
International
Virtual
Observatory

Alliance

IVOA TimeSeries data modelling and
representation
Version 1.0

IVOA Note 2018-11-04
Working Group

DataModel, TimeDomain
This version

https://www.ivoa.net/documents/TSSerializationNote/20181104
Latest version

https://www.ivoa.net/documents/TSSerializationNote
Previous versions

Author(s)
Francois Bonnarel, Mireille Louys, Ada Nebot, Laurent Michel,
Mark Cresitello-Dittmar

Editor(s)
Ada Nebot

Abstract
This Note gathers collaborative efforts for defining metadata adequate

for the discovery and retrieval of Time series data. Uses cases are examined,
various strategies for modeling and serialising these metadata are presented.
This was a starting point for the development of a data model applicable to
Time domain uses-cases.

Status of this document
This is an IVOA Note expressing suggestions from and opinions of the

authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents/.

https://www.ivoa.net/documents/TSSerializationNote/20181104
https://www.ivoa.net/documents/TSSerializationNote
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/FrancoisBonnarel
http://wiki.ivoa.net/twiki/bin/view/IVOA/MireilleLouys
http://wiki.ivoa.net/twiki/bin/view/IVOA/AdaNebot
http://wiki.ivoa.net/twiki/bin/view/IVOA/LaurentMichel
http://wiki.ivoa.net/twiki/bin/view/IVOA/MarkCresitelloDittmar
https://www.ivoa.net/documents/

Contents

1 Introduction 3

2 Time Series 3
2.1 Definition . 3
2.2 Science use cases . 5
2.3 Using a common time frame 6
2.4 Extension of ObsCore based on EPNCore 6

3 Models 6

4 Time series representation: Data Model and UML diagram 8
4.1 Data modeling with datamodel reuse from the IVOA effort

:CharacterizationDM, Cube DM, STCv2 8
4.2 Perspective . 9
4.3 TimeSeries representation use-cases 9

4.3.1 Light curve . 9
4.3.2 Time Series of spectra 11
4.3.3 Time series of images 11
4.3.4 Time series of cubes 11
4.3.5 Time series of combined data 11

5 TS Data Model 13
5.1 Data model fields from ObsCore 16
5.2 Cube data model Extension , Mark Cresitello-Dittmar 16

6 Serialisations 19
6.1 Jiri’ s approach . 20
6.2 Full utype serialisation . 20
6.3 Marks’s approach . 21

6.3.1 Sample Files . 21
6.3.2 Mapping Syntax . 22

6.4 Laurent’s approach . 23
6.4.1 Mapping Syntax . 24
6.4.2 Workflow (to be updated) 26
6.4.3 Conclusions and Prospects 26

7 View from Data Providers and Client developers 26

References 26

2

Acknowledgments

1 Introduction

This is the intro of the Note.

2 Time Series

In this section we describe what Time Series data is in a wide context, defin-
ing the most relevant parameters that define it. We describe the common
requirements of the different science use cases collected by the Science Pri-
ority Committee ?. A common frame for time is defined with the minimum
set of parameters taken from and compatible with STC. We then compare
the defined fields describing time with the fields content of Obscore and
EPNcore.

2.1 Definition

Time Series can be defined in a very large sense as a collection of any kind
of data over time for a particular source (e. g. star, binary, QSO) or part of
a source (e. g. sun spots), independent on the type of data (images, light-
curves, radial velocity, polarisation estates or degrees, positions, number of
sunspots, densities,...), the duration of the observation or the cadence.

Independent on the type of data we can sketch Time Series data as
shown in Fig. 1. Time Series data is composed of a set of observations
(n_observations = 3 in this example), each with a different exposure or in-
tegration time (t_exp). Although in some cases the cadence or time span
between each observation (delta_t) is fixed, in the general case it can be
different and we can therefore define a minimum and a maximum value
(delta_t_min, delta_t_max). Each observation has it’ s own time stamp
(t_i) with a given precision or resolution (t_resolution). As can be seen
from this figure the duration of the observation can be defined in different
ways: a) as the total integration or exposure time, i. e. the sum of all the
exposure times: t_exp_total =

∑
t_exp; or b) as the time spam between

the beginning and the end of the observations: t_exp_total = t_max -
time_min). Note that in the case that the exposure time is constant for
all the observations then t_exp_total = n_observations ×t_exp. The sit-
uation can be more complicated, for instance during the observation there
could be clouds and we therefore pause the exposure for a while and resume
once the cloud has passed or we might want to remove parts of the obser-
vation due to artefacts in the data. In any case these values can be taken
as approximative of the minimum and the maximum value this specific field

3

Figure 1: Simple representation of Time Series data.

can have. The most relevant fields of Time Series metadata are summarized
in Table 1.

Table 1: Time Series metadata fields.

Field Explanation

(RA,Dec) Coordinates1

target_name Target name1

t_min Date of the begining of the of observation
t_max Date of the end of the observation
t_exp_min Minimum exposure time
t_exp_max Maximum exposure time
t_exp_total Total exposure time
delta_t_min Minimum time sampling / cadence
delta_t_max Maximum time sampling / cadence
t_resolution Time resolution/precision
n_observations Number of observations
type_of_data Type of data (fluxes, radial velocities, images,...)

Note: 1For SSO or moving objects coordinates might not be enough or
relevant.

In many cases time series data is composed of only three colums:

4

Science Target(s) Datatype Time Brightness Photometric
Case Band

Group A yes lightcurves yes yes one
Group B yes lightcurves yes yes several
Group C yes other yes no no

time, magnitude, magnitude error

For this data to be fully exploitable and reusable (interoperable) it has to be
properly documented. In this specific case the minimum information that
needs to be provided is: the object coordinates (or name), the filter in which
the observations have been carried out, and the time frame and offset (if
applicable).

2.2 Science use cases

Different science use cases for Time Series have been collected and described
in ? and can be found under http://wiki.ivoa.net/twiki/bin/view/
IVOA/CSPTimeSeries. Science cases are grouped according to their common
requirements:

• Group A Common requirement: Combine photometry and light
curves of a given object/list of objects in the same photometric band

• Group B Common requirement: Combine photometry and light
curves of a given object/list of objects in different photometric bands

• Group C Common requirement: Time series other than light curves

As highlighted by the different science use cases described in http:
//wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries, there are astro-
physical phenomenae that vary in different timescales and hence, in order
to study the different physical underlying mechanisms a user might need to
collect and analyse data from different missions and of different nature. An-
swering all the possible science cases is a difficult task. We would therefore
like to keep a practical approach to the problem, solving the simplest cases
in a first step and allowing having incremental solutions for more complex
systems at later stages.

Looking at the different science cases we simplify the questions to two:

1. Have these two missions observed this object within these two dates?

2. Is it possible to discover long/short term variability within the data?

5

http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries

To answer the first question a user needs to be sure that dates are compa-
rable, that is time has to be brought into a common time frame. To answer
the second question we need to keep track of the minimum and maximum
time span. We aim in a first step to answer these fundamental questions
and, later on we will move to answer the specific science cases, which focus
of the nature of the Time Series data, giving priority to light curves which
represent the majority of the cases, while having in mind a wider approach.

2.3 Using a common time frame

To compare datasets from different missions or archives a common represen-
tation of time is needed. In order to do so we propose to map time into a
pivot format. Following ? and Rots (2007) we propose a

set of minimum metadata to be added for serializations of Time Series
(see Table 2).

We recommend to be specific on the time frame and we suggest to use:

JD(TDB;BARYCENTER)

We also give some values that can be used as default in the case that some
information is not known and impossible to recover. We minimize the impact
of doing this by adding a systematic error to time when those values are
unknown.

2.4 Extension of ObsCore based on EPNCore

Some of the fields described for Time Series data have already been exple-
citely defined and used in the context of data discovery using ObsCore Tody
and Micol et al. (2011), and the remaining ones have been defined in the con-
text of EPNCore/EPN-TAP Erard and Cecconi et al. (2022). In Table 3 we
show the equivalence between the fields we define here and those by ObsCore
and EPNcore.

For discovering Time Series data, an extension of ObsCore based on the
fields listed in Table 3 and missing in ObsCore would suffice. For these extra
fields we would recommend using the EPNcore name convention.

3 Models

In this section we describe the usage and role of models and how they can
be applied in the context of this note.

6

Table 2: Metadata for time in Time Series data serialisation.

Parameter Explanation

time_frame_scale Time frame scale is the scale used to me-
assure time. IAU definition: “A time scale
is simply a well defined way of measur-
ing time based on a specific periodic natu-
ral phenomenon.” http://aa.usno.navy.mil/
publications/docs/Circular_179.pdf. Rec-
ognized time scale values and their meaning are
listed in Table ??. If we don’t know use “UN-
KOWN”.

time_frame_position Time Frame Position is the place where the time
is measured. Standard values are liste in Ta-
ble ??. If we don’t know use “UNKOWN”.

time_uncertainty Resolution or uncertainty of the time stamps.
time_sys_error Time Systematic Error to take into account

our knowledge of the time frame (scale and
position). If time_scale is not known then
100s as DEFAULT value, if time_scale and
time_frame_position are both not known then
use 1000s as DEFAULT value. Approximately
100s is good for the time_scale since that’s re-
lated to changes in the clock in space/earth;
1000s is good if we don’t know if times are cor-
rected for the position of the Earth/satellite on
its orbit around the Sun since that’s approxi-
mately twice the time it takes the light to travel
the Sun-Earth/satellite distance.

time_representation JD, MJD, ISO-8601.
time_offset Offset that has been subtracted to the time.

Time can be relative to a certain moment, e. g.
time after the GRB that happened on date
YYYYMMHHMMSS.SS or a random number
the authors have subtracted from data to allow
higher precision in the time stamps. Its default
value is 0.0.

Description A text briefly describing what is varying with
time. “Photometric variability in filter V”, “Ra-
dial velocity curve in HJD”. This field is aimed
to help the reader.

7

http://aa.usno.navy.mil/publications/docs/Circular_179.pdf
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Table 3: Equivalence between Time Series data fields and ObsCore and
EPNCore fields

Field ObsCore field name EPNCore field name
coordinates s_ra, s_dec -
target_name target_name target_name

t_min t_min time_min
t_max t_max time_max

t_exp_min - time_exp_min
t_exp_max - time_exp_max
t_exp_total t_exp -
delta_min - time_sampling_step_min
delta_max - time_sampling_step_max

n_observations t_xel -
type_of_data dataproduct_type2 dataproduct_type

Note: 1 The explanation of t_resolution in Obscore as “Temporal resolution
FWHM” should be modified to simply “Temporal resolution”. 2 dataprod-
uct_type should be set to timeseries in Obscore, but this would still not tell
the user that the timeseries is composed of images or lightcurves or a combi-
nation of both in a more complicated case. Q : is it possible to combine
dataproduct_type=timeseries;images;sed for instance?

4 Time series representation: Data Model and
UML diagram

4.1 Data modeling with datamodel reuse from the IVOA effort
:CharacterizationDM, Cube DM, STCv2

The goal of this modeling effort is to tackle various use-cases for character-
izing time dependent datasets.

This model interprets the Cube Data Model (Cresitello-Dittmar and
Tody (2022)) for describing the metadata of Time series necessary to dis-
cover and select a dataset. It also represents the data themselves, the time
line and the kind of measurements taken for each time stamp and how they
are grouped together by some common physical parameter.

It summarizes the properties of an observed dataset following the ap-
proach of the ObsCore Data Model and Characterization Data Model. The
time axis especially is characterized in coverage (span), resolution(uncer-
tainty), sampling in order to easily identify a data set for studying one spe-
cific event. Spatial axis, Spectral axis, Observable (Flux), and Polarimetry
axes are also characterized for data discovery.

The representation of data re-uses the SparseCube Class for representing

8

a collection of measures organized as a multi-dimensional array with possibly
empty values : a sparse cube. The axes covered by the SparseCube can be
described from an axis profile listing which axes are present, which ones are
combined and in which data product types and subtypes.

4.2 Perspective

The data are represented by a node with a time stamp and a bundle of
observable data taken at this time slot. This bundle may contain only a
simple measurement, f.i a flux or a magnitude in the case of a simple light
curve, or a data varying along other parameters like wavelength or frequency,
for a spectrum or like position for an image, or both like a hyperspectral data
cube (2D position + lambda). More over these can also be multiband images,
polarimetric spectra or images, etc.

The event list is the form of the most scattered format of measures, sam-
pling all values separately, but the VO already offers a strategy for querying
and handling dataproducts like images and spectra as well and we can build
on it at least for data discovery.

4.3 TimeSeries representation use-cases

We identified various use-cases where data are taken following a series of
time stamps. The data model allows to accommodate various cases, from
the single light curve for one astronomical object to a series of advanced data
sets depending on the Time axis. The following section describes how data
are bound together for each use-case. It shows a simple block diagram and
illustrates the case with real data sets. The more general form is TS = f(t,
pos, em, pol, ..) represented as a node tupple and by setting one or more of
these parameters to a constant or a set of discrete values, we can represent
many cases .

4.3.1 Light curve

The node tupple is (t, m) with m beeing a photomeric measure which
can be characterised by the Observable UCD tag o_ucd = phot.mag or
phot.flux for instance. In this case attributes from ObsDataset easily
represent the type of dataset: dataproduct_type to be ’timeseries’ and
dataproduct_subtype to be ’lightcurve’ for instance.

Here is a representation for non synchronised multiband time series in
Fig 4

9

Figure 2: Light curve: simple if n equals 1 and multiband light curve if
several fluxes have been recorded in various filters. Here they have been
recorded simultaneously and are bound to the same time stamp. The Pho-
tometric calibration and information of the Photometric system together
with the Filter details are linked to the Flux measures.

0

0,5

1

1,5

He

0

0,5

1

1,5

0,5 1 1,5 2 2,5 3 3,5 4 4,5

u'

0

0,5

1

1,5

2

r'

Phase

no
rm

al
iz

ed
 c

ou
nt

 ra
te

Figure 3: Time series data with multiple fluxes for one time stamp in three
bands : ULTRACAM data

10

Figure 4: Time series data with multiband fluxes not synchronized : Can be
seen as a compilation of three interlacing monoband time series .

4.3.2 Time Series of spectra

The node tupple here is (t, m) with m to be a spectrum (t, f luxi = f(emi))
. We deal with a list of time-stamped spectra. see Fig 5.

4.3.3 Time series of images

This can be used in many fields for detecting changes (solar events, planetary
applications, GRB events, ...) The sparse profile is (t, f luxi = f(Posi)) at
some em_reference, em_0, em_1, em_2, etc...

Here we deal with a list of time-stamped images. The series can hold
images taken with different filters taken simultaneously and have a multi-
spectral coverage. Or this can be a compilation of multiple images in various
bands at interlacing time intervals.

4.3.4 Time series of cubes

Sparse profile = (t, F lux(em, pos))emin[em_min, em_max], pos in a sky
bounding box This is typically the MUSE data collection which stacks a time
series of hyperspectral cubes over a night and combine these to improve SNR
of the reconstructed data cube.

4.3.5 Time series of combined data

A TS:NDPoint can be even more sophisticated and can gather several data to
store interpretation results and highlight previous identification and analysis

11

Figure 5: Time series of spectra and SED compared for the PESSTO data

of the combined data. This is then up to the archive publisher/designer to
link the science-ready data parts together. Time domain applications will
then support appropriate browsing of these logical links and help astronomers
for the science interpretation.

LightCurve enriched with preview images Light curve may be enriched
with preview images showing the source in spatial context and in appropiate
filters for some critical time stamps. The linked images can be progenitor
images from which the photometry was computed, or an illustration of how
the source can appear at some specific time and /or spectral band. lSee 6
and 7

12

Figure 6: The TS:NDpoint now has a time stamp and a flux attached .
Images of the source are linked to the various time stamps corresponding to
luminosity peaks and illustrate the source in its temporal and spatial context.

Figure 7: Time series data with flux measure and illustrating images at
relevant data points. Application to Pulsar data analysis

5 TS Data Model

The overview of the data model is given in the following class diagram in
fig. 8. We used a particular color coding in the following UML diagrams in
order to identify the various classes reused in this TD Model version:

13

Figure 8: Time series main components: Timeseries data are represented
by the TimeSeriesData object which is a collection of NDpoints as a Spar-
seCube. How the data are spanned along the various axes is summarized
in the main properties of the Characterization class. The TimeAxis class
especially is described for its coverage, resolution and sampling.

• The specific Timeseries classes are in blue

• Reused classes from Dataset metadata DM are presented in light violet
(mauve)

• Reused classes fromCharacterizationDM are presented in green

• Reused classes from Cube DM are presented in light orange

• Reused classes from STCv2 : Meas and Coords package are presented
in pink

• Reused classes from Phot DM are presented in light yellow

The details of the Characterisation along the Time axis , which will be
selection criteria used for timeseries discovery are modeled in the Character-
ization part and represented in Fig. 9.

How the data set can be localised in spatial, spectral, polarisation axis,
flux axis or other observable is also described via the Characterization DM
using spatial, spectral, polarimetry, etc. coverage description. The flux axis
if present is bound to a PhotCal object present in the PhotDM . This allows
to bind a flux measure to its spectral coverage, filter and photometric system
easily , as proposed in the Spectral and Photometry DM. This is needed in
the use case of a multiband lightCurve for instance.

The TimeSeries data only needs two concepts : a time stamp represen-
tation and the corresponding measure taken at this time instant. These are
two Observable objects , and derived as TimeObservable for the timestamp

14

Figure 9: Time Axis main properties. Coverage, sampling, time sampling
step as well as time period between two samples are described. The time
resolution can be present either as a typical resolution value in TimeResolu-
tion Refval or by a set of minimal and maximal values representing the time
resolution (or also considered as accuracy along the time axis)

Figure 10: Time Axis main properties. The Coverage , the sampling , time
sampling step as well as time period between two samples are described.
The time resolution can be present either as a typical resolution value in
TimeResolutionRefval or by a set of minimal and maximal values represent-
ting the time resolution (or also considered as accuracy along the time axis)

and a specialized Coordinate measure as defined in the meas package of the
STC v2.0 data model.

The following diagram in fig. 10 highlights how the measurements classes
from STC can be reused, but leaves the details to further discussions until
the STCV2.0 DM is finalized completely.

More than one single measure corresponding to a time stamp, we can

15

Figure 11: When the measures are datasets by themselves, a TS NDpoint
can point to a DataSet object.

also gather time series of dataproducts like spectra, images or cubes. This
is the use case described in class diagram of Fig.11.

This datamodel has been designed with Modelio 3.6. It includes the
Modelio exportfiles from Cube and STCv2.0 DM in their current version.
The complete integration phase of those datamodel parts is still in progress
with imports being unwieldy . Once solved the VODML description of the
Timeseries DM should be easy to generate and the HTML docs as well.

5.1 Data model fields from ObsCore

Here are the main elements that directly match from the ObsCore Data
model .

5.2 Cube data model Extension , Mark Cresitello-Dittmar

For the purposes of this exercise, we generated a toy timeseries model based
off current models (Dataset, Cube, Coords, Meas). The model extends
Cube model elements to facilitate the modeling of a wide variety of Time-
Series flavors.

There are multiple ways the TimeSeries model could be derived from
Cube. The details will depend on a thorough review of the full set of use

16

Table 4: Time Series metadata fields as in ObsCore and possible extensions.

Keyword Utype
t_min TimeAxis.Coverage.Bounds.Limits.LoLim
t_max TimeAxis.Coverage.Bounds.Limits.LoLim

t_exp_min TimeAxis.SamplingExtent.Bounds.Limits.LoLim
t_exp_max TimeAxis.SamplingExtent.Bounds.Limits.HiLim
t_delta_min TimeAxis.SamplingPeriod.Bounds.Limits.LoLim
t_delta_max TimeAxis.SamplingPeriod.Bounds.Limits.HiLim

t_sampling_type Type of sampling along TimeAxis.

cases and requirements. This toy model focuses on representing the Simple-
TimeSeries as a fairly direct extension of SparseCube... with the addition
of requiring a ’timeAxis’. The cube component elements are designed to
facilitate the definition of other TimeSeries described in the CSPTimeseries
document, but are not heavily considered here at this point.

The Simple Time Series model shown in Fig. 12, is defined as an extension
of the Cube data model with the addition of only 3 objects. This approach
maximizes the interoperability of the data and reinforces the concept that
these data can be considered a slice through a generalized sparse cube. By
creating a VO-DML compliant model, instances of a Simple Time Series
can be annotated using their assigned VODML-IDs. Applications which
understand Cube model instances will automatically understand a very
large percentage of the Time Series content.

Having separate models for different areas of the ’Universe of Discourse’
maximizes interoperability, but can take some practice to interpret. Below
is a descriptive outline of the model structure.
ds:Dataset Metadata

• Dataset - provides generic identification and curation metadata for the
dataset (eg: Curation, DataID, etc).

• ObsDataset - adds metadata related to the Observation (eg: Target,
Instrument, Configuration, etc)

cube:N-Dimensional Cube - This model defines generic cube data prod-
ucts, either as SparseCube-s (eg: Event lists) or Image-s (eg: nD Pixelated
image). The Simple Time Series model will extend from SparseCube, inher-
iting the following:

• A reference to the relevant Dataset Metadata instance which describes
it.

17

Figure 12: Simple Time Series as extension of Cube.

• A collection of NDPoint-s, each being a collection of associated Ob-
servables. (eg: time, position, mag)

• Observable - identifies the item as ’dependent’ or ’independent’, and
provides the measured data value (value + error) which is described
in the Measurement model.

meas:Measurement - This model defines measured data and their asso-
ciated errors. It is a generic model, so provides the basis for many types
of measured data. In some cases, additional metadata is required to fully
describe the measurement and how it was obtained. These are expected to
be defined in models which specialize in that content.

• CoordMeasure - class of Measure given by a Coordinate ’value’ plus

18

one or more Error-s also defined in that model.

spec:Spectral Model - This is a dummy Spectral model for illustrating how
a specialized LuminosityMeasure could be defined which provides additional
metadata related to how the Luminosity value was determined.. eg: which
photometry filter was used.

• LuminosityMeasure - Extends CoordMeasure, so has a Coordinate
value + Errors, and adds a reference to associated Photometry meta-
data.

• NOTE: being an extension of CoordMeasure, this type is automatically
usable in a Cube instance, and therefore, SimpleTimeSeries.

ts:Simple Time Series - The Simple Time Series is modeled as a ’view’
through a sparse cube. Time becomes the independent axis, with other
observable axes providing the measured data.

• SimpleTimeSeries - defined as a SparseCube which MUST contain
TSPoint-s.

• TSPoint - adds a single ’independent’ timeAxis to the generic NDPoint.

• SampleTime - provides the TimeMeasure for the point. TimeMeasure
is defined in the Measurment model, giving the Coordinate value in
JD, MJD, ISO, etc.. plus any associated errors. The Coordinate is
associated with a TimeFrame identifying the timescale and reference
position. NOTE: This element includes basically all the information
described in Table 2.

With a validated VO-DML compliant model, we can generate serializa-
tions which are annotated using the element VODML-ids. In Section 6.3,
we describe the serialized sample files generated for this study based on this
model, using the current VO-DML/Mapping syntax proposal.

6 Serialisations

This section presents various attempts of serialisation using different strate-
gies.

Subsection 1 is using VOTable GROUPs for separating axes in the serial-
isation and is using utypes from different models on GROUPS and FIELDS.
It has been written by Jiri Nadvornik. Subsection 2 "Full utype serialisa-
tion" subsection has been written by F.Bonnarel. Subsection 3 is using the
full VO-DML mapping serialisation and has been written by Mark Cresitello.
Subsection 3 is a proposal for a "Lighter" VO-DML mapping serialisation
and has been written by Laurent Michel.

19

6.1 Jiri’ s approach

Here we point to a first trial proposed by Jiri Nadvornick, which binds to-
gether concepts of Cube DM Cresitello-Dittmar and Tody (2022) and Ob-
sCore specification as a general description of physical axes. See the note
proposed at
https://ivoa.net/documents/Notes/CubeDM/20190318/index.html for more details.

6.2 Full utype serialisation
In this approach, relational views of the TimeSeries described above are provided. Hier-
archies of classes showing 1 to 1 relationships are grouped in one single table. Table x
shows the list of tables used to map the model with the full set of their columns metadata
(utype, datatype, ucd, unit and xtype), in the case of example 1. The VODataservice
"tableset" representation of this set of tables is described in Appendix.

Each TimeSeries project as its own subset of attributes of the generic model. This
leads to a specific partial relational view of the model. For each of these a dedicated table
like table x could be provided. See the tableset representations in Appendix.

The structure is made of 4 "tables" number which seems to be a compromise to
separate very differents groups of classes without having too much of them.

The main "table" is the data table where the actual values of the independant variable
(Time stamps) and of the "one to many" varying variables are stored.

The three other tables, which we can call "generic TimeSeries metadata" tables gath-
ers respectively :

• Dataset, curation and dataid classes attributes. This is directly derived from similar
concepts in ObsCore and Dataset metadata model.

• Characterization describes where and how the dataset is situated in the physical
parameter space; most of the columns there should be redondant with what is in
Obscore Char.

• Coordsys table. This table mainly serializes stc and gathers the coordinate frames
(time, space, spectral) used in the TimeSeries as well as the different photometric
filter descriptions, assimilated to "flux frames".

Utypes are built by concatenating class and attributes names following a path from
a top element to the actual considered leave. They don’t designate a class atrribute per
se but a role of the attribute value with respet to the full model.

Table x and its vodaitaservice tableset expressions are an absolute reference for the
utypes definition and should be reproduced in the timeSeries model specification.

"Tables" mentionned here and described in the Appendix are not required to be
serialized as TABLE elements in VOTable. In the case there is only one single TimeSeries
in the VOTable document, "generic metadata tables" have only one single instance. They
can be serialized as groups and their columns as PARAMS instead of using TABLES with
one single row.

The Appendix illustrates the background of the examples the serialization of which is
provided at the URL included here, starting with the simplest example :
http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
/francois/SDSS_J080434.20+510349.2_VizieR_complete_utypes.xml
This TimeSeries is a light curve for a single SDSS object and is provided as full Catalog
in VizieR. It has one single dependant variable : V magnitude.

Obviously most of the use cases will be more complex, as in the two following examples
Example 2 is an excerpt of table 3 of the VizieR catalog provided by Shenavrin and

coworkers in 2011 (Shenavrin et al, Astronomicheskii Zhurnal, 2011, Vol. 88, No. 1, pp.

20

https://ivoa.net/documents/Notes/CubeDM/20190318/index.html

34-85.) where the rows present a basic time with a Time Shift for each photometric band.
It presents a main time as independant variable and several magnitudes in different bands
for the same individual exposure. The exact measurement time is slightly varying accord-
ing to the band (due to a shift of time for changing the filter) in such a way that several
secondary times are given for each main TimeStamp as well.
(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/BetaLyr_Vizier_complete_utypes.xml)

In example 3 where exoplanet data are provided (GAPS project) some columns pro-
vide flux or radial velocity measurements which have a specific utype in an IVOA model
(stc or phot). Some other don’t have because the definition of the quantity is outside
the scope of STC or photometric datamodel. In that case a generic "measurement" utype
(ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.coord) is given and
the flavor can be precised with help of the ucd. In some other cases the column contains
an error on some of these measurements. In that case the utype is set to : "

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GAPS_kp7_complete_utypes.xml)

In example 4, extracted from Gaia DR2 catalog, the TimeSeries is a concatenation of
three set of NDpoints, one per each photomteric band

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GaiaSample3Tables_complete_utypes.vot)

In example 5, the Gaia DR2 TimeSeries with its three bands is organized in a single
table.

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GaiaDR2Example-time-series.xml)

6.3 Marks’s approach
For this study, we generated annotation for the 2 sample files according to the current
VO-DML Mapping Syntax proposal ?. Annotation was generated to both the current
Cube model and the toy Time Series model described in Section 5.2. The files themselves
may be found at the following URL: http://volute.g-vo.org/svn/trunk/projects/time-
domain/time-series/standardized_votables/MarkCD/

6.3.1 Sample Files

In the text below we will focus on the annotation to the Time Series model as that is the
focus of this study.

1. BetaLyr_Vizier Example file annotated as multiple SimpleTimeSeries data prod-
uct instances, one per photometric band.
The structure is:

• 1-instance of ObsDataset

• 5-instances of SimpleTimeSeries data products, one for each band (J,K,L,M,N)

• 5-TSPoint templates, each with 1-Time + 1-Observable (Mag with Error)

The use of FIELD elements to store metadata (eg: ObsDataset metadata) presents
a challenge for proper annotation. Being in FIELDs, they must be annotated within

21

a TEMPLATE element, which may have multiple instances. This forces the IN-
STANCES to identify a particular instance via the ORM PRIMARYKEY/FOR-
EIGNKEY elements.
For a model which specifies that there should only be 1 instance of that type, this
is quite a lot of overhead. This annotation shows that the syntax can accommodate
the structure, but in practical application, it is probably easier for both client and
provider to re-cast the VOTable segment to provide these singular elements as
PARAMs. This results in very straight-forward annotation and VOTable.

2. GaiaSample3Tables Example file annotated to the toy TimeSeries model, using
the current Mapping syntax proposal, as multiple SimpleTimeSeries data products.

• 0-instances of ObsDataset

• 3-instances of SimpleTimeSeries data product

• 3-instances of TSPoint with 3 Observables each (1-Time + 1-Flux_w_error
+ 1-Mag)

This appears to be a straight forward representation of 3 SimpleTimeSeries data
products, each serialized in their own TABLE. In this example, the filter metadata
is constant for each table, so we’ve annotated them as individual instances which
are referred to by the LuminosityMeasures within the TEMPLATE.
There is no DatasetMetadata included.
For annotation purposes, I needed to make the following changes.

• Changed VOTABLE tag to version 1.4 to validate against vo-dml schema

• Added IDs to TABLE elements to reference in vo-dml annotation

• Added IDs to PARAM elements for Filter metadata

6.3.2 Mapping Syntax

The syntax used is fully documented in the VO-DMLMapping document ?. It is important
to note that this syntax was designed to satisfy a broad set of use cases and essential
requirements identified by the community. Any syntax being considered by the community
for application, should be evaluated against these requirements to ensure that it will meet
the needs of the community.

The document fully describes the syntax, so we will not go into detail here. The key
structural components are:

• <VODML> - primary element, all annotation is isolated from the VOTable serial-
ization.

• <MODEL> - identifies which vo-dml compliant models are represented in the se-
rialization

• <GLOBALS> - instances which are global in nature. (eg: Frames, Dataset Meta-
data)

• <TEMPLATES> - defines multiple instances by iterating over entries in the tem-
plate target (rows of a TABLE)

• <INSTANCE> - defines a particular instance of a structured object (Time-
Frame, SimpleTimeSeries, etc) identified by the vodml-id of the object type (co-
ords:domain.time.TimeFrame, ts:SimpleTimeSeries)

This syntax provides severval benefits over the earlier utype convention, or any utype
based annotation syntax, such as:

• Isolating the annotation from the VOTable elements allows data providers to retain
their native serialization.

22

– is an additive change to current serialization thread

– allows native code to continue functioning

• Protects against model changes

– if a model changes, say elements move from one group to another (which
has happened), data providers do not need to change the VOTable GROUP
content, just update the annotation section.

• Allows reuse of elements

– a single PARAM value=TOPOCENTER can be used for all Frame.refPosition
roles.

– a single FIELD name=’time’, can provide the time measure for multiple
SimpleTimeSeries instances.

• Clear association of an instance to a role

– The syntax directly associates an instance to the role it plays in the parent
object; ds:Target.position is instance of meas:Position

– The same INSTANCE may serve multiple roles. eg: a single Organization
instance may serve as both ds:DataID.curator and ds:Curation.publisher

• Allows annotation to multiple models, or versions thereof.

– Providers can annotate the same VOTable content as a SparseCube AND
SimpleTimeSeries (for example).

– Providers can annotate the same VOTable content to multiple versions of the
same model, allowing for smoother transitions by clients.

• Allows clients to ’discover’ content it understands.

– since any modeled instance ALWAYS has the same vodml-id, client appli-
cations can find and work with content that it understands. The com-
mon example is a generic plotting package can find instances containing
the roles ’meas:CoordMeasure.coord’ and ’meas:CoordMeasure.error’ to plot
these data without knowing that they reside in a SparseCube, TimeSeries, or
other data product.

These limitations of the utype annotation approach were the primary drivers for the VO-
DML Mapping project.

6.4 Laurent’s approach
The VO-DML workflow is 2 folds :

1) The model serialization in a model.vo-dml.xml file (REC process currently close to
complete)

2) the data mapping. This last step consists in an XML bloc on the top of the
VOTAble acting as a bridge between the model and the data so that a client can easily
build model instances by exploring that mapping bloc (see previous section). The VO-
DML concepts are endorsed by the community but the mapping syntax may appear as
too complex making both data annotation process and VOTable parsing difficult.

• VO-DML workflow ++

– Enable to map any modelling feature

– Mapping block independent from the VOTable content

23

∗ No dependency with the VOTable schema
∗ Easiness to join data taken out from different tables
∗ Easy to skip for clients not model aware

• VO-DML workflow –

– Obscure and chatty mapping syntax

– Coupling between the mapping leaves and the VOTable data structure. For
instance, the mapping has to be changed when a value is moved from a
PARAM to a FIELD

The present section explores a possible simplification of the mapping syntax relying
on the strengths of the VO-DML workflow while targeting an easier job for both data
providers and data consumers. The syntax baseline is designed to provide general-purpose
clients (e.g. Aladin, JS widget . . .) with nothing more than what they need, considering
that more advanced clients could retrieve in any case any model features within the model
itself. This simplification might also improve the reliability of the data annotation process.
This is not a complete proposal, but a proof of concept validated against TD data.

6.4.1 Mapping Syntax

Basics The design of this mapping syntax being not complete; we just describe here the
outlines of this simplification and the features we need to map the present data sample.

As describe in the previous section, the <VODML> block is split in 3 sections.

Table 5: Main mapping elements.

<MODELS> References to all referenced models (models + imports)
<GLOBALS> Not implemented here

<TEMPLATES> One template per table

Each template refers to a particular table and contains the mapping of the classes
hosted by that table. The mapping is based on the 3 concepts necessary to describe a
hierarchy of classes:

Table 6: Mapping element roles.

<VALUE> Model leaf. Either points to a <PARAM> or a <FIELD> or contains
its own value for literals

<INSTANCE> Denotes a class. An <INSTANCE> is a tuple of elements which can be
either <VALUE>, <INSTANCE> or <COLLECTION>

<COLLECTION> Denotes a list or an array. A collection can contain either <VALUE>,
<INSTANCE> or <COLLECTION>

Each one of these elements supports some attributes which can be mandatory (mand.)
or optional (opt). It has be be noted that some attributes such as units or formats are
not described here as well as the foreign key mechanism.

24

Table 7: Mapping element attributes.

Attribute: @dmrole @dmtype @ref @tableref @size @value

<VALUE> mand. none mand.
if no
@value

none none mand. if no @ref

<INSTANCE> mand. opt. none opt. none none

<COLLECTION> none none none none opt none

<VALUE> element The @dmrole attribute is the one set in the VO-DML model.
Other VO-DML attributes (e.g. @dmtype) can be retrieved in the VO-DML file from the
location of the <VALUE> element and from its @dmrole.

• If a <VALUE> element has a @ref attribute but no @value, its value is taken out
from the referred element of the table refered by the current <TEMPLATES>. The
client must first search in the <FIELD>, and then in the <PARAM>. The value
of a <VALUE> element located out of a <COLLECTION> block and pointing
onto a <FIELD> is set with the values read the first table row.

• If a <VALUE> element has a @value attribute but no @ref, the value of @value is
taken.

• If a <VALUE> element has both @value and @ref, the client must first resolve
@ref and then @value.

<INSTANCE> element The @dmrole attribute is the one set in the VO-DML
model.

• An <INSTANCE> without @dmtype attribute matches the type set in the VO-
DML file. Otherwise, @dmtype can specify a subtype of the dmtype read in the
model. This feature is used to support abstract classes.

• An <INSTANCE> with a @tableref is mapped in the <TEMPLATES> designated
by @tableref and having the same @dmrole.

<COLLECTION> element The @dmrole attribute is the one set in the VO-DML
model. All <COLLECTION> sub-elements must have the same @dmtype. The number
of elements in a collection is specified the @size attribute.

• A <COLLECTION> without @size attribute contains one instance of each element
mapped (see example below)
<collection dmrole='Axes'>

<instance dmrole='Axis'>
<value dmrole='name' valu='time' />
.....

</instance>
<instance dmrole='Axis'>

<value dmrole='name' value='observable' />
.....

</instance>
</collection>

• A <COLLECTION> with a @size attribute contains as many in-
stances of the mapped elements as requested by @size. To be con-
sistant, when @size is set, <COLLECTION> must have one unique
child containing only one mapped entity.

25

<collection dmrole='Points' size='-1'>
<instance dmrole='NDPoint'>

.....
</instance>

</collection>

If @size equals to * or -1, the collection is populated as long as data are
available. For instance, this is the case when the <COLLECTION>
maps photometric points which are read row per row in the table.

6.4.2 Workflow (to be updated)

The model used for these serializations, designed with Modelio 3.5, has been presented at
(ref ivoa). This serialization has also been tested with SparseCube but the outcomes are
less advanced. This demonstrator used for the serialization of the data sample relies on 2
specific Python tools developed on this occasion but possibly reusable as seeds for further
developments.

• transform.py reads a VO-DML model and genererates a single <VODML> block
with unresolved references. The tool supports directives specifying which classes
must be used in replacement of the abstract ones. The <VODML> block must
be inserted by hand in the VOtable to be annotated. It must be split in multiple
<TEMPLATES> if data are spread out on muliple tables. The references to actual
<FIELD> and <PARAM> must also be set by hand.

• transform.py is a basic client which plots the annotated timeseries. The key point
is that transform.py is able, to some extent, to read any VOTable mapped with the
model.

6.4.3 Conclusions and Prospects

This approach confirms the power and versatility of the VO-DML workflow since it doesn’t
use any feature external to the VO-DML ecosystem. The main outcome is that clients
knowing a model are able by construction to read VOTables annotated with that model.
There is no need to adapt the client code to specific data collection as long as they are
are not too much exotic. The added value of the light syntax sketched here is that the
same outcomes can be reached with more compact and more readable annotations. This
opens the way for light clients such as JavaScript widgets which could have difficulties to
process hundreds of XML lines each time they have to parse a VOTable.

7 View from Data Providers and Client developers
The purpose of this section is two folded:

• Pros & cons of each solution

• Difficulty of implementation

To be completed with various inputs from timeseries data publishers and developers
of client applications dealing with time series.

References
Cresitello-Dittmar, M. and Tody, D. e. a. (2022), ‘The IVOATEX Document Preparation

System Version 1.3’, IVOA Working draft 2018-05-16.
https://www.ivoa.net/documents/CubeDM/20180516/index.html

26

https://www.ivoa.net/documents/CubeDM/20180516/index.html

Erard, S., Cecconi, B., Le Sidaner, P., Demleitner, M. and Taylor, M. (2022), ‘EPN-
TAP: Publishing Solar System Data to the Virtual Observatory Version 2.0’, IVOA
Recommendation 22 August 2022.
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E

Rots, A. H. (2007), ‘Space-Time Coordinate Metadata for the Virtual Observatory Version
1.33’, IVOA Recommendation 30 October 2007, arXiv:1110.0504.
http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1030R

Tody, D., Micol, A., Durand, D., Louys, M., Bonnarel, F., Schade, D., Dowler, P., Michel,
L., Salgado, J., Chilingarian, I., Rino, B., de Dios Santander, J. and Skoda, P. (2011),
‘Observation Data Model Core Components, its Implementation in the Table Access
Protocol Version 1.0’, IVOA Recommendation 28 October 2011, arXiv:1111.1758.
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.1028T

27

https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E
http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1030R
http://doi.org/10.5479/ADS/bib/2011ivoa.spec.1028T

	Introduction
	Time Series
	Definition
	Science use cases
	Using a common time frame
	Extension of ObsCore based on EPNCore

	Models
	Time series representation: Data Model and UML diagram
	Data modeling with datamodel reuse from the IVOA effort :CharacterizationDM, Cube DM, STCv2
	Perspective
	TimeSeries representation use-cases
	 Light curve
	Time Series of spectra
	Time series of images
	Time series of cubes
	Time series of combined data

	TS Data Model
	Data model fields from ObsCore
	Cube data model Extension , Mark Cresitello-Dittmar

	Serialisations
	Jiri' s approach
	Full utype serialisation
	Marks's approach
	Sample Files
	Mapping Syntax

	Laurent's approach
	Mapping Syntax
	Workflow (to be updated)
	Conclusions and Prospects

	View from Data Providers and Client developers
	References

