
International
Virtual
Observatory

Alliance

XML Schema Versioning Policies

Version 1.0

Proposed Endorsed Note 2016-09-06
Working group

Standards and Processes
This version

http://www.ivoa.net/documents/schemaVersioning/20160906
Latest version

http://www.ivoa.net/documents/schemaVersioning
Previous versions

This is the first public release
Author(s)

Paul Harrison, Markus Demleitner, Brian Major, Pat Dowler
Editor(s)

Paul Harrison
Version Control

Revision 3489, 2016-07-19 05:08:19 -0700 (Tue, 19 Jul 2016)
https://volute.g-vo.org/svn/trunk/projects/grid/notes/schema-versioning/schemaVersioning.tex

Abstract
This note describes the recommended practice for the evolution of IVOA

standard XML schemata that are associated with IVOA standards. The criteria
for deciding what might be considered major and minor changes and the policies
for dealing with each case are described.

Status of This Document
This is an IVOA Proposed Endorsed Note for review by IVOA members and

other interested parties. It is appropriate to reference this document only as
a Proposed Endorsed Note that is under review and may change before it is
endorsed or may not be endorsed.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

http://www.ivoa.net/documents/schemaVersioning/20160906
http://www.ivoa.net/documents/schemaVersioning
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PaulHarrison
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/BrianMajor
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PatDowler
https://volute.g-vo.org/svn/trunk/projects/grid/notes/schema-versioning/schemaVersioning.tex
http://www.ivoa.net/Documents/ 


Contents

Acknowledgments

The content of this note is derived from discussions that occurred in a splinter
session at the June 2015 IVOA interoperability meeting in Sesto, Italy.

1 Introduction

Many of the standard protocols and data models developed by the International
Virtual Observatory Association (IVOA) have used XML (?) for message or ob-
ject serialization. The structure of these XML files has usually been constrained
using the XML schema definition language (?), or XSD for short. The partic-
ular schema that has been associated with a standard is defined by the “target
namespace” (hereafter refered to as simply “the namespace”) of the schema – the
namespace identifier itself is a URI that typically has a form that contains the
version number of the standard. There exist in many programming languages
XML parsers that can use the XSD schema automatically to do a strong check
whether an instance of an XML document conforms to the given schema. If
the XML document does conform to the structure defined by the schema then
it is known as “valid” and even a small deviation from the specified structure
will mean that the XML instance is “invalid”. This strong check of validity is
extremely useful in the context of interoperating services and clients within the
VO as it guarantees that both sides of an interaction will agree on the structure
of the document and hence its interpretation. To maintain this behaviour, the
conventional XSD practice is to give the schema a new identity (namespace)
if any changes are made to it so that both client and server can agree on the
exact version of a schema that they are using for checking validity of an XML
instance.

Once a VO service has been standardised there will typically be a growing
number of clients that are coded against the particular version of the schema
– any changes to the definition of the schema that is subsequently used by a
new version of the service to create instance documents will result in immediate
classification as “invalid” by the clients that have not themselves being updated
to use the new schema. As explained above, in general this property is desirable
for guaranteeing interoperability, but it does limit the ability even to correct er-
rors in the original schema definition without causing disruption to the deployed
clients.

A related problem occurs because, to namespace-aware XML parsers, the
element name is a tuple of the namespace URI and the tag content. For instance,
in the XML document

1 <doc xmlns="http://example.com/1.0"/>

the fully qualified name of the element includes the namespace and is conven-
tionally written as {http://example.com/1.0}doc, and clients will expect this
full form, whether or not they perform schema validation. As soon as the name-
space changes, any client expecting this element name will no longer understand
anything in the document. Rather typically, however, the client would still be

2



able to make sense of the document as far as it is relevant to the client if it
ignored the namespace part of the element name. In consequence, many clients
started discarding the namespace part entirely, which then leads to new inter-
operability problems, for instance, when elements from a different namespace
are embedded within such a document. Hence it is desirable to limit namespace
changes to cases when legacy clients would definitely break.

This note describes the circumstances in which it is permissible to make
changes to a schema and not change its namespace.

2 Schema Versioning

It is the case that two XML instances are formally regarded by XML conven-
tions as not equivalent if the only textual difference between them is that the
namespace declaration is not the same. We can use the observation that sim-
ply removing the namespace definition from both instances would make the
instances both textually the same and equivalent in the strict XML sense to
inform the class of changes can be to the schema definition without necessarily
needing to change the namespace, and how a client should treat such changes.

2.1 Minor changes

In general the class of changes that might be considered minor are those which
allow legacy clients (i.e. without rewriting) to keep functioning with content
produced against the new schema. Specific structual changes to the schema
that allow this goal to be achieved include:

• Not removing concepts (i.e. elements or attributes) from the old schema.

• Ensuring that any new concepts are optional.

Even with the restrictive conditions above it is still necessary that any consumer
of XML instance documents takes the approach that it does not do strict schema
validation against the version of the schema that it knows about, but rather
ignores everything that it does not understand. This approach is allowable
because any new concepts are optional even for consumers of the XML instance
that are aware of the latest version of the schema, and so clients cannot use this
information for fundamental changes in the behaviour of an IVOA protocol. In
other words the IVOA protocol remains backwards compatible and would only
warrant a “point change” in the standard version.

Conversely if the conditions above cannot be met by an evolution of an IVOA
standard then it is a indication that the standard is undergoing a “major change”
and backwards compatibility may be broken. Such a change would involve both
a change in the first part of the standard document’s version number as well as
a change in the version used in the schema namespace.

2.1.1 Determining if the changes are indeed minor

Although the conditions outlined above for minor changes should generally be
strictly adhered to in the design of minor extensions to standards, there are

3



occasions where a new version of a standard might try to correct an error made
in a previous version. For example a certain construct could have been schema
valid which should not have been allowed in a correctly authored schema that
expressed the intentions of the standard. In this case it is likely that the correc-
tion would break the first of the above conditions, but hopefully clients would
not be written to expect the unintentionally valid construct and would not be
unduely impacted by the change. It would be up to the IVOA Technical Co-
ordination Group (TGC) to determine the likely impact of such a change and
whether the violation of the constraints for a minor change would be allowable
in such circumstances.

2.2 Indicating the version number

When allowing minor changes to the schema without changing the namespace
it becomes imperative that the the minor version number of the schema is
communicated via a means other than the namespace. This is true for both
instance documents and schema documents.

2.2.1 Version numbers in instance documents

It is important that clients are able to know which version of the schema was
used to create an XML instance. A common use case envisioned is that in
service responses, this information can be used to discover a service’s ability to
correctly respond to newly specified parts of the protocols.

Hence, in service responses, root elements must have a version attribute
exactly giving the value of the corresponding XSD file’s version attribute.

When global elements from a different schema are included within other
XML files, each of these global elements should have a version attribute of its
own. Where the discovery of extended capabilities is not a likely use case, such
version attributes may be left out.

2.2.2 Version numbers in schema files

It is of similar importance to software writers to know exactly the version of
the schema that they are using. In the XSD definition there is an appropriate
version attribute on the top level <schema> element that can be used for this
purpose.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
2 targetNamespace="http://www.ivoa.net/xml/UWS/v1.0"
3 xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0"
4 xmlns:xlink="http://www.w3.org/1999/xlink"
5 elementFormDefault="qualified"
6 attributeFormDefault="unqualified"
7 version="1.1-PR-20150626"
8 >

This version attribute is not used formally by the schema validation machin-
ery but can be used as desired here to indicate a precise version of the schema
given that the namespace is only used to differentiate between major revisions
of the schema.

4



2.2.3 Version numbers in Namespace URIs

In the IVOA, namespace URIs traditionally contained the full version specifi-
cation, as in http://www.ivoa.net/xml/UWS/v1.0. This practice is somewhat
paradoxical, as changes in the minor version number should, by the IVOA’s
document standards (?), not break downwards compatibility, but a change in
the namespace URI is, as argued above, incompatible in both directions.

Therefore, future namespace URI must only contain the major version num-
ber. The recommended format is to have the major version as the last URI
element, for instance,

http://www.ivoa.net/xml/UWS/2.

An unfortunate side effect of the proposal made in this note is that legacy
namespace URIs become somewhat confusing, as a namespace like http://
www.ivoa.net/xml/UWS/v1.0 can be defined by schema documents with actual
versions 1.1, 1.2, etc.

Specifications employing such legacy namespace URIs should warn their
readers to this effect. The suggested presentation is an admonition box with a
content like this:

The namespace URI http://www.ivoa.net/xml/UWS/v1.0 is
used for backwards compatibility. The presence of the string v1.0
does not indicate that the document content conforms to version 1.0
of the schema, or can be validated against that schema. It does indi-
cate, however, that documents valid according to version 1.0 of the
schema still validate with the current schema file. It also means that
any XML reader compliant with the recommentations of in Harrison
et al (2016) [this would be a reference to the current version of this
note] must be able to process the elements’ content if they support
any version 1.0 or later of this specification.

The version an instance document actually conforms to can be
obtained from the version attribute on the instance document’s
root element [or the element containing the namespace declaration,
if applicable].

3 Hosting the Schema on the IVOA Web Site

As mentioned in the introduction the schemata are typically associated with a
particular version of a standard and so are typically included in an appendix
of the standard. In addition they are located on the ivoa website http://
www.ivoa.net/xml to allow software authors interactively to obtain the latest
version directly as a file.

The availability of the schemata via the IVOA web site also allows XML
parsers to be instructed to fetch the schema automatically when validating an
XML instance. This is done using the xsi:schemaLocation attribute which
pairs a namespace with the URL of a schema that has definitions in that name-
space. Although there is no particular necessity to do so, it has been standard
practice to use namespaces that have a one-to-one correspondence with a lo-
cation on the IVOA web site. The advantage of this approach is that the

5

http://www.ivoa.net/xml
http://www.ivoa.net/xml


namespace is “owned” by the IVOA and there is therefore much less chance of
accidental clashes of namespaces.

Thus a current schema is usually available at two URLs on the IVOA site;

1. at a URL that corresponds to the namespace
e.g. http://www.ivoa.net/xml/UWS/v1.0

2. at a URL that corresponds to the filename of the schema
e.g. http://www.ivoa.net/xml/UWS/UWS-v1.0.xsd

As this note now recommends that there are potentially many minor ver-
sions of a schema all in the same namespace the actual file than the first from
of the URL above points to must be updated when a new minor version is pub-
lished. The various minor versions of a particular schema should be available
at the “filename” style URLs of the second kind. It should be noted that the
actual file pointed to by the “namespace” style URL should only be updated to
point to the new minor version when the associated standard has reached the
“recommendation” stage.

4 Client use of schema

Using this strategy means that client software that simply uses validation with
the parser utilizing this schema location hint will always pick up the latest
version of the schema, which should mean that the instance document will
always be valid assuming that the server has created a strictly valid document.
Note that this still applies even if the server is using an older (minor) version
of the schema, as new versions are only allowed to add optional features to the
schema.

It is often the case that client software is written to use a local copy of the
schema to avoid the overhead of continually downloading the schema. In this
case it is possible that the XML instance document will not be valid against
the local schema if the server is working against a newer minor version of the
schema – as it could have added a new optional element into the XML instance.
It is for this reason that the client side of an IVOA service should be forgiving
in ignoring elements that it is not expecting. It is possible for the client to
recognise that the XML instance is valid against a newer version of the schema
by comparing the version attribute of the root element of the XML instance
against the version attribute in the local XSD schema document.

5 Summary of Recommendations

This section summarizes the main recommendations contained within this doc-
ument.

• The namespace URI should contain only the associated standard major
number, and therefore does not change when a minor version increment oc-
curs. e.g. http://www.ivoa.net/xml/ABC/v1. However, existing name-
space URIs which contain a “.0” minor increment suffix should not be
changed to conform to this rule.

6



• Include a version attribute in the top level element to allow client version
discovery – this version number should include the full standard version
number including the minor version increment. – 1.1

• Set the version attribute of the <schema> element in the XSD to be
equal to the full standard version including the minor version increment
and document status and version – e.g. 1.1-WD-20150607

• Minor version changes should not break clients – i.e. in general they should
only add new elements/attributes, not remove formerly valid content –
correspondingly, this means that clients should quietly ignore things that
they do not know about in the XML – i.e. they should not automatically
issue an error if schema validation fails (though of course if they can
determine that the validation error is because of a missing required element
then they should issue an error).

• In contrast servers must produce strictly valid documents, and service
validators must test strict validity against the relevant schema (discovered
from the namespace and the version element).

A Changes from Previous Versions

No previous versions yet.

7


