 Request Examples 11
3 TAP Service Operations 12

- 2 -

http://www.ivoa.net/Documents/

Table Access Protocol

3.1 Synchronous ADQL Query 12
3.1.1 Input Parameters .. 13

3.1.1.1 QUERY .. 13
3.1.1.2 LANG ... 14
3.1.1.3 FORMAT .. 14
3.1.1.4 UPLOAD .. 14
3.1.1.5 MAXREC ... 15
3.1.1.6 MTIME ... 15
3.1.1.7 RUNID ... 16

3.1.2 Query Response .. 16
3.2 Asynchronous ADQL Query 16
3.3 Synchronous Parametric Query 17

3.3.1 Input Parameters .. 18
3.3.1.1 POS, SIZE ... 18
3.3.1.2 REGION ... 19
3.3.1.3 SELECT ... 19
3.3.1.4 FROM .. 20
3.3.1.5 WHERE ... 20
3.3.1.6 Other Query Parameters .. 23

3.3.2 Query Response .. 23
3.3.3 Table Metadata Queries ... 23
3.3.4 Cone Search Query .. 25
3.3.5 Multi-Position Queries .. 26

3.4 Asynchronous Parametric Query 27
3.5 VOSI Operations 28

3.5.1 Get Service Capabilities ... 28
3.5.2 Get Service Availability ... 29
3.5.3 Get Table Metadata .. 29

4 Common Query Elements 30
4.1 Table Names 30
4.2 Table Uploads 30
4.3 VOSpace Integration 31
4.4 Query Response 32
4.5 Output Formats 33

5 TAP Schema 34
5.1 TAP Core Schema 34
5.2 Table Sets 35

6 Service Registration 35
7 Basic Service Elements 36
7.1 Introduction 36
7.2 Version numbering and negotiation 36

7.2.1 Version number form and value .. 36
7.2.2 Version number changes .. 36
7.2.3 Appearance in requests and in service metadata ... 37
7.2.4 Version number negotiation .. 37

7.3 General HTTP request rules 37
7.3.1 Introduction .. 37
7.3.2 Reserved characters in HTTP GET URLs .. 38
7.3.3 HTTP GET ... 38
7.3.4 HTTP POST ... 39

- 3 -

Table Access Protocol

7.4 General HTTP response rules 39
7.5 Numeric and boolean values 40
7.6 Output formats 41
7.7 Request parameter rules 41

7.7.1 Parameter ordering and case ... 41
7.7.2 Range-list parameters .. 41
7.7.3 Missing or null-valued parameters .. 42

7.8 Common request parameters 43
7.8.1 VERSION ... 43
7.8.2 REQUEST .. 43
7.8.3 Extended capabilities and operations ... 43

7.9 Service result 43
7.10 Error Response and Other Exceptional Results 43

7.10.1 Service Error ... 44
7.10.2 Output Overflow .. 45
7.10.3 Other Errors .. 45

 Appendix A: “Appendix Title” 45
 References 46

1 Introduction
The Table Access Protocol (TAP) is a Web-service protocol that gives access to
collections of tabular data. TAP services accept queries posed against the
tableset (set of tables) available via the service and return the query response as
another table, in accord with the relational model. Queries may be parameter
based or may be composed as expressions in some query language such as the
Astronomical Data Query Language (ADQL [ref]), or possibly native SQL, and
may execute synchronously or asynchronously.

The result of a TAP query is another table, returned as a VOTable or optionally in
some other format. This table contains directly the requested table data; it is not
a table containing links to data objects to be downloaded separately (c.f. SIAP
and SSAP).

The table collections made accessible via TAP are typically stored in relational
database management systems (RDBMS), but TAP may also be implemented for
data stored in other ways, such as in flat-file systems. This aspect of the
implementation is abstracted by the protocol and is not visible to users. A TAP
service exposes the database schema to client applications so that queries can
be posed directly against arbitrary data tables available via the service.

TAP is a member of the IVOA Data Access Layer (DAL) family of data access
protocols, conformant to the second generation (DAL2) interface standards [ref].
These standards provide uniformity among all the DAL2 protocols and include
conformance to relevant query language, data model, VOTable, registry, and Grid
and Web services standards (VOSI, UWS, etc.), where appropriate. Except

- 4 -

Table Access Protocol

where explicit reference is made to other standards documents an attempt is
made to make the current specification self-contained, while maintaining
conformance with more general IVOA standards. In case of conflict or ambiguity
with the more general standards the TAP standard documented herein has
precedence.

1.1 Parametric and ADQL-based Queries
This request, to an IVOA cone-search service, is an example of a parametric
query:

http://some.where/some/thing?RA=180&DEC=42&SR=0.5

This query could be translated as “from the table dataset represented by the
service at the URL http://some.where/some/thing, find all records for
which the recorded position is within 0.5 degrees of the search position (180,42),
where the coordinates are right ascension and declination in the ICRS coordinate
system, measured in degrees”. The query is the boolean combination of the
constraints expressed in the RA, DEC and SR (search-radius) parameters.

Parametric queries such as this are simple to express and to implement for
cases where the data model is sufficiently well defined and adequate for the data
to be queried, hiding many of the details required to pose and evaluate the query
(both the simple spatial cone search as well as queries of the TAP metadata
schema are examples of such simple well defined queries). When we query
arbitrary data tables however, there often is no well defined data model, and the
data table itself must be queried directly. The Astronomical Data Query
Language (ADQL), a standardized sub-set of SQL92, was defined to deal with
this more general use case.

Because ADQL has a formally-defined grammar it is feasible to build a complete
parser for ADQL. Where an ADQL-consuming service uses a standard SQL-
based DBMS as the back-end, it is possible to use an off-the-shelf ADQL parser
to do most of the work required to generate SQL queries for the back-end DBMS.
TAP includes provisions for ADQL queries for the general case as well as
simplified parametric queries for the most common use cases.

1.2 Synchronous and Asynchronous Queries
We say that a TAP query is synchronous if the results of the query are delivered
in the HTTP response to the request that originally posed the query. In this case,
the service delays the response until the query completes or fails. Conversely, if
the service returns an immediate HTTP-response upon accepting a query and
the client later obtains the results of the query in response to a separate HTTP
request, then we say the request is asynchronous.

- 5 -

Table Access Protocol

In the synchronous case, the client must wait for the query to finish. If it times
out or otherwise breaks communication before receiving the response, then the
query fails. Synchronous queries are analogous to blocking I/O in a file-system;
asynchronous queries correspond to non-blocking I/O.

Asynchronous queries require that client and server share knowledge of the state
of the query during its execution and between HTTP exchanges. They are an
example of stateful interactions. In TAP, the mechanism by which the clients and
services share the state of transactions is the Universal Worker Service (UWS)
pattern. Synchronous queries are stateless between HTTP exchanges and need
no such mechanism.

Synchronous queries are easier to implement, both for the client and the service;
they are easier for scientists to use, and are adequate for most simple queries.
However, there are many more advanced use-cases where synchronous queries
are not sufficient. Therefore, TAP supports both synchronous and asynchronous
queries.

1.3 Requirements for Compliance
The keywords “must”, “required”, “should”, and “may” as used in this document
are to be interpreted as described in the W3C specifications (IETF RFC 2119).
Mandatory interface elements are indicated as must, recommended interface
elements as should, and optional interface elements as may or simply “may”
without the bold face font.

A fully compliant TAP implementation must provide the following capabilities:

 ADQL query with synchronous execution
 ADQL query with asynchronous execution
 Parametric query with synchronous execution
 Parametric query with asynchronous execution
 Table metadata query (synchronous, VOSI compliant)
 Service metadata query (synchronous, VOSI compliant)
 Service availability query (synchronous, VOSI compliant)

A minimally compliant service must provide synchronous and asynchronous
ADQL queries and should provide the other features.

All capabilities are provided as service operations as specified in section 2.3.
The VOSI compliant operations resolve to fixed URIs described in the service
capability metadata. The TAP service including its service metadata must be
registered with the IVOA resource registry.

- 6 -

Table Access Protocol

2 Interface Overview

2.1 Architecture
A TAP service provides access to one or more tables, referred to as a tableset,
normally co-located at a single site. Multi-table operations such as joins or cross
matches are possible provided the tables are all managed by the local TAP
service, and provided the service supports these capabilities. Larger scale
operations such as a distributed cross match are also possible, but require
combining the results of multiple TAP services. In the most general case table
operations might make use of any of the following components:

 A top level application, for example a cross-match portal capable of
multi-parameter statistical cross-matching of distributed tables. Access to
remote tables is via TAP services running locally where the table data is
stored. The remote TAP service might perform a first order spatial cross
match or apply other constraints to filter the data at access time, thereby
reducing the volume of data which has to be passed back to the remote
portal or application.

 One or more TAP services, each providing access to one or more tables
via a range of query capabilities, similar to what is typically provided by an
individual DBMS. Both table data and metadata may be accessed via the
same query interface.

 The ADQL query language, provides an advanced query language
capability based upon SQL, enhanced with astronomy specific extensions,
e.g., for applying spatial query constraints. Pass-through of native SQL
may also be possible if permitted by a specific service.

 A table data model, if supported by a service, can optionally be used to
access a table without having to understand the details of how information
is stored in the table (this is a planned future capability not yet supported
by TAP, but is part of the architectural design). This capability is especially
important when a client might access many different tables from a variety
of origins. For example, a source catalog data model might define a
number of standard attributes for a “source” object (position, extent,
morphology, brightness, etc.), which the TAP service would map to a
native data table on behalf of the client.

While we highlight the cross match portal here as a primary example of a TAP
client application, any variety of other client analysis applications are possible,
including custom applications written directly by end users, or incorporated
directly into analysis environments. All such applications share the same
underlying data access facilities, which provide a common interface profile and
semantics for access to tables or other types of astronomical data.

- 7 -

Table Access Protocol

TAP also makes use of additional VO technology, in particular VOTable provides
a standard model and format for table interchange, VOSpace is used for network
table storage and transport, and UWS provides a standard interface pattern for
interacting with asynchronous services. Certain TAP operations for determining
the capabilities and runtime status of a service instance are based upon the VO
Standard Interfaces (VOSI) standard. VO standards for single sign-on
authentication are used to manage resources on behalf of a user and provide
secure access to data where necessary.

2.2 Service Operations
A TAP service implements multiple service operations, each of which performs
some well defined function when invoked by a client application. The service
operations described here use HTTP GET and POST as the low level
communications protocol. The functionality of each operation is defined
independently of the low level communications protocol, and semantically
equivalent operations could be implemented in the future via other protocols.

TAP defines the following standard service operations:

 AdqlQuery. Execute an ADQL query (or a query in some other query
language if supported by the service). The query is passed as string,
which may be URL encoded if required by the low level protocol used.
General relational operations upon multiple tables are supported. Both
synchronous and asynchronous versions are provided. Data tables may
be uploaded or may optionally be staged to a VOSpace.

 ParamQuery. Execute a parameterized query. The query is defined by a

set of parameters rather than by a free form language as for AdqlQuery.
Both table data and metadata can be queried with the same interface, and
ParamQuery provides the standard mechanism used to query table
metadata. Except for some well defined special cases (multi-position
queries, tableset queries), queries are limited to a single table. Both
synchronous and asynchronous versions are provided. Data tables may
be uploaded or may optionally be staged to a VOSpace.

 GetCapabilities. Return a standardized XML description of the
capabilities of the service instance, describing what the service is capable
of doing (VOSI compliant, registry cacheable and searchable).

 GetAvailability. Return a standardized XML description of the runtime
status of the service, describing the state and availability of the service
(VOSI compliant).

 GetTableMetadata. Return a standardized XML description of the
tableset metadata for all tables available via the service (VOSI compliant).

- 8 -

Table Access Protocol

In the case of TAP this is not an actual service operation, but rather a URI
which resolves into a specific table metadata query via ParamQuery.

The AdqlQuery and ParamQuery operations provide two alternative ways to pose
queries against the service. These queries differ only in the way they are posed.
Once the query inputs (ADQL statement in the case of AdqlQuery, or parameter
set in the case of ParamQuery) are translated by the service into whatever form
the back-end DBMS requires, execution is the same for both types of query.
Hence table uploads, VOSpace integration, output formatting, asynchronous
execution facilities, table metadata, and so forth are identical for both forms of
query. In addition, the same query interface is used for both table data and
metadata, simplifying the service interface and providing uniform, fully featured
facilities for querying both types of data.

2.3 Service Profile
The basic form of a TAP service (or any other second generation data service, all
of which share the same basic service interface) is specified in detail in section 7.
In the current section we merely summarize the elements of the basic service
interface.

2.3.1 Request Format
A service may implement multiple service operations, such as adqlQuery or
paramQuery; these define the service interface. Interfaces may change with time
and hence are versioned. It is possible for a given service instance to
simultaneously expose multiple interfaces or versions of interfaces.
The TAP interface described in this document is based upon a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP). Thus, the online representation of each operation
supported by a service is composed as a HTTP Uniform Resource Locator
(URL).
A request URL is formed by concatenating a baseURL with zero or more
operation-defined request parameters. The baseURL defines the network
address to which request messages are to be sent for a particular operation of a
particular service instance on a particular server. Service operations generally
share the same baseURL but this is not required.

 TAP defines two versions of the baseURL, one for synchronous operations and
another for asynchronous operations. These are formed by contentating the
service-baseURL with either “/sync?” or “/async?”. Hence for synchronous
operations we have a full baseURL of

- 9 -

Example:
 $<service-baseURL>/sync?REQUEST=AdqlQuery&QUERY=…

Table Access Protocol

<service-baseURL>”/sync?”

and for asynchronous operations the full baseURL is
<service-baseURL>”/async?”

In general the service operation is much the same whether or not it executes
synchronously or asynchronously. Minor differences in service operation function
or input parameters are possible and are defined in the description of the
individual service operation below.
Note that since a URI pathname segment is appended to the service baseURL
the service baseURL may not contain any HTTP GET parameters, and must be a
fixed URI.

2.3.2 Parameters
Parameters may appear in any order. If the same parameter appears multiple
times in a request the operation is undefined (if alternate values for a parameter
are desired the range-list syntax may be used instead). Parameter names are
case-insensitive. Parameter values are case-sensitive unless defined otherwise
in the description of an individual parameter.
All service operations define the following standard parameters, which are part of
the basic service profile:

REQUEST The request or operation name (mandatory).
VERSION The version number of the interface (optional).

The REQUEST parameter specifies the service operation to be executed.
VERSION allows a specific version of the interface to be requested. The values
of both the REQUEST and VERSION parameters are case-insensitive.
A given service instance may support multiple versions of the TAP interface, and
by default the service assumes the highest standard version which is
implemented (access to any experimental versions supported by a service
requires explicit specification of the version by the client). Explicit specification of
the interface version assumed by the client is necessary to ensure against a
runtime version mismatch, e.g., if the client caches the service endpoint but a
newer version of the service is subsequently deployed. If desired the client can
omit the VERSION parameter to disable runtime version checking, and default to
the highest version standard interface implemented by the service.
All other request parameters are defined separately for each operation.

2.3.3 Parameter Values
Integer numbers are represented as defined in the specification of integers in
XML Schema Datatypes. Real numbers are represented as specified for double
precision numbers in XML Schema Datatypes. Sexagesimal formatting is not
permitted, either for parameter input or in formal output metadata, other than in
ISO 8601 formatted time strings (sexagesimal format is permitted in any informal
output intended for a human, e.g., text or HTML formatted tables).

- 10 -

Table Access Protocol

TAP defines a special range-list format for specifying numerical ranges or lists of
ranges as parameter values. For example, “1E-7/3E-6“ specifies a closed
range from 1E-7 to 3E-6 inclusive. The syntax supports both open and closed
ranges. Ranges or range lists are permitted only when explicitly indicated in the
definition of an individual parameter. A variant of the range list is the value of the
WHERE parameter, used to specify the query constraint for a ParamQuery
operation. For a full description of range list syntax refer to section 3.3.1.

2.3.4 Use of GET and POST
Where specified, individual service operations may provide both HTTP GET and
POST forms for issuing the service request. Both forms share the same input
parameters and operation semantics, being merely two different ways of invoking
the same service operation. In general, the GET form is used for synchronous
operations which are idempotent (have no side effects, the result is cacheable,
multiple instances may be simultaneously active and will return the same result).
POST is used for any request which has a side effect, e.g., initiation of an
asynchronous job, or which needs to pass a large amount of data to the service,
e.g., uploading a table or region mask to be used within a query.

2.3.5 URL Encoding
URL encoding (see section 7.3.2) is a standard technique used to encode
characters appearing in HTTP requests, such as a GET URL, to pass characters
which are not otherwise legal and could interfere with the HTTP protocol. By
using URL encoding it is possible to pass arbitrary character data to a service in
a HTTP request, for example an arbitrary ADQL statement could be passed in a
simple GET request so long as it is not too large for a GET URL (2K or so
characters).

2.3.6 Error Response
In the case of an error, service operations should return a VOTable containing an
INFO element with name QUERY_STATUS and the value set to “ERROR”. More
fundamental service or protocol errors may result in an HTTP level protocol error,
hence a client program should be prepared to handle either response. A null
query, that is a queryData which does not find any data, is not considered an
error; likewise an overflow condition is distinguised from error. More information
on error responses is given in section 7.

2.4 Request Examples
Some examples of simple TAP requests follow. These are intended only to help
introduce and illustrate basic usage of the TAP service interface; the details are
specified in the following sections of this document.

Synchronous parametric query performing a simple cone search of table “foo”
(baseURL would be replaced with the actual service base URL):

- 11 -

Table Access Protocol

 $baseURL/sync?REQUEST=paramquery&POS=12,34&SIZE=0.5&FROM=foo

Synchronous ADQL query returning all data from table “foo”:

 $baseURL/sync?REQUEST=adqlquery&QUERY=select+*+FROM+foo

Simple cone search query executed asynchronously:

 curl -d 'REQUEST=paramquery&POS=12,34&SIZE=0.5&FROM=foo' \
 $baseURL/async
 curl -d 'PHASE=RUN' $baseURL/$jobID

 [wait]
 curl $baseURL/$jobID/results

In this example the commonly available curl application (wget or a browser could
also be used) is used to issue HTTP GET and POST requests to the remote UWS-
based job manager. The query may run for an arbitrarily long time. When the
job completes the output can be retrieved.

Asynchronous version of our simple ADQL-based query:

 curl -d 'REQUEST=adqlquery&QUERY=select+*+FROM+foo' $baseURL/async
 curl -d 'PHASE=RUN' $baseURL/$jobID
 [wait]
 curl $baseURL/$jobID/results

Simple synchronous table metadata request to list the columns of table “foo”:

 $baseURL/sync?REQUEST=paramquery&FROM=TAP_SCHEMA.COLUMNS& \
 WHERE=tablename,foo

3 TAP Service Operations

3.1 Synchronous ADQL Query
The AdqlQuery operation is used to pose a query expressed using a query
language, normally the Astronomical Data Query Language (ADQL). The query
is posed against the tableset (set of tables) exposed by a TAP service. ADQL is
a variant of the Structured Query Language (SQL) providing a uniform query
language which can be translated and executed against any modern RDBMS.
Extensions, e.g., for spatial queries in astronomical coordinate systems, are
provided to enhance the query language for astronomical queries.

An ADQL query may be used to query a single table, or may query multiple
tables in a single operation. The input tables to be queried may be any table
exposed by the TAP service, or any external table accessible via a URI or
uploaded inline as part of the query. The query response for a successful query
is the table produced as the result of the query. Output tables are returned in
VOTable format by default, although other output formats may optionally be

- 12 -

Table Access Protocol

provided by the service (see sections 3.1.1.3 and 4.5). Queries may execute
either synchronously or asynchronously.

Our purpose here is merely to define the use of the TAP interface to execute an
ADQL query. Specification and usage of the ADQL language is covered
elsewhere ([ref]).

The parameters used to control the AdqlQuery operation are defined in the
remainder of this section.

Synchronous AdqlQuery requests may be submitted with either a GET or a
POST (so long as POST is supported by the service, e.g., if it supports inline
table uploads).

3.1.1 Input Parameters

3.1.1.1 QUERY
A service which implements the AdqlQuery operation must support the QUERY
parameter, used to input the ADQL (or other query language) statement to be
executed. The query string should be URL-encoded by the client if it contains
any characters not legal in a URL (see section 7.3.2). The query string is case
sensitive. In particular, the case of table and column names should be preserved
between a metadata query and a subsequent query of a data table.

Within the ADQL query, the service must support the use of datetime/timestamp
values in ISO8601 format.

If the tables that are queried through a service contain columns with spatial
coordinates and the services wants to enable the caller to perform spatial
queries, the service must support the INTERSECTS function and it must
support the following geometry functions: REGION, POINT, BOX, CIRCLE,
COORD1, COORD2, COORDSYS. Support for the AREA, CONTAINS, and
POLYGON functions are optional. If the service supports the REGION function, it
must support region encoding in STC-S format (Rots 2007); the extent of STC-S
support within the REGION function is left up to the implementation. Coordinate
system specification for POINT, BOX, CIRCLE, and POLYGON must use values
from Table 3 (standard reference frames) in STC (Rots 2007).

Although it is allowed by the ADQL syntax, services should return an error if use
of POINT, BOX, CIRCLE, or POLYGON mix constants and column references
for coordinate system and coordinate values. For example, POINT('ICRS', t.ra,
t.dec) should be an error. The only place where mixing constants and column
references is acceptable is when using a constant for the radius in a CIRCLE,
e.g. CIRCLE(t.coordsys, t.ra, t.dec, 0.1), as this allows the caller to control
search radii for multi-position searches or source cross-matching.

- 13 -

Table Access Protocol

3.1.1.2 LANG
The service should implement the LANG parameter. The value is a string
specifying the language and optionally the language version used for the QUERY
parameter, as defined by the service capabilities. A service which implements
the AdqlQuery operation must support “ADQL” (case insensitive) as the default
query language. The service may support other query language encodings as
well, e.g., other ADQL versions, or pass-through of native SQL, as specified by
the service capabilties (3.5). The version of the query language may optionally
be specified, e.g., “ADQL-1.0” (the syntax should be as shown). The service
should return an “unknown query language” error if an unsupported and
incompatible value of LANG is specified.

3.1.1.3 FORMAT
The service should implement a FORMAT parameter specifying the output
format requested by the client, specified either as a MIME type or as one of the
shorthand forms “votable”, “csv” (comma separated values), “fits” (FITS
binary table), “text” (pretty-printed text), or “html” (pretty-printed Web page), all
such values being case independent. The service should return an “unsupported
output format” error if an unsupported output format is requested. The default
table output format if no format is specified is VOTable. All services must
support at least VOTable as an output format, and must permit a query with
FORMAT indicating VOTable, without error.

3.1.1.4 UPLOAD
The service should implement an UPLOAD parameter, used to reference read-
only external tables via their URL, to be uploaded for use as input tables to the
query. Tables uploaded in this fashion are assumed to be encoded in VOTable
format. The value of the UPLOAD parameter is a list of table name-URL tuples,
delimited by semicolon, using comma to delimit each table name-URL tuple (that
is, a list-structured parameter as specified in section 7.7.2). For example:

UPLOAD=table_a,http://host_a/path;table_b,http://host_b/path

would define two input tables “table_a” and “table_b”, located at the given URLs
(URL-encoding is mandatory in this case since we embedding a URL within a
URL). The specified table names are arbitrary but must be legal ADQL table
names and must be unique within the upload table namespace for the lifetime of
the query (4.2). The table name should be a simple table name; uploaded tables
will automatically be placed in the upload table storage area (schema) hence no
schema name prefix is required. The upload table storage area is shared with
any tables uploaded in-line with the query. The specified table names are used
to refer to the uploaded tables in the query, prefixed with an upload namespace
(DBMS schema) as specified in section 4.2.

- 14 -

Table Access Protocol

3.1.1.5 MAXREC
The service should implement a MAXREC parameter specifying the maximum
number of table records (rows) to be returned. If the result set for a query
exceeds this value a valid data table should be returned with a status of
“OVERFLOW” indicating that overflow occurred (this may not be supported for
output formats other than VOTable; see also section 7.10.2).

The default MAXREC value defined by a service should be large enough to avoid
overflow for most small queries, but small enough to provide a response to the
user reasonably quickly. The client may override the default MAXREC,
increasing the value up to the maximum value permitted by the service, as
defined in the service capabilites. A sufficiently large MAXREC may permit
streaming of arbitrarily large output tables. Output tables larger than the
maximum permitted value of MAXREC must use some other technique such as
asynchronous computation of the output table followed by retrieval using a
streaming synchronous GET (VOSpace output may also be supported in a later
version of TAP).

In the case of a large output table which is streamed back to the client as it is
being computed it may not be possible to know in advance whether overflow will
occur (for a fully streamed response the VOTable header may be output before
the table data has been computed). In this case the output should be returned
with a query status of “OK”, indicating a valid query; if overflow occurs, MAXREC
plus one rows should be returned to indicate that overflow occurred.

A value of MAXREC=0 indicates that, in the event of an otherwise successful
query, a valid output table should be returned containing metadata but no table
data rows. It is up to the service whether or not to actually execute the query and
generate table rows which will be discarded; the query status should be returned
as “OK” so long as the query is otherwise valid. This is an example of a null
query, that is, a query which produces an empty table.

3.1.1.6 MTIME
The service may support an MTIME parameter, used to query a table for only
rows which were modified within a given range of times, specified as an ISO8601
open or closed range list in the UTC time system. A “modified” row is a table row
which was inserted, updated, or deleted during the indicated time interval (hence
MTIME may be used to see deleted rows which are not visible in any other
fashion). This feature may be used by a remote client to maintain a replica of a
large table, or to periodically poll a table for changes. The period of time for
which deletions are preserved is server dependent (depending upon how often
deleted rows are purged) but should be at least one week.

When the MTIME parameter is specified, the service will add extra columns to
the output table (in addition to that specified in the select statement of the query),
with utypes Record.Modified and Record.Deleted. The values in this column are

- 15 -

Table Access Protocol

the timestamp when the last insert/update occured or when he row was deleted
respectively. One value must be set and the other null for every row in the table;
values are in ISO8601 format. Rows that are thus marked as deleted must
include values for one or more column(s) that uniquely identify the row, but other
column values may be null.

The MTIME parameter cannot be used with queries that select from multiple
tables (joins in ADQL); this is an error.

3.1.1.7 RUNID
The service should implement the RUNID parameter, used to tag service
requests with the job ID of a larger job which the request may be part of. For
example, if a cross match portal issues multiple requests to remote TAP services
to carry out a cross-match operation, all would receive the same RUNID, and the
service logs could later be analyzed to reconstruct the service operations initiated
in response to the job. The service need not do anything with RUNID other than
pass the parameter on to any other services which it in turn calls, e.g., a
VOSpace. The service should also ensure that RUNID is preserved in any
service logs.

3.1.2 Query Response
The response of a successful synchronous AdqlQuery request is the table
resulting from the query (4.4). By default the query response is returned as a
VOTable. The response of an unsuccessful AdqlQuery request is an error
response VOTable (7.10).

3.2 Asynchronous ADQL Query
The asynchronous form of the ADQL query is semantically the same as the
synchronous form, the main difference being that the query executes
asynchronously (it keeps running after an initial synchronous request to start the
job), and hence may run an arbitrarily long time. All request parameters are
otherwise the same for both execution modes of the service operation.

The Universal Worker Service (UWS) mechanism is used to manage the request.
The asynchronous ADQL query is specified as for the synchronous version
except that it is always submitted as a HTTP POST request to the
$baseURL/async service endpoint. All subsequent interaction conforms to the
UWS specification.

POST to $baseURL/async:
 REQUEST=AdqlQuery&
 QUERY=[…] (etc.)

Upon receiving the request the service will create the query in the PENDING
state and redirect the caller to the URL for the created query (the jobURL). While

- 16 -

Table Access Protocol

in PENDING state, the caller can GET and modify (with POST) the various query
parameters, including the job control resources specified by the UWS pattern.
Following UWS, the TAP-specific parameters are accessible as child resources
with the same names (lower case? case insensitive?). For example, the caller
can GET the current query from $jobURL/query modify the query with a POST of
a new value of QUERY to $jobURL/query. The caller can look at the currently
specified uploaded tables at $jobID/upload (a list of table names) and it can look
at a specific table at $jobID/upload/table1 (for example), which may redirect the
GET to the original URI specified for the upload or may return the content. Other
query parameters like MTIME, MAXREC, and FORMAT are all mutable as long
as the query is in the PENDING phase.

The query is executed using the normal UWS pattern: a POST to $jobURL/phase
with PHASE=RUN. The service will then put the job into either QUEUED or
EXECUTING (a new phase). As above, the asynchronous query serializes the
output table in the encoding specified by the FORMAT parameter. MAXREC
applies to the asynchronous request the same as for the synchronous request,
hence may limit the size of the output table generated.

During and subsequent to execution of the query, the client may monitor and
control the job using the controls specified by UWS: the $jobURL/phase resource
can be monitored until the query completes (phase will be COMPLETED) or fails
(phase will be ERROR). The output table is stored as the job output and may be
retrieved via the UWS mechanism once the job completes. Specifically, UWS
specifies that $jobURL/results is a list of results; in the case of TAP there will be
one result table in the list, $jobURL/results/queryresult.xml for example. The
filename is up to the implementor, but it would be good for users if they didn't
collide with other files; it is recommended that a unique identifier (the jobID?) be
included in the result filename.

If the query fails, the service shall report this using the mechanisms specified in
UWS. Specifically, the phase will be ABORTED or ERROR and the error
document (VOTable) will be available at $jobURL/error.

3.3 Synchronous Parametric Query
The ParamQuery operation provides basic access to both table data and
metadata without requiring the full generality of ADQL. ParamQuery is the
primary mechanism provided to query table metadata with TAP; one can easily
obtain a list of the tables available via a TAP service, or a list of the columns of
an individual table, in any supported output format, using the standard table
query mechanism. ParamQuery also allows simple filter-type queries of
individual data tables. Most queries of astronomical catalogs are of this type.
Simplified and optimized support is provided for common spatially-indexed
astronomical query use cases such as cone search and multi-position queries.
There is no inherent limit on the size of input or output tables.

- 17 -

Table Access Protocol

ParamQuery differs from AdqlQuery only in the way the query is posed. In both
cases query execution and output processing may be the same. Many of the
input parameters are common to both operations.

As for AdqlQuery, parameter values for ParamQuery are case sensitive except
where otherwise specified. In particular table and column names are case
sensitive, and case should be preserved between a table metadata query and
the subsequent use of a table or table column name in a query.

3.3.1 Input Parameters

3.3.1.1 POS, SIZE
The POS and SIZE parameters provide an easy to use, optimized facility for
performing spatial queries of astronomical catalogs, similar to the legacy cone
search protocol. Spatial queries are supported only for tables which contain
positional information (e.g., RA and DEC for each table record), however many
astronomical catalogs are of this type.

POS and SIZE define a circular search region in the specified coordinate system
(default ICRS). A service which implements ParamQuery must support the POS
and SIZE parameters, and implement them as a query constraint for tables
containing records tagged with spatial positions. If POS and SIZE cannot be
applied to the referenced table an error should be returned.

The coordinate values for POS are specified in list format (comma separated)
with no embedded white space, as defined in section 7.7.2 and as implemented
in other second generation DAL interfaces.

POS=52,-27.8

POS defaults to right-ascension and declination in decimal degrees in the ICRS
coordinate system. A coordinate system reference frame may optionally be
specified to indicate a spatial coordinate system other than ICRS. The reference
frame is specified as a list format modifier, with the acceptable values as defined
by Table 3 (standard reference frames) in STC (Rots 2007).

POS=52,-27.8;GALACTIC

Whether or not a service supports coordinate systems other than ICRS for POS
is an optional service-defined capability (solar and planetary data for example
might use other coordinate systems). It is an error if a coordinate reference
frame is specified which the service does not support.

- 18 -

Table Access Protocol

POS also defines a special syntax which is used to reference a table of positions
for multi-position queries. This is discussed separately in section 3.3.5.

SIZE specifies the diameter of the search region input in decimal degrees.

SIZE=0.05

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a
positional query, the service should supply a default value intended to find nearby
objects which are candidates for a match to the given object position, taking into
account the spatial resolution of the data.

3.3.1.2 REGION
The ParamQuery operation may implement a REGION parameter, used to define
more general spatial search regions than can be defined using POS, SIZE. The
value is a STC/S (string encoded) region specifier.

REGION=Ellipse ICRS 148.9 69.1 2.0 4.0 32.7

In the example above the embedded spaces are shown for clarity, but if used in
an URI they should be URL encoded.

If both POS,SIZE and REGION are specified in the same query, REGION acts as
a mask to further qualify the circular region specified by POS,SIZE. This is most
useful for multi-position queries (see section 3.3.5), where a large table of
possible search positions may include positions outside the desired search
region. In this case REGION specifies the sub-region of the referenced table to
be used. This allows large tables to be used in a multi-position query. In
particular it permits a cross match of two data tables (e.g., two large astronomical
catalogs) to be performed in a single operation, restricting the spatial portion of
the cross match to the mask region.

3.3.1.3 SELECT
The ParamQuery operation must implement a SELECT parameter, used to
specify the table fields to be returned by the query, specified either as a comma
delimited list of field names, or optionally by specifying one of the reserved
values “$STD” (to return only the standard or “primary” fields), or “$ALL” (to
return all table fields).

SELECT=ra,dec,flux

By default only the “primary” fields are returned. The “primary” fields are
specified on a per-table basis, and define a subset of the most important table
fields. This is used to provide a more readable view of very wide tables. The

- 19 -

Table Access Protocol

service must permit $STD and $ALL to be input without error, but is not required
to actually use them to adjust the view of the table. If no “narrow” view is defined
for a table the service should ignore $STD and merely return all table fields.

3.3.1.4 FROM
The ParamQuery operation must implement a FROM parameter, indicating the
name of the table to be queried, specified as defined in section 4.1. Only a
single table reference is allowed. There is no default, hence it is an error if no
table name is specified, or if the specified table name is invalid.

FROM=hdfv2

In addition to the data tables managed by the service, tables in the query upload
area (4.2) may be referenced, as well as the (real or virtual) metadata tables
defined by the TAP information schema (3.3.3, 5).

In a client query FROM must be specified to identify the table to be queried.
SELECT and WHERE are optional.

3.3.1.5 WHERE
The ParamQuery operation must implement the WHERE parameter, used to
specify an optional filtering constraint to be applied to the table to determine
which table rows are returned. By default all table rows are returned.

In a client query, WHERE may be combined with other query constraints such as
POS and REGION to further refine the query.

The syntax of the ParamQuery WHERE parameter value (not to be confused
with the SQL WHERE clause of the same name) is a simple sequence of equality
or range constraints delimited by semicolons, with the field name and value
elements of an individual constraint separated by a comma.

A simple example should help illustrate the syntax:

WHERE=observer,*smith*;z,1.5/2.2

This specifies two table field constraints: the field “observer” must contain the
case-insensitive substring “smith” (hence the wildcards), and the field “z” must be
in the range 1.5 to 2.2 inclusive. This syntax is explained in more detail below.

The ParamQuery WHERE syntax has deliberately been kept simple as TAP
already has ADQL to provide a fully general expression evaluation capabillity,
which should be used for advanced data queries. Each constraint applies to a
single table field; multiple constraints on the same table field are allowed. The

- 20 -

Table Access Protocol

constraints have an AND relationship, hence all must evaluate to true for a table
row to satisfy the WHERE. Individual constraints may be negated to construct
more complex expressions.

The syntax chosen is intended to easy to compose, easy and unambiguous for a
service to parse and map to a SQL back end or otherwise evaluate (a
conventional rule-based parser is not required). It was also chosen to be
consistent with similar usage in other data access services, e.g., in the use of
range-list syntax (7.7.2) for the WHERE expression (the BAND, TIME, etc.
parameters in other DAL services use the same range-list syntax). An effort has
been made to define a minimal set of metacharacters so as to minimize the need
for URL encoding – most simple expressions should not require URL encoding,
e.g., if typed interactively into a Web browser, allowing the simplest Web tools to
be easily used for basic queries.

A partial BNF for the WHERE expression is as follows:

<where-expr> ::= <field-list>
<field-list> ::= <field-expr> [';' <field-list>]
<field-expr> ::= <field> ',' ['!'](<list> | "null")
<list> ::= <numeric-list> | <string-list> | <date-list>
<numeric-list> ::= <number> [',' <numeric-list>]
<string-list> ::= <string> [',' <string-list>]
<date-list> ::= <date> [',' <date-list>]

Where we have not attempted to detail the BNF for the numeric, string, and date
tokens. Some additional notes follow.

 Each field expression defines a constraint on the named table field (column).

 Field expressions are of the form <field-name>’,’<value> (meaning field-
name=value), where <value> is a range list (a single value, a range, or a list
of single values or ranges all of the same type). Constraint expressions have
an “and” relationship within the overall WHERE expression. Values within a
range-list have an “or” relationship, i.e., the range-list for a specific field
reference is a list of valid values.

 A parameter value may optionally be prefixed with ‘!’ (exclamation) to negate
the sense of the entire clause.

 The special value “null” indicates a null-valued field. For example
“flux,!null” is true only if field “flux” has a non-null value.

 A <date> conforms to ISO8601 date syntax, e.g., "2007-04-05T14:30".

 A <number> token is any legal integer or floating point number optionally
preceded by ‘+’ or ‘-‘.

- 21 -

Table Access Protocol

 A <string> token is any token which is not a number or date, or any
sequence of characters which is quoted using single quotes.

 While accumulating a string token, anything quoted in single quotes is literally
included in the string, otherwise (where case-insensitive context applies),
characters are converted to lower case for use in case-insensitive
comparisons. Quoted characters are treated in a case sensitive fashion. Any
metacharacter other than the quote character may be quoted to include it
within a token. A single quote may be included within a string by quoting it
(that is, three single quotes in sequence). Quotes used within a string token
do not delimit the token.

 For string-valued fields the constraint is a case-insensitive simple pattern,
with “*” matching zero or more characters. Absent any use of “*”, the entire
string must match. Hence “obj,m31” specifies that the value of field “obj”
must match “m31” exactly, except for case. To force a case sensitive match
the case sensitive characters must be quoted.

 For numeric or date values the constraint is either a single value or a range,
using “/” as the range delimiter (range syntax is not supported for strings).
Both open and closed ranges can be specified, e.g., “5/” specifies an open
range equivalent to “greater than or equal to 5”, whereas “5/9” means “5 to 9
inclusive”.

 Spaces may be embedded to improve readability, but if so they must be URL
encoded as “%20”.

Field names or value expressions must be quoted if they contain any special
characters (e.g., semicolon, comma, forward slash, asterisk). The single quote
is used to avoid conflict with double quote which is often used to quote the entire
URL string.

As a more complex example of WHERE usage consider the following somewhat
contrived expression:

vmag,4.5/5.5; imag,4.5/; bmag,/5.5; flag,4,5,6;
jmag,4.5/5.5,/3.0,9.0/; name,*Lon*; kmag,4.5/5.5; flux,null;
last,1

The equivalent SQL WHERE clause would be the following:

vmag between 4.5 and 5.5 and imag >= 4.5 and bmag <= 5.5
 and (flag = 4 or flag = 5 or flag = 6)
 and (jmag between 4.5 and 5.5 or jmag <= 3.0 or jmag >= 9.0)
 and name like '%Lon%' and kmag between 4.5 and 5.5
 and flux is null and last = 1

- 22 -

Table Access Protocol

The following is a complete example of a typical ParamQuery of a data catalog.
This returns the selected fields from the “fp_psc” catalog for sources within 0.2
degrees of the given position, where the J magnitude is less than or equal to 10.

$baseURL/sync?REQUEST=ParamQuery&
 SELECT=ra,dec,j_m,h_m,k_m &
 FROM=fp_psc &
 POS=10.68469,41.26904 &
 SIZE=0.2 &
 WHERE=j_m,/10.0

3.3.1.6 Other Query Parameters
The FORMAT, UPLOAD, MAXREC, MTIME, and RUNID parameters are identical
for both ParamQuery and AdqlQuery. Refer to section 3.1.1 for a description of
these parameters.

3.3.2 Query Response
The ParamQuery query response for a simple data or metadata query is identical
to that for AdqLQuery, and is detailed in section 4.4. Multi-position queries and
tableset queries (a form of table metadata query) can produce somewhat
different responses as detailed in the following sections.

3.3.3 Table Metadata Queries
Rather than provide access to database and table metadata via a separate
interface, querying of database and table metadata is provided by representing
such metadata as just another set of set of tables which can be queried like any
data table, using the same query interface, output formatting, and so forth. This
is done by defining a special database schema called the TAP schema, referred
to as “TAP_SCHEMA” in queries (upper case is required).

This approach has the advantage of allowing the standard TAP table query
interface to be used to query table metadata as well as ordinary table data. In
addition, since table metadata is represented as data which is queried at runtime,
table metadata can vary dynamically, and is easily extended without any changes
to the query interface.

The core TAP schema defines the following tables (more detailed information on
the TAP schema is given in section 5.1):

 TAP_SCHEMA.tables. Lists all tables (including views) accessible via the
TAP service and visible to the current client or user.

- 23 -

Table Access Protocol

 TAP_SCHEMA.columns. Lists all columns (fields) of all tables known to
the TAP service and visible to the current user. A query specifying a
specific table name will return only the columns of that table.

 TAP_SCHEMA.schemas. Lists all database schemas (named table
storage areas) accessible via the TAP service and visible to the current
client or user. Knowledge of the schemas supported by a service is not
required for basic table access (the schema name is included in the table
names returned in TAP_SCHEMA.tables), but is useful to understand
what data is available.

Some examples should help illustrate how table metadata queries are used. All
of these queries should include the request name, i.e., REQUEST=ParamQuery.
If no output format is specified data will be returned in VOTable format, however
output may be requested in any table output format supported by the service.

List all the tables known to the service and visible to the client (no WHERE is
needed since all tables are to be listed):

FROM=TAP_SCHEMA.tables

List all columns of table “fp_psc”:

FROM=TAP_SCHEMA.columns&WHERE=tablename,fp_psc

List the full tableset supported by the service, in registry compliant XML format:

FROM=TAP_SCHEMA.tableset&FORMAT=xml

The tableset query is eqivalent to a query of TAP_SCHEMA.tables except that
all tableset metadata is returned, i.e., all tables matching the query, and all
columns of each table. Only two output formats are supported for a tableset
query, “xml” (registry compliant XML) and “votable” (a dataless VOTable
containing only TABLE and FIELD metadata describing the tables in the
tableset). The metadata returned is the same as for a TAP_SCHEMA.tables or
TAP_SCHEMA.columns query, the only difference being that all metadata is
returned and output is available in only two specialized output formats
aggregating data from multiple tables (hence the output is not relational in the
normal sense). Tableset output is required for VOSI compliance as specified in
section 3.5.

A TAP service must support the above table metadata queries. A TAP service
may support more advanced table metadata queries using other ParamQuery
parameters. Some examples of advanced table metadata queries follow.

List all database schemas queryable by the service, in pretty-printed text format:

- 24 -

Table Access Protocol

FROM=TAP_SCHEMA.schemas&FORMAT=text

List only the tables in the database schema “hdf”:

FROM=TAP_SCHEMA.tables&WHERE=tablename,hdf.*

List only tables containing data within the specified region on the sky:

FROM=TAP_SCHEMA.tables&POS=180.0,1.0&SIZE=1.0

As above, but return tableset metadata in VOTable format:

FROM=TAP_SCHEMA.tableset&POS=180.0,1.0&SIZE=1.0

List only the table name and description fields for all tables:

SELECT=tablename,description&FROM=TAP_SCHEMA.tables

List only tables modifed since July 4 2005:

FROM=TAP_SCHEMA.tables&MTIME=2005-07-04/

An advanced TAP service may also support querying of table metadata via
ADQL.

TAP services are required only to be able to list all tables or all the fields of a
single table, as well as provide full tableset metadata in both XML and VOTable
format. A more advanced TAP service will support general table metadata
queries using the full ParamQuery interface.

3.3.4 Cone Search Query
The POS and SIZE parameters provide an optimized spatial query capability
comparable to the legacy cone search interface. For example, the following
would execute a cone search of table “fp_psc” using the specified position and
search region diameter, selecting only objects for which the J magnitude is less
than or equal to 10:

$baseURL/sync?REQUEST=ParamQuery&
 FROM=fp_psc&POS=180.0,0&SIZE=0.2&
 WHERE=j_m,/10.0

Legacy cone search also provided a VERB parameter to control which fields are
returned in a query. This is equivalent to a SELECT, with “$STD” providing the
default “narrow” view, and “$ALL” returning all table fields.

- 25 -

Table Access Protocol

ParamQuery thus duplicates all the functionality of the legacy cone search and is
equally easy to use, and nearly as simple to implement. It is much more
powerful however, since a single service can support multiple tables, the table
metadata can be queried as easily as the table itself, additional query constraints
can be specified to refine the query, spatial coordinate system frames other than
ICRS can be specified, non-circular regions can optionally be specified using
REGION, multiple output formats can be specified, optional Grid capabilities are
available to permit large queries, and as we will see in the next section, multi-
position queries can be used to provide a “multi-cone search” type of capability.

3.3.5 Multi-Position Queries
A multi-position query generalizes POS, SIZE to a table of positions, allowing an
arbitrarily large number of spatial queries to be executed simultaneously. In a
typical scenario the user uploads a list of the positions of their favorite objects,
and executes a spatial cross match against some data table. Additional query
contraints may be specified with the WHERE parameter to further refine the
query. If desired the query may be further refined on the client side, providing a
more sophisticated multi-parametric distributed cross match as a two step
operation.

A multi-position query is indicated by using POS to point to a table containing
positions, instead of inputing a single position directly. Any table can be used so
long as it contains position information for each table record.

The POS syntax used to point to a table of positions is “POS=@tablename”,
where tablename can be any valid table known to the TAP service. For
example the client might upload a table named “positions” when executing the
multi-position query, in which case the query might be:

$baseURL/sync?REQUEST=ParamQuery&
 POS=@TAP_UPLOAD.positions&SIZE=0.2

Alternatively the asynchronous form of the query could be performed, using
POST to submit the same query parameters and upload table (4.2) to the
$baseURL/async service endpoint.

UTYPE UCD Description
src:Position.ID meta.id;meta.main Position identifier
src:Position.Coord1 pos.eq.ra;meta.main Right Ascension, degrees
src:Position.Coord2 pos.eq.dec;meta.main Declination, degrees
src:Position.Size instr.fov [??] Diameter of search region

In the most general case any table containing position information may be used.
For example we could use the 2MASS point source catalog from our earlier
examples, assuming a copy is available to the TAP service. This table contains

- 26 -

Table Access Protocol

nearly half a billion sources, so the REGION parameter would be used to apply a
spatial mask to restrict POS to only the positions within the specified region. In
this case we might have “POS=@fp_psc”, with REGION specifying whatever
spatial region the user requires. Additional query constraints could optionally be
added to further refine the query.

While any table could be used for POS, some mechanism is needed to identify
the table fields to be used to define positions. The table fields to be used from
the input positions table can be identified within the table using the UTYPE and
UCD tags given in the table above. Specification of UTYPE is the preferred
technique, otherwise a fallback to UCD should be attempted (UTYPE is preferred
over UCD as UCD is difficult to generalize to multiple coordinate systems).
Although the table above refers to RA and DEC, any coordinate system can be
used for positions if supported for spatial queries by the service.

When an existing data table managed by the TAP service is used for position
input (such as fp_psc in our example above) it is the responsibility of the TAP
service to know what table metadata to use for input positions, but this is already
the case to be able to do a simple single-position cone search on such a table.

The output from a multi-position query is a single table, containing output data for
all query positions, with a sequence of zero or more table rows corresponding to
each input position. A unique position ID column must be added to the output
table to indicate the position from the input position table to which the output
table row corresponds. If positions in the input table have been assigned a
unique position identifier (i.e., src:Position.ID) then this is what should be
used, otherwise a 1-indexed integer position ID specifying the row of the input
table should be used as the unique position ID in the output table. The other
output table fields are copied from the data table being queried.

If a SIZE parameter is specified the value given applies to all positions.
Otherwise the region size is taken from the input position table, and is allowed to
vary for each position. It is an error if SIZE is not specified in either the input
position table or as a parameter.

3.4 Asynchronous Parametric Query
The asynchronous form of ParamQuery is semantically the same as the
synchronous form, the main difference being that the query executes
asynchronously (it keeps running after an initial synchronous request to start the
job), and hence may run an arbitrarily long time. All request parameters are
otherwise the same for both execution modes of the service operation.

The Universal Worker Service (UWS) mechanism is used to manage the request.
The asynchronous parametric query is specified as for the synchronous version
except that it is always submitted as a HTTP POST request to the

- 27 -

Table Access Protocol

$baseURL/async service endpoint. All subsequent interaction conforms to the
UWS specification.

POST to $baseURL/async:
 REQUEST=ParamQuery&
 FROM=[…] (etc.)

Upon receiving the request the service will execute the query, serializing the
output table in the encoding specified by the FORMAT parameter. MAXREC
applies to the asynchronous request the same as for the synchronous request,
hence may limit the size of the output table generated.

During and subsequent to execution of the query, the client may monitor and
control the job using the controls specified by UWS. The output table is stored
as the job output and may be retrieved via the UWS mechanism once the job
completes.

If the query fails, the service shall report this using the mechanisms specified in
UWS.

3.5 VOSI Operations
The Virtual Observatory Standard Interfaces (VOSI) standard [ref] specifies
certain elements of the service interface which all VO services must adhere to.
The second generation data access layer (DAL2) interfaces [ref] extend this
standard to define the specific form which the VOSI interfaces take within a DAL2
service interface. The DAL2 VOSI operations are essentially the same for all
DAL2 interfaces.

All the VOSI service operations are available only as synchronous operations.
The content of the data returned is determined by the VOSI standard, however
the service URL used to invoke each service operation is defined by the
individual service specification, in this case TAP.

A compliant TAP implementation must implement all VOSI operations as
described below.

3.5.1 Get Service Capabilities
The getCapabilities operation is used to query the capabilities of an individual
TAP service implementation, including:

 Which service interface versions are supported by the service.
 The optional capabilities implemented by the service.
 Any extensions to the service interface.
 Any limitations imposed by the service implementation.

- 28 -

Table Access Protocol

The service Capabilities description describes only the service capabilities and
does not include general registry Resource metadata, which is described
elsewhere, e.g., when the service is registered.

The following URL may be used to invoke the getCapabilities operation:

$baseURL/sync?REQUEST=getCapabilities

The returned output is a XML document containing a registry compliant
Capabilities element describing the service capabilities. The content of the TAP
service capabilties are TBD.

3.5.2 Get Service Availability
The getAvailability operation is used to query and monitor the availability and
status of the service, including:

 Service uptime.
 Any scheduled outages or planned downtime.
 The last time any aspect of the service (such as its capabilities) was

modified.

The following URL may be used to invoke the getAvailability operation:

$baseURL/sync?REQUEST=getAvailability

The returned output is a XML document containing a VOSI compliant description
of the service status and availability. The content of the TAP service availability
description are TBD.

3.5.3 Get Table Metadata
The getTableMetadata operation is used to query the tableset metadata for the
TAP service, i.e., the tables supported by the service, and the columns of each
table. For TAP this is not an explicit service operation, but rather is a special
case of a table metadata request.

The following URL may be used to invoke the getTableMetadata operation:

$baseURL/sync?REQUEST=ParamQuery&
 FROM=TAP_SCHEMA.tableset&FORMAT=xml

The returned output is a XML document containing a registry compliant
description of the tables available via the TAP service. The content of the TAP
tableset metadata document are TBD.

- 29 -

Table Access Protocol

4 Common Query Elements

4.1 Table Names
A fully qualified table name has the form

[[catalog_name”.”[schema_name”.”]table_name]]

where catalog_name is the “catalog” name (often the “database” name) in SQL
DBMS terminology, schema_name is the “schema” name in DBMS terminology
(often also called a “database”; a DBMS schema is a type of data model where
the top level data model elements are tables), and table_name is the actual table
name. All elements of the table name are optional except table_name.
Depending upon the DBMS, “catalog” or “schema” may or may not be
implemented; some DBMS implement both, others one or the other, and the
simplest database systems might not implement either.

Table names originate in the TAP service in a metadata query and should be
passed back to the TAP service unchanged by the client. It is up to the service
whether or not catalog and schema names need to be included to fully qualify a
given table. Case is significant in table names.

The full table name may have any of these combinations:

 Just the base table name
 Catalog name and base table name (with “..” between the two)
 Schema name and base table name (with “.” between the two)
 Catalog name, schema name, and base table name

The names are revealed to clients and users through the TAP metadata query
and the VOSI getTableMetadata interface. Where a service provides both of
these interfaces, it must expose the same names in each.

4.2 Table Uploads
TAP currently supports two methods by which a client application can upload
table or other data for use in a query. The simplest approach for tables which are
Web-accessible is use of the UPLOAD parameter (3.1.1.4) to reference an
external table by URI. More flexible for dynamic client queries is the inline table
upload where the table is uploaded inline as part of the query.

In both cases uploaded tables share the TAP_UPLOAD schema, and should be
referred to in queries as “TAP_UPLOAD.<tablename>”, where the tablename is
specified by the client at upload time, and must be a legal ADQL table name.
Tables are uploaded in VOTable format. Tables in the TAP_UPLOAD schema

- 30 -

Table Access Protocol

persist only for the lifetime of the query (although caching might be used behind
the scenes).

Uploading a table at query time using the UPLOAD parameter is straightforward
so long as the table has already been made Web-accessible. For example, a
table could be placed in a publically readable VOSpace, and the VOSpace URI
of the table could be used with UPLOAD to reference the table in a query.

In the case of the inline table upload a table is uploaded inline as part of the
query, used within the query like any other table, then discarded once the query
completes. A typical example would be a multi-position query where the user
uploads a list of source positions.

To upload a table inline the POST form of the query must be used. The content
type used is “multipart/form-data”, using a “file” type input element, with
the “name” attribute specifying the table name.

So for example in the POST data (following the header and input parameters) we
might have:

 Content-Type: multipart/form-data; boundary=AaB03
 [...]

 --AaB03x
 Content-disposition: form-data; name="table1"; filename="table1.xml"
 Content-type: application/x-votable+xml
 [...]

 --AaB03x
 Content-disposition: form-data; name="region"; filename="region.xml"
 Content-type: application/x-stc+xml

The upload table would automatically propagate and could be referenced in
either ADQL or param queries as "TAP_UPLOAD.table1". In the above
example a STC region mask is also being uploaded.

Inline table uploads may be used both with standard Web forms in a browser, as
well as for programmatic input.

Any number of tables can be uploaded using this technique, so long as they are
assigned unique table names within the query. Although our discussion here
concerns uploading tables, any type of file can be uploaded in this fashion
provided the service can do something useful with the file.

4.3 VOSpace Integration
This version of TAP provides limited VOSpace integration, although better
support for VOSpace is planned for a later version following prototyping.
Ultimately one would like to have per-user VOSpace storage co-located with the

- 31 -

Table Access Protocol

TAP service, allowing user queries to save output tables to the local VOSpace as
well as use them for input in subequent queries, without having to serialize to and
from VOSpace and transfer tables over the network. Frequently used tables
such as source lists for multi-position queries could persist between queries, and
could be arbitrarily large.

The current version of TAP does provide limited VOSpace integration via the
table UPLOAD parameter, using the upload URI to point to a table stored in
either a local or remote VOSpace.

4.4 Query Response
The response to a successful table query (using either AdqlQuery or
ParamQuery) is a table. By default tables are returned to the client in VOTable
format, although other output formats are possible, as described in the next
section.

The output VOTable should be compliant with VOTable V1.1 or greater [ref] and
for a synchronous query should be returned with a MIME type of:

text/xml;content=x-votable

A base MIME-type of text/xml is used for synchronous queries to enable
display of query results in browsers using direct rendering of the XML or an
optional style sheet. VOTables which are manipulated as file data should instead
use the MIME type application/x-votable+xml.

The VOTable must contain a RESOURCE element, identified with the tag type =
"results", containing a single TABLE element with the results of the query.
Additional RESOURCE elements may be present, but the usage of any such
elements is not defined here.

The RESOURCE element must contain an INFO element with name =
"QUERY_STATUS". Its value attribute should be set to ”OK” if the query
executed successfully, regardless of whether any matching data were found. All
other possible values for the value attribute are described in section 7.10.

Examples:
<INFO name="QUERY_STATUS" value="OK"/>
<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

Additional INFOs may be provided, e.g., to echo the input parameters back to the
client in the query response (a useful feature for debugging or to self-document
the query response), however this is not required.

- 32 -

Table Access Protocol

If the output of the query is being written while the query result is processed
(streaming output) it is possible that an overflow or error will occur while the table
rows are being written. In this case, the service must set the initial query status
to STREAM and must include an additional INFO after the table with
name="QUERY_STATUS" and value of OK, OVERFLOW, or ERROR.

(Alternatively, the initial query status could be OK or ERROR and a failure later
on would require just the additional INFO with OVERFLOW or ERROR - then we
do not have to add STREAM... that might be a more general solution)

If the output of a query includes column(s) of type datetime/timestamp (?), the
values must be specified in ISO8601 format.

If the output of a query includes columns(s) of type region (e.g. a column of type
POINT, CIRCLE, POLYGON, or REGION as defined by ADQL), the value must
be output in a single column and encoded in STC-S format (Rots 2007). If the
underlying tables (as described by the table metadata) store spatial information
in multiple columns (e.g. RA and DEC in separate columns), then the output can
also use multiple columns (and, in the case of VOTable, the coordinate system
can usually be specified by a PARAM rather than a FIELD).

Where possible output table columns should be assigned UCDs (uniform
content descriptors) to indicate the type of quantity stored in the column. If the
table contains a data model columns may also be assigned UTYPEs, and may
be aggregated with the VOTable GROUP construct to identify a subset of table
columns as a data model instance.

4.5 Output Formats
In the case of TAP, all regular (non tableset) table data or metadata queries
produce a single table as a result. Output table data may be rendered and
returned to the client in any format supported by the service, VOTable being the
default and the only output format for which support is mandatory.

A TAP service must support VOTable as the default output format, and should
support at least comma separated values format (CSV) as well. The service
may also provide pretty printed text, HTML, or FITS binary table as output
formats, or any additional custom format defined by the service. The output
formats supported by the service should be defined in the service metadata
(3.5.1), along with their MIME types and FORMAT parameter short names, if
defined.

CSV formatted data should represent the output table with one row of text per
table row, with the table column values rendered as text and separated by
commas. If a column value contains a comma the entire column value should be
enclosed in double quotes. Text lines may be arbitrarily long. The first data row

- 33 -

Table Access Protocol

should give the column name as the data value. Header lines may optionally be
included in the first few lines of output, prior to the first data row, and should be
indicated by placing the character ‘#’ in the first character of the line.

Tableset metadata (see section 3.3.3) does not constitute normal table output
and can be returned only in either dataless VOTable or registry compliant XML
format.

5 TAP Schema

5.1 TAP Core Schema
The TAP core schema is intended to define the minimal metadata required to
describe and use the tables exposed by a TAP service. The TAP core schema is
equivalent to that defined by the registry for a VODataService [this is the goal but
both are still being revised]. VODataService is in turn modeled after VOTable.

The table “TAP_SCHEMA.schemas” contains the following columns:

schema_name fully qualified schema name (catalog.schema)
description brief description of schema
utype UTYPE if schema corresponds to a data model

The table “TAP_SCHEMA.tables” contains the following columns:

schema_name fully qualified schema name (catalog.schema)
table_name fully qualified table name (catalog.schema.table)
table_type one of: base_table, view, output
description brief description of table
utype UTYPE if table corresponds to a data model

The table “TAP_SCHEMA.columns” contains the following columns:

column_name column name
table_name fully qualified table name (catalog.schema.table)
description brief description of column
unit unit in VO standard format
ucd UCD of column if any
utype UTYPE of column if any
datatype datatype as in VOTable/Registry
arraysize array dimensions as in VOTable/Registry
primary column is visible in default selection
indexed column is indexed on the server
std standard column (as opposed to custom)

- 34 -

Table Access Protocol

The TAP schema is extensible, and additional schema columns or tables may be
defined by an individual service.

The table_name should include any catalog or schema names if these are used
to reference tables by the server. This should include TAP_SCHEMA for any
tables part of the TAP schema itself. The schema TAP_UPLOAD should be
included in the table name for any tables located in the table upload area. The
TAP_SCHEMA may be queried for tables named "TAP_SCHEMA.*" to get
information about the schema itself, e.g., to determine if any extended schema
metadata is defined by the service.

The schema naming conventions used here follow that of the registry. Data
types are expressed as in VOTable and the registry, e.g., boolean, unsignedByte,
short, int, float, double, and so forth. “Arraysize” specifies the dimensions of an
array, e.g., "*", "5", "5x20" etc. “Primary” indicates that the column should be
visible in the default (narrow) view of a table. “Indexed” indicates that the column
is indexed, potentially making queries run much faster if this column is used as a
constraint. “Std” is included for compatibility with the registry, which uses this
value to indicate that a given column is defined by some standard, as opposed to
a custom column defined by a particular service.

5.2 Table Sets
The TAP schema also defines TAP_SCHEMA.tableset, however this is not an
actual table but rather a structured view of the core schema tables above. A
simple query will return the entire tableset, but advanced services may permit
selection with a WHERE clause, e.g., to find only tables within a given region or
for which the tablename matches some pattern. The tableset contains a
sequence of table entries with each entry listing the columns of that table. XML
and VOTable output formats are defined. For XML table metadata is formatted
as defined for a VODataService. For VOTable a VOTable is returned which
contains a sequence of "empty" TABLE entries containing only metadata (FIELD
and PARAM definitions) and no table data.

To return the full tableset supported by the service in VOTable format:

FROM=TAP_SCHEMA.tableset&FORMAT=votable

To return the same metadata in registry compliant XML format the same
command would be used, with FORMAT specified as “xml”.

6 Service Registration
Publication of a service to the VO requires that it be registered with the VO
registry, including describing the identity and capabilities of the service.

- 35 -

Table Access Protocol

The registration metadata for a TAP service instance is structured according to
VOResource 1.0 [ref] and is assigned the sub-type CatalogService as defined in
VODataService 1.1 [ref].

Each of the primary capabilities (service interfaces or versions) provided by the
service is expressed as a capability element in the service registration. These
elements are distinguished by their standardID attributes. The standardID
attributes for TAP are TBD.

Where the database-schema of the archive is fixed or slowly-changing, the
service registration should detail this schema using elements drawn from
VODataService 1.1. Where the schema changes frequently, these metadata
should not be included in the registration.

7 Basic Service Elements

7.1 Introduction
This section specifies the basic form of the service interface, including the form of
a service request and its response. These characteristics are common to all
service operations, and are largely common to all the second generation DAL
protocols.

7.2 Version numbering and negotiation

7.2.1 Version number form and value
The TAP protocol defines a protocol version number. The version number applies
to all aspects of the protocol as defined in this document, including any
associated XML schema and the request encodings. The TAP version refers
only to the TAP protocol; ADQL is versioned separately and TAP and ADQL
versions may differ.

Version numbers follow IVOA document conventions and contains two non-
negative integers, separated by decimal points, in the form “x.y”, for example,
“1.0”, or “1.13”. This is actually a three level version number encoded as two
digits, e.g., “1.23” is logically the same as “1.2.3”. One result of this syntax is that
second level version numbers cannot be greater than 9, for example “1.9” is a
higher version number than “1.10” (logically “1.9.0 vs. “1.1.0”). Hence IVOA
version numbers cannot be numerically compared without first being parsed.

7.2.2 Version number changes
The protocol version number will change with each published revision of this
document. The number will increase monotonically and will comprise no more
than two integers separated by decimal points, with the first integer being the
most significant. There may be gaps in the numerical sequence. Some numbers

- 36 -

Table Access Protocol

may denote draft versions. Servers and their clients need not support all defined
versions, but shall obey the negotiation rules below.

A version number change at the first level (e.g., 1.0 – 2.0) indicates a major
change. A version number change at the second level indicates a minor change
which is not necessarily backwards compatible. A version number change at the
third level is considered backwards compatible, and should not affect the pre-
existing functionality of the interface.

7.2.3 Appearance in requests and in service metadata
The version number may appear in at least three places: in the service metadata,
as a parameter in client requests to a server, and in the query response. The
version number used in a client’s request of a particular server must be equal to
a version number which that server has declared it supports (except during
negotiation, as described below). A server may support several versions, whose
values clients may discover according to the negotiation rules.

7.2.4 Version number negotiation
If a TAP client does not specify the version number in a request, the server
assumes the highest standard version supported by the service, and no explicit
version checking takes place. If the client specifies an explicit version number,
and this does not match a version available from the service at level two, the
service returns a version number mismatch error. The client can determine what
versions of the protocol the service supports by a prior call to getCapabilities or
via a registry query.

7.3 General HTTP request rules

7.3.1 Introduction
This document defines the implementation of the TAP service on a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP) (see IETF RFC 2616). Thus, the Online Resource of
each operation supported by a server is an HTTP Uniform Resource Locator
(URL). The URL may be different for each operation, or the same, at the
discretion of the service provider. Each URL shall conform to the description in
IETF RFC 2616 (section “HTTP URL”) but is otherwise implementation-
dependent; only the query portion comprising the service request itself is defined
by this document.

While the TAP protocol currently only supports HTTP as the DCP for general
parameterized operations, data access references are more general and may
use other internet protocols, e.g., FTP, or potentially grid protocols.

HTTP supports two primary request methods: GET and POST. One or both of
these methods may be offered by a server, and the use of the Online Resource

- 37 -

Table Access Protocol

URL differs in each case. Support for the GET method is mandatory; support for
the POST method is optional except where required for a service operation to
function, e.g., uploading a large quantity of data inline in a query, or when issuing
a request to the service which changes the server state.

7.3.2 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396) reserves particular characters as
significant and requires that these be escaped when they might conflict with their
defined usage. This document explicitly reserves several of those characters for
use in the query portion of TAP requests. When the characters “?”, “&”, “=”, “,”
(comma), “/”, and “;” appear in one of the roles defined in Table 1, they shall
appear literally in the URL. When those characters appear elsewhere (for
example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server shall be prepared to decode any character escaped
in this manner.

Table 1 — Reserved characters in TAP query string
Character Reserved usage

? Separator indicating start of query string.
& Separator between parameters in query string.
= Separator between name and value of parameter.
,/; Separator between individual values in list-oriented parameters (such

as POS, BAND, TIME, etc.).

In particular, if any parameter value contains the character “#” (for example in a
dataset identifier) it must be URL encoded to be legally included in a URL.

7.3.3 HTTP GET
A TAP service shall support the “GET” method of the HTTP protocol (IETF RFC
2616).

An Online Resource URL intended for HTTP GET requests is in fact only a URL
prefix to which additional parameters are appended in order to construct a valid
Operation request. A URL prefix is defined in accordance with IETF RFC 2396
as a string including, in order, the scheme (“http” or “https”), Internet Protocol
hostname or numeric address, optional port number, path, mandatory question
mark “?”, and optional string comprising one or more server-specific parameters
ending in an ampersand “&”. The prefix defines the network address to which
request messages are to be sent for a particular operation on a particular server.
Each operation may have a different prefix. Each prefix is entirely at the
discretion of the service provider.

This document defines how to construct a query part that is appended to the URL
prefix in order to form a complete request message. Every TAP operation has

- 38 -

Table Access Protocol

several mandatory or optional request parameters. Each parameter has a
defined name . Each parameter may have one or more legal values, which are
either defined by this document or are selected by the client based on service
metadata. To formulate the query part of the URL, a client shall append the
mandatory request parameters, and any desired optional parameters, as
name/value pairs in the form “name=value&” (parameter name, equals sign,
parameter value, ampersand). The “&” is a separator between name/value pairs,
and is therefore optional after the last pair in the request string.

When the HTTP GET method is used, the client-constructed query part is
appended to the URL prefix defined by the server, and the resulting complete
URL is invoked as defined by HTTP (IETF RFC 2616).

Table 2 summarizes the components of an operation request URL when HTTP
GET is used.

Table 2 — Structure of TAP request using HTTP GET
URL component Description

http://host:port]/path[?[name[=value]
{&name=[value]}]]

Base-URL (prefix) of service operation. [] denotes
0 or 1 occurrence of an optional part; {} denotes 0
or more occurences.

name=value&
One or more standard request parameter
name/value pairs as defined for each operation by
this document.

7.3.4 HTTP POST
TAP uses he “POST” method of the HTTP protocol (IETF RFC 2616) whenever a
large amount of data needs to be uploaded inline in the query, e.g., when
uploading an inline table, or whenever the request may change the server state,
e.g., when requesting asynchronous execution of a query. Semantically POST
and GET are largely the same, permitting the same parameters to be transmitted
to the server to define the request. Parameters should be URL encoded in a
POST whenever they would need to be URL encoded for a GET.

7.4 General HTTP response rules
Upon receiving a valid request, the server shall send a response corresponding
exactly to the request as detailed in section 3 of this document, or send a service
exception if unable to respond correctly. Only in the case of Version Negotiation
(see 7.2.4) may the server offer a differing result. Upon receiving an invalid
request, the server shall issue a service exception as described in 7.10.

A server may send an HTTP Redirect message (using HTTP response codes as
defined in IETF RFC 2616) to an absolute URL that is different from the valid

- 39 -

Table Access Protocol

request URL that was sent by the client. HTTP Redirect causes the client to
issue a new HTTP request for the new URL. Several redirects could in theory
occur. Practically speaking, the redirect sequence ends when the server responds
with a valid TAP response. The final response shall be a TAP response that
corresponds exactly to the original request (or a service exception).

Response objects shall be accompanied by the appropriate Multipurpose Internet
Mail Extensions (MIME) type (IETF RFC 2045) for that object. A list of MIME
types in common use on the internet is maintained by the Internet Assigned
Numbers Authority (IANA) . Allowable types for operation responses and service
exceptions are discussed below. The basic structure of a MIME type is a string of
the form “type/subtype”. MIME allows additional parameters in a string of the form
“type/subtype; param1=value1; param2=value2”. A server may include
parameterized MIME types in its list of supported output formats. In addition to
any parameterized variants, the server should offer the basic unparameterized
version of the format.

Response objects should be accompanied by other HTTP entity headers as
appropriate and to the extent possible. In particular, the Expires and Last-
Modified headers provide important information for caching; Content-Length may
be used by clients to know when data transmission is complete and to efficiently
allocate space for results, and Content-Encoding or Content-Transfer-Encoding
may be necessary for proper interpretation of the results.

7.5 Numeric and boolean values
Integer numbers shall be represented in a manner consistent with the
specification for integers in XML Schema Datatypes. This document shall
explicitly indicate where an integer value is mandatory. Real numbers shall be
represented in a manner consistent with the specification for double-precision
numbers in XML Schema Datatypes. This representation allows for integer,
decimal and exponential notations. A real value is allowed in all numeric fields
defined by this document unless the value is explicitly restricted to integer.

Sexagesimal formatting is generally not permitted other than in ISO 8601
formatted time strings unless otherwise specified in this document. For TAP an
exception is made for queries of data tables where the native table formatting is
normally preserved.

Positive, negative and zero values are allowed unless explicitly restricted.

Boolean values shall be represented in a manner consistent with the
specification for Boolean in XML Schema Datatypes. The values “0” and “false”
are equivalent. The values “1” and “true” are equivalent. Absence of an optional
value is equivalent to logical false. This document shall explicitly indicate where
a Boolean value is mandatory.

- 40 -

Table Access Protocol

7.6 Output formats
The response to a TAP request is always a computer file that is transferred over
the Internet from the server to the client. The file may contain text, or the file may
be a graphics or FITS-formatted file . As stated in 4.5, the type of the returned
file shall be indicated by a MIME type string.

Text output formats are usually formatted as Extensible Markup Language (XML;
MIME type text/xml). Text formats are used to convey service metadata,
descriptions of error conditions, or responses to data queries. In particular, the
response to a data query is always returned as an XML file in VOTable format.

7.7 Request parameter rules

7.7.1 Parameter ordering and case
Parameter names shall not be case sensitive, but parameter values shall be. In
this document, parameter names are typically shown in uppercase for
typographical clarity, not as a requirement.

Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response
from the server may be undefined. This document does not mandate which of
the duplicated values sent by the client are to be used by the server. It is
recommended that neither the client nor the service should repeat parameter
values in a query URL.

A TAP service shall be prepared to encounter additional request parameters that
are not part of this document without reporting an error. In terms of producing
results per this document, a TAP service shall not require such parameters, but
may define additional service-defined parameters.

7.7.2 Range-list parameters
Parameters which are list-valued (for example, UPLOAD and POS) use the
comma (“,”) as the separator between successive items in the list. Embedded
white space is not permitted. If a parameter value includes a space or comma, it
must be escaped using the URL encoding rules (see 7.3.2 and IETF RFC 2396).

In some lists, individual entries may be empty, and should be represented by the
empty string. Thus, two successive commas indicate an empty item, as does a
leading comma or a trailing comma. An empty list should be interpreted either as
a list containing no items, or as a list containing a single empty item, depending
upon the context.

- 41 -

Table Access Protocol

Some parameters (for example MTIME and WHERE) may allow a parameter
value to be specified as a numeric range. Such range-valued parameters use
the forward slash (“/”) character as the separator between elements of the range
specification (as in the ISO 8601 date specification after which this convention is
patterned). For example, “5E-7/8E-7” would specify a range consisting of all
values from 5E-7 to 8E-7, inclusive. If a third field is specified it is a step size for
traversing the indicated range. If a parameter permits a step size the semantics
of the step size are defined by the specific parameter.

An open range may be specified by omitting either range value. If the first value
is omitted the range is open toward lower values. If the second value is omitted
the range is open toward higher values. Omitting both values indicates an infinite
range which accepts all values. For example, “/5” is an open range which
accepts all values less than or equal to 5. To specify all values less than 5, “/4”
would be used (for an integer valued range). Range values are limited to
numeric values or ISO dates.

If specified by the definition of a particular parameter a list may be qualified by
appending the character “;” (semicolon) followed by a qualifier string. For
example “180.0,1.0;galactic” would specify a position in galactic coordinates. In
some cases (e.g., UPLOAD; the ParamQuery WHERE), multiple semicolons may
be used to delimit separate sub-lists or clauses within the parameter value.

List and range syntax may be combined, e.g., to indicate a list of scalar or range-
valued parameter values. Such a range list may be ordered or unordered, and
may contain either numeric or string data. An ordered list is one which requires
values to be processed in a specified order, and to ensure this the range list is
sorted or ordered by the service as necessary before being used. It is the
responsibility of the service to sort an ordered range list, hence the client can
input ranges or range values in any order for an ordered range list and the result
will be the same. The sequence in which items in an unordered list occur on the
other hand is significant, as since there is no intrinsic ordering for the list which
can be enforced by the service, items will be processed by the service in the
order they are input by the client.

The ParamQuery SELECT parameter is an example of an unordered list, that is,
a list which does not have a specified order mandated by the service (hence in
this case the client determines the order in which table fields will be output).

7.7.3 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been
specified. If a parameter is given a null value, e.g., “POS=”, the parameter value
has been set and the value is the null string. The interpretation of such an input
is defined separately for each parameter, and may or may not be an error
condition.

- 42 -

Table Access Protocol

7.8 Common request parameters

7.8.1 VERSION
The VERSION parameter specifies the protocol version number. The format of
the version number, and version negotiation, are described in 7.2.

7.8.2 REQUEST
The REQUEST parameter indicates which service operation is being invoked.
The value shall be the name of one of the operations offered by the server. It is
an error to reference an unknown service operation. The service operation to be
executed must be explicitly specified in every request or it is an error.

7.8.3 Extended capabilities and operations
The TAP service allows for optional extended capabilities and operations.
Extensions may be defined within an information community when needed for
additional functionality or specialization. A generic client shall not be required or
expected to make use of such extensions. Extended capabilities or operations
shall be defined by the service metadata. Extended capabilities provide
additional metadata about the service, and may or may not enable optional new
parameters to be included in operation requests. Extended operations may allow
additional operations to be defined.

A server shall produce a valid response to the operations defined in this
document, even if parameters used by extended capabilities are missing or
malformed (i.e. the server shall supply a default value for any extended
capabilities it defines), or if parameters are supplied that are not known to the
server.

Service providers shall choose extension names with care to avoid conflicting
with standard metadata fields, parameters and operations.

7.9 Service result
The return value of a valid Service request shall correspond to the output type
specified for the operation, or requested in the FORMAT parameter in the case of
an operation which can return data in a choice of output formats. In an HTTP
environment, the Content-type header of the response shall be exactly the MIME
type associated with the valid request.

7.10Error Response and Other Exceptional Results
Upon receiving a request that is invalid according to this document, the server
shall issue a service exception report. The service exception report is meant to
describe to the client application or its human user the reason(s) that the request
is invalid. The allowed service exception formats are defined below.

- 43 -

Table Access Protocol

If a service operation throws an error response and exits, the default action of the
service should be to return a VOTable noting that an error has occurred, and
describing the error. An INFO element within the "results" RESOURCE element of
the VOTable is used to indicate success or failure of the operation. As described
in the previous section, the INFO element must have name="QUERY_STATUS"; if
the operation is successful (regardless of whether any data is returned) the value
attribute is set to "OK". The remainder of this section defines other possible
values to indicate that the query was unsuccessful in some way. When the query
is unsuccessful, the contents of INFO element (i.e. its PCDATA child node)
should contain an error message suitable for display.

If an error response VOTable is returned the MIME type of the response must be
“text/xml;content=x-votable;status=error” to indicate (without having
to read the VOTable content) that an error occurred.

When the query is unsuccessful (in any of the senses described below), the
resulting VOTable is not required to contain any other elements as specified for a
successful operation; however, it is not an error to do so. For example, additional
INFO elements may be returned to echo back the input parameters of the
operation which failed, as in the following example.

Example:
 <VOTABLE … version=”1.1”>

<RESOURCE type="results">
 <INFO name="QUERY_STATUS" value="ERROR">unrecognized operation</INFO>
 <INFO name="SERVICE_PROTOCOL" value="1.0">TAP</INFO>
 <INFO name="REQUEST" value="queryData"/>
 <INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>
 <INFO name="serviceVersion" value="1.0"/>
 <INFO name="serviceName" value="tap"/>
 <INFO name="ServiceEngine" value="tap: TAP 1.0 DALServer version 0.4"/>
</RESOURCE>

 </VOTABLE>

The other allowed values for the value attribute besides "OK" are as specified
below.

7.10.1 Service Error
The server failed to process the operation. Typical reasons include:

 The input query contained a syntax error.
 The way the query was posed was invalid for some reason, e.g., due to an

invalid query specification.
 A constraint parameter value was given an illegal value; e.g. DEC=91.
 The server trapped an internal error (e.g., failed to connect to its

database) preventing further processing.

- 44 -

Table Access Protocol

In this case a descriptive error message should be included in the query status
INFO.

Example:
<INFO name="QUERY_STATUS" value="ERROR">DEC out of range: DEC=91</INFO>

7.10.2 Output Overflow
The operation produced results that exceeded the maximum output in effect for
the query. For instance, a data query exceeded the maximum number of output
records defined for the session or operation. In this case, the operation was
successful (overflow is not an error condition), and the service must return a
valid response with valid data records, but with QUERY_STATUS set to
“OVERFLOW” instead of “OK” (see also section 3.1.1.5).

Example:
<INFO name="QUERY_STATUS" value="OVERFLOW">
Number of table rows exceeds default limit of 5000
</INFO>

If overflow occurs valid data is returned and the client may either choose to
ignore the overflow and use the data returned, or may repeat the query,
requesting a higher MAXREC value than the default, up to the hard limit defined
by the service capabilities. Alternatively the query parameters may be adjusted
to more carefully constrain the query. Currently these are the only ways to avoid
overflow when performing a query.

Since an output overflow is not an error condition, the MIME type of the output
VOTable should be the same as for any successful query.

7.10.3 Other Errors
Although the intention is that service should catch all errors and return a uniform
error response in the prescribed VOTable format, informing the client of the
nature of the error which occurred in service-specific terms, this is not always
possible. More fundamental errors may result in a HTTP level error. The client
should be prepared to handle either form of error. Which is returned in a given
case, may depend upon the operation performed, the nature of the error which
occurred, and the details of how a given service is implemented.

Appendix A: “Appendix Title”
Insert appendix here

- 45 -

Table Access Protocol

References

[1] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html
[2] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines
and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html

- 46 -

http://www.ivoa.net/Documents/latest/DocStdProc.html
http://www.ivoa.net/Documents/latest/RM.html

	1Introduction
	1.1Parametric and ADQL-based Queries
	1.2Synchronous and Asynchronous Queries
	1.3Requirements for Compliance

	2Interface Overview
	2.1Architecture
	2.2Service Operations
	2.3Service Profile
	2.3.1Request Format
	2.3.2Parameters
	2.3.3Parameter Values
	2.3.4Use of GET and POST
	2.3.5URL Encoding
	2.3.6Error Response

	2.4Request Examples

	3TAP Service Operations
	3.1Synchronous ADQL Query
	3.1.1Input Parameters
	3.1.1.1QUERY
	3.1.1.2LANG
	3.1.1.3FORMAT
	3.1.1.4UPLOAD
	3.1.1.5MAXREC
	3.1.1.6MTIME
	3.1.1.7RUNID

	3.1.2Query Response

	3.2Asynchronous ADQL Query
	3.3Synchronous Parametric Query
	3.3.1Input Parameters
	3.3.1.1POS, SIZE
	3.3.1.2REGION
	3.3.1.3SELECT
	3.3.1.4FROM
	3.3.1.5WHERE
	3.3.1.6Other Query Parameters

	3.3.2Query Response
	3.3.3Table Metadata Queries
	3.3.4Cone Search Query
	3.3.5Multi-Position Queries

	3.4Asynchronous Parametric Query
	3.5VOSI Operations
	3.5.1Get Service Capabilities
	3.5.2Get Service Availability
	3.5.3Get Table Metadata

	4Common Query Elements
	4.1Table Names
	4.2Table Uploads
	4.3VOSpace Integration
	4.4Query Response
	4.5Output Formats

	5TAP Schema
	5.1TAP Core Schema
	5.2Table Sets

	6Service Registration
	7Basic Service Elements
	7.1Introduction
	7.2Version numbering and negotiation
	7.2.1Version number form and value
	7.2.2Version number changes
	7.2.3Appearance in requests and in service metadata
	7.2.4Version number negotiation

	7.3General HTTP request rules
	7.3.1Introduction
	7.3.2Reserved characters in HTTP GET URLs
	7.3.3HTTP GET
	7.3.4HTTP POST

	7.4General HTTP response rules
	7.5Numeric and boolean values
	7.6Output formats
	7.7Request parameter rules
	7.7.1Parameter ordering and case
	7.7.2Range-list parameters
	7.7.3Missing or null-valued parameters

	7.8 Common request parameters
	7.8.1VERSION
	7.8.2REQUEST
	7.8.3Extended capabilities and operations

	7.9Service result
	7.10Error Response and Other Exceptional Results
	7.10.1 Service Error
	7.10.2 Output Overflow
	7.10.3 Other Errors

	Appendix A: “Appendix Title”
	References

