

TAP Implementations by VOParis

Mathieu Hirtzig - Pierre Le Sidaner Jonathan Normand Observatoire de Paris

Context and Goals

Context

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

Context

- Baltimore (oct 08): we presented 3 TAP services as prototypes =
 - > exoplanet
 - two atmospheric profiles on Titan (Cassini) and Mars (Phobos)
- Name resolver proved compulsory for planetary topics where cone search was not available

Goals

- Provide TAP services for other topics
- Europlanet demonstrator compliant with IVOA
- Test bench for TAP strengths and weaknesses

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

Europlanet

- Paris Data Center participates actively to Europlanet VO projects
 - IDIS = Integrated and Distributed Information Service
 - O JRA4 = « from IDIS to VO »
- Definition of interoperability standards
 - o (JRA4-Task2)
- Within VO-Paris node, we aim for a demonstrator using IVOA standards, protocols, and applets
 - http://voparis-srv.obspm.fr/portal/
 - http://voparis-europlanet.obspm.fr

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

TAP - examples

- We've built a new TAP service on the cometary database from the Nançay Radio-Telescope
 - www.lesia.obspm.fr/planeto/cometes/basecom/
 - => vodev.obspm.fr/~mhirtzig/

- Ci-i C	Complete of ObstDMC	<u> </u>
-Crovisier Cometary Database :		
TARGETNAME:	halley	Name of the target object
TIME:		If a single value is specified it matches any spectrum for which the time coverage includes the specified value. If a range is specified it matches any spectrum which contains any data in the specified range. Dates are expected in ISO 8601 UTC format. E.g. 1998-05-21/1999-01-01 will search for all spectra taken in the time period starting 21st May, 1998 and ending Jan 1st, 1999 inclusive.
STATUS:	any	Processing state of the data. "Cleaned" stands for individual data acquired at various wavelength and polarisations [status code 1]. "Set average" corresponds to the average spectrum of all data acquired in the same day (overwrites any INPUT:BAND or INPUT:POLARISATION keyword) [status code 2]. "Final" correspond to the average of several sets of data [status code 3]. "Any" does not force any choice.
BAND:		Spectral coverage: The wavelength can be given in meters or as a range
POLARISATION:	any	Polarisation of the filter
GEODISTANCE:		Geocentric distance of the target. Ranges can be given with the '/' separator.
HELIODISTANCE:		Heliocentric distance of the target. Ranges can be given with the '/' separator.
HELIORADIALVELOCITY:		Heliocentric radial velocity of the target. Ranges can be given with the 'l' separator.
RA_OFFSET:		Offset in right ascension from the target. Ranges can be given with the '/' separator.
DEC_OFFSET:		Offset in declination from the target. Ranges can be given with the '/' separator.
MTIME:		Time when new or updated data are uploaded. You can specify a time range in ISO 8601 UTC format. E.g. 2007-08-21/ will search for all spectra uploaded since August 21st, 2007.
FORMAT:	VOTABLE	Format of the ouput : as a HTML webpage or as a VOTABLE.
VERSION:	1.02	SSA protocol versions supported by this service
Query		

TAP - examples

Context

Europlanet

TAP - examples

cometary database

</FIELD>

of ETEL D. The "male" margary (Platerication "made "place malerization circular" devolutions of Place" agricult

problems

Data Model

Conclusion

```
One simple user-friendly query result
<VO TABLE version="1.1" xsi.noNamespaceschemaLocation="amins=http://www.ivoa.net/ami/VOTable/v1.1">
 <COOSYS equinox="J2000" system="eq_FK5"/>
 <INFO name="QUERY_STATUS" value="0K"/>
 <BESCRIPTION name="DESCRIPTION" value="The Crovisier Cometary Database"/>
- <RESOURCE name="comets">
 - < TABLE>
    -<FIELD ID="nameC" name="Comet. Name" ucd="meta.id" datatype="char" unit="--">
       <DESCRIPTION>New-style designation of comet</DESCRIPTION>
     </FIELD>
    -<FIELD ID="Tepoch" name="Observation_Date" ucd="time.epoch" datatype="char" unit="UT">
       <DESCRIPTION>observation date/time (YYMMDD.dd; dd=day fraction)
    -<FIELD ID="Tstart" name="Start_Date" ucd="time.start" datatype="char" unit="UT">
       <DESCRIPTION> Start date of long-term averaged data (status #3)</DESCRIPTION>
    -<FIELD ID="Tend" name="End_Date" ucd="time.end." datatype="char" unit="UT">
       <DESCRIPTION> End date of long-term averaged data (status #3)
    -<FIELD ID="dGeo" name="Geo_Distance" ucd="pos.distance.pos.geocentric" datatype="double" unit="AU">
       <DESCRIPTION>geocentric distance</DESCRIPTION>
     </FIELD>
    -<FIELD ID="dSun" name="Sun Distance" ucd="pos.distance;pos heliocentric" datatype="double" unit="AU">
       <DESCRIPTION>heliocentric distance
    -<FIELD ID="inv1" name="Maser_Inversion1" ucd="arith" datatype="double" unit="--">
      - < DESCRIPTION>
         theoretical inversion of the OH maser according to Despois et al 1981; inv=(Pu-P1)(Pu+P1) where Pu=population state up, Pl=population state low, for the corresponding transition (here
         the doublet of the lower rotational level)
       </DESCRIPTION>
    -<FIELD ID="Q10H" name="0H_Prod_Rate1" ucd="arith rate;phys mass .loss" datatype="double" unit="10**28 s-1">
         OH production rate (number of OH molecules created per second) or 3sigma upper limit if SNR worse than 3, using the Haser-equivalent model with Quenching and the Despois81 maser
         inversion; null if algorithm did not converge
       </DESCRIPTION>
    -<FIELD ID="inv2" name="Maser_Inversion2" ucd="arith" datatype="double" unit="--">
      - < DESCRIPTION>
         theoretical inversion of the OH maser according to Schleicher & A Hearn 1988
       </DESCRIPTION>
     </FIELD>
    -<FIELD ID="Q20H" name="0H_Prod_Rate2" ucd="arith rate;phys mass .loss" datatype="double" unit="10**28 s-1">
         OH production rate (or 3 sigma upper limit if SNR worse than 3) using the 1986A model in Crovisier02
     </FIELD>
    -<FIELD ID="status" name="Status" ucd="meta.code.status" datatype="int" unit="--">
         Status: 0=off-target, 1=initial data, 2=average data of all the sets in the run (2-4 wavelengths, 2 polarisations), 3=average of all data within a given time period (as in Crovisier et al 2002)
       < DESCRIPTION>
```


TAP - examples

One simple user-friendly query result

VO-Paris - Crovisier Cometary Database

Context

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

Comet_Name	Observation Date	Start_Date End_Date	Geo_Distance	Sun_Distance	Maser_Inversion1	OH_Prod_Rate1	Maser_Inversion2	OH_Prod_Rate2	Status	Polarisation	Frequency	Figure_Reference
	UT _	UT UT	AU	AU		10 **28 s-1		10 **28 s-1			Hz	
1P/1982 U1 Halley	1985-01-26 20:52:48		4.32	5.04	0.35	12.6	0.29	14.5	2			A11.e
1P/1982 U1 Halley	1985-01-27 20:38:23		4.33	5.03	0.35	9	0.29	11.9	2			A11.e
1P/1982 U1 Halley	1985-01-28 20:38:23		4.33	5.02	0.35	10.2	0.29	11.8	2			A11.e
1P/1982 U1 Halley	1985-01-29 20:38:23		4.34	5.01	0.35	10	0.29	13	2			A11.e
1P/1982 U1 Halley	1985-01-30 20:24:00		4.34	5	0.35	12.4	0.29	14.4	2			A11.e
1P/1982 U1 Halley	1985-01-31 20:24:00		4.35	4.99	0.35	12.5	0.29	14.4	2			A11.e
1P/1982 U1 Halley	1985-02-01 20:24:00		4.35	4.98	0.36	10.4	0.3	12.8	2			A11.f
1P/1982 U1 Halley	1985-02-11 19:26:24		4.41	4.89	0.36	12.6	0.31	14.5	2			A11.f
1P/1982 U1 Halley	1985-02-12 19:26:24		4.42	4.88	0.36	8.6	0.31	9.9	2			A11.f
1P/1982 U1 Halley	1985-02-13 19:26:24		4.42	4.87	0.36	10.6	0.31	12.2	2			A11.f
1P/1982 U1 Halley	1985-02-16 19:12:00		4.45	4.84	0.37	9.9	0.32	11.4	2			A11.f
1P/1982 U1 Halley	1985-02-17 18:57:36		4.45	4.83	0.37	9	0.32	10.3	2			A11.f
1P/1982 U1 Halley	1985-02-18 18:57:36		4.46	4.82	0.37	10	0.32	11.1	2			A11.g
1P/1982 U1 Halley	1985-02-22 18:43:11		4.49	4.79	0.37	8.8	0.32	10.2	2			A11.g
1P/1982 U1 Halley	1985-02-23 18:43:11		4.5	4.78	0.37	10.2	0.33	11.8	2			A11.g
1P/1982 U1 Halley	1985-02-24 18:28:47		4.51	4.77	0.37	8.9	0.33	10.3	2			A11.g
1P/1982 U1 Halley	1985-02-25 18:28:47		4.52	4.76	0.37	11.1	0.33	11.5	2			A11.g
1P/1982 U1 Halley	1985-02-26 18:28:47		4.53	4.75	0.37	9.9	0.33	11.4	2			A11.g
1P/1982 U1 Halley	1985-02-27 18:14:23		4.54	4.74	0.37	12	0.33	13.9	2			A11.h
1P/1982 U1 Halley	1985-02-28 18:14:23		4.54	4.73	0.37	9.7	0.33	11.2	2			A11.h
1P/1982 U1 Halley	1985-03-02 18:14:23		4.56	4.71	0.38	9.4	0.34	10.9	2			A11.h
1P/1982 U1 Halley	1985-03-03 18:00:00		4.57	4.7	0.38	21.3	0.34	20.6	2			A11.h
1P/1982 U1 Halley	1985-03-31 16:04:47		4.79	4.42	0.4	7.6	0.38	9.1	2			A11.h
1P/1982 U1 Halley	1985-04-01 16:04:47		4.79	4.41	0.4	16.2	0.38	19.9	2			A11.h
1P/1982 U1 Halley	1985-04-02 16:04:47		4.8	4.4	0.4	10	0.38	11.5	2			A11.i
	1985-04-03 15:50:24		4.8	4.39	0.4	9	0.39	10.3	2			A11.i
1P/1982 U1 Halley	1985-04-04 15:50:24		4.81	4.38	0.4	9.9	0.39	11.4	2			A11.i
1P/1982 U1 Halley	1985-04-05 15:50:24		4.81	4.37	0.4	9.5	0.39	11.1	2			A11.i
1P/1982 U1 Halley	1985-04-09 15:35:59		4.84	4.33	0.41	9.6	0.4	11	2			A11.i
1P/1982 U1 Halley	1985-04-10 15:35:59		4.84	4.32	0.41	7.7	0.4	8.8	2			A11.i
1P/1982 U1 Halley	1985-04-11 15:21:35		4.85	4.31	0.41	8.7	0.4	11.1	2			A11.j
1P/1982 U1 Halley	1985-04-12 15:21:35		4.85	4.3	0.41	9.7	0.4	11.2	2			A11.j
1P/1982 U1 Halley	1985-04-13 15:21:35		4.85	4.29	0.41	9.2	0.4	10.5	2			A11.j
1P/1982 U1 Halley	1985-04-14 15:21:35		4.86	4.28	0.41	7.1	0.41	8.8	2			A11.j
1P/1982 U1 Halley	1985-04-15 15:07:11		4.86	4.27	0.41	9.2	0.41	10.5	2			A11.j
1P/1982 U1 Halley	1985-06-01 12:28:47		4.78	3.78	0.46	10.2	0.48	11.6	2			A11.j
1P/1982 U1 Halley	1985-06-03 12:14:23		4.76	3.76	0.46	8.8	0.48	10	2			A11.k
1P/1982 U1 Halley	1985-06-04 12:14:23		4.75	3.75	0.46	12	0.48	13.7	2			A11.k
1P/1982 U1 Halley	1985-06-05 12:14:23		4.74	3.74	0.46	8.4	0.48	8.9	2			A11.k
1P/1982 U1 Halley	1985-06-06 12:14:23		4.73	3.73	0.46	10	0.48	11.4	2			A11.k
1P/1982 U1 Halley	1985-06-07 12:14:23		4.72	3.72	0.47	9.6	0.49	10.9	2			A11.k
1P/1982 U1 Halley	1985-06-08 12:00:00		4.71	3.71	0.47	8.2	0.49	9.3	2			A11.k
1P/1982 U1 Halley	1985-06-09 12:00:00		4.7	3.7	0.47	11.1	0.49	11.7	2			A11.l

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

TAP - examples

But! with a « SELECT all » query :

```
<vot: VOTABLE version="1.1" xsi: schemaLocation="http://www.ivoa.net/xml/VOTable http://www.ivoa.net/xml/VOTable/VOTable-1.1.xsd">
  <vot: COOSYS equinox="J2000" system="eq FK5"/>
  <vot:INFO name="QUERY STATUS" value="OK"/>
- <vot:RESOURCE name="Comet" type="results">
  - <vot:TABLE>
     + <vot:FIELD ID="id" name="id" ucd="meta.id" datatype="integer" unit="--"></vot:FIELD>
     + <vot:FIELD ID="name" name="Name" ucd="meta.id" datatype="char" unit="--"></vot:FIELD>
     + <vot:FIELD ID="Tperihelion" name="Date Perihelion" ucd="time.epoch" datatype="double" unit="UT"></vot:FIELD>
     + <vot: FIELD ID="dSun0" name="Sun Distance Perihelion" ucd="pos. distance; pos. heliocentric" datatype="double" unit="AU"></vot: FIELD>
     + <vot:FIELD ID="cometType" name="Comet Type" ucd="meta.code.class" datatype="char" unit="--"></vot:FIELD>
     + <vot:FIELD ID="ObsQual" name="Observation Quality" ucd="meta.code.qual" datatype="char" unit="--"></vot:FIELD>
     + <vot: FIELD ID="status" name="Status" ucd="meta.code.status" datatype="int" unit="--"></vot: FIELD>
     + <vot:FIELD ID="Tepoch" name="Observation Date" ucd="time.epoch" datatype="char" unit="UT"></vot:FIELD>
     + <vot:FIELD ID="Tstart" name="Start Date" ucd="time.start" datatype="char" unit="UT"></vot:FIELD>
     + <vot:FIELD ID="Tend" name="End_Date" ucd="time.end." datatype="char" unit="UT"></vot:FIELD>
     + <vot:FIELD ID="Jstart" name="Start_Date" ucd="time.start" datatype="double" unit="UT"></vot:FIELD>
     + <vot:FIELD ID="Jend" name="End_Date" ucd="time.end." datatype="double" unit="UT"></vot:FIELD>
     + <vot:FIELD ID="freq" name="Frequency" ucd="em.freq" datatype="double" unit="Hz"></vot:FIELD>
    + <vot:FIELD ID="pola" name="Polarisation" ucd="phys.polarization.circular" datatype="char" unit="--"></vot:FIELD>
     + <vot:FIELD ID="dGeo" name="Geo_Distance" ucd="pos.distance;pos.geocentric" datatype="double" unit="AU"></vot:FIELD>
     + <vot: FIELD ID="dSun" name="Sun Distance" ucd="pos.distance; pos.heliocentric" datatype="double" unit="AU"></vot: FIELD>
     + <vot: FIELD ID="rdot" name="Radial Velocity" ucd="phys.veloc.orbital;pos.heliocentric" datatype="double" unit="km/s"></vot: FIELD>
     + <vot:FIELD ID="inv1" name="Maser Inversion1" ucd="arith" datatype="double" unit="--"></vot:FIELD>
     + <vot:FIELD ID="inv2" name="Maser Inversion2" ucd="arith" datatype="double" unit="--"></vot:FIELD>
     + <vot:FIELD ID="Tbg" name="BackG Temperature" ucd="instr.skyTemp" datatype="double" unit="K"></vot:FIELD>
     + <vot:FIELD ID="Area" name="Line Area" ucd="phys.area;spect.line" datatype="double" unit="mJy km/s"></vot:FIELD>
     + <vot:FIELD ID="Aerr" name="Line Area err" ucd="phys.area; spect.line; stat.error" datatype="double" unit="mJy km/s"></vot:FIELD>
    + <vot:FIELD ID="Slin" name="Line Strength" ucd="spect.line.strength" datatype="double" unit="mJy"></vot:FIELD>
     + <vot: FIELD ID="Serr" name="Line | Strength_err" ucd="spect.line.strength; stat.error" datatype="double" unit="mJy"></vot: FIELD>
    + <vot: FIELD ID="V0" name="Velocity" ucd="spect.dopplerVeloc" datatype="double" unit="km/s"></vot: FIELD>
     + <vot: FIELD ID="V0err" name="Velocity_err" ucd="spect.dopplerVeloc; stat.error" datatype="double" unit="km/s"></vot: FIELD>
     + <vot:FIELD ID="dV0" name="FWHM" ucd="spect line width" datatype="double" unit="km/s"></vot:FIELD>
     + <vot:FIELD ID="dV0err" name="FWHM err" ucd="spect.line.width;stat.error" datatype="double" unit="km/s"></vot:FIELD>
     +<vot:FIELD ID="Q1OH" name="OH Prod Rate1" ucd="arith.rate;phys.mass.loss" datatype="double" unit="10***28 s-1"></vot:FIELD>
     + <vot:FIELD ID="Olerr" name="OH Prod Rate1 err" ucd="arith.rate;phys.mass.loss;stat.error" datatype="double" unit="10**28 s-1"></vot:FIELD>
     + <vot:FIELD ID="Q2OH" name="OH Prod Rate2" ucd="arith.rate;phys.mass.loss" datatype="double" unit="10**28 s-1"></vot:FIELD>
     + <vot:FIELD ID="Q2err" name="OH Prod Rate2 err" ucd="arith.rate;phys.mass.loss;stat.error" datatype="double" unit="10**28 s-1"></vot:FIELD>
     + <vot:FIELD ID="Ref" name="Figure Reference" ucd="meta.ref" datatype="char" unit="--"></vot:FIELD>
     + <vot: FIELD ID="RA" name="RA" ucd="pos eq ra" datatyne="double" unit="arcmin"></vot: FIELD>
```


Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

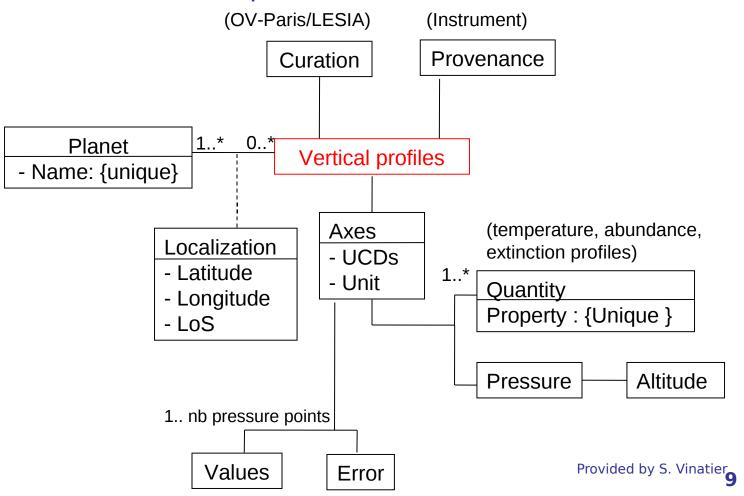
TAP - examples

- Indeed TAP allows the user to first query for the very structure of the database
 - Interoperability does not seem possible if the fields names are left to the discretion of the data provider
- We feel it is important to ponder the providing of templates of data models that would correspond to the types of data considered.
 - S. Vinatier used the IVOA Spectral Data Model to create another model for atmospheric profiles

Europlanet

TAP - examples

- cometary database
- problems


Data Model

Conclusion

Atmosphere Profile Data Model

Inspiration: IVOA Spectral Data Model

One vertical profile= 2 dimensions

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

Conclusions

- TAP allows the user/client to query on the structure of the database
 - o => forces the user/client to
 - write a 1st query to retrieve the metadata
 - understand the structure from the UCD given
 - guess the keywords he/she needs to query
 - THEN write a 2nd query to fetch the data
 - TAP requires some non trivial work from the user/ client
- We must simplify the queries, for instance by encouraging a wide use of data models

Europlanet

TAP - examples

- cometary database
- problems

Data Model

Conclusion

Conclusions

- We must also improve the pertinence of the results
 - Amongst all the services available, focus the discovery of services only on the pertinent ones
 - Normalize the names to ease up the access to the data (aka Data Model)
 - O Allow a 2-step query (like SIA, SSA):
 - 1. Ask the databases what is available and pertinent
 - Return a VOTable with the metadata and links towards the data themselves
- As a conclusion, TAP is very rich, but in order to facilitate the provider/user dialogue, it should be based on data models.