International
Virtual
Observatory

Alliance

Astronomical Data Query Language

Version 2.1

IVOA Working Draft 2017-12-08

Working group
Data Access Layer Working Group
This version
http://www.ivoa.net /documents/ADQL /20171208
Latest version
http://www.ivoa.net/documents/ADQL
Previous versions
ADQL-2.0
Author(s)
The IVOA Virtual Observatory Query Language (VOQL) work-
ing group members, The IVOA Data Access Layer (DAL) working
group members
Editor(s)
Dave Morris
Version Control
Revision 4614, 2017-12-08 14:46:25 +0000 (Fri, 08 Dec 2017)

https://volute.g-vo.org/svn/trunk/projects/dal/ADQL/ADQL.tex

Abstract

This document describes the Astronomical Data Query Language (ADQL).
ADQL has been developed based on SQL92. This document describes the
subset, of the SQL grammar supported by ADQL. Special restrictions and
extensions to SQLI92 have been defined in order to support generic and as-
tronomy specific operations.

http://www.ivoa.net/documents/ADQL/20171208
http://www.ivoa.net/documents/ADQL
http://www.ivoa.net/Documents/ADQL/2.0
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaDAL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaDAL
http://wiki.ivoa.net/twiki/bin/view/IVOA/DaveMorris
https://volute.g-vo.org/svn/trunk/projects/dal/ADQL/ADQL.tex

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents, .

Contents
1 Introduction 5
1.1 Role within the VO architecture. 6
1.2 Extended functionality 6
2 Language structure 7
2.1 Characters, keywords, identifiers and literals 8
2.1.1 Characters 8
2.1.2 Keywords and identifiers 9
2.1.3 SQL reserved keywords 9
2.1.4 ADQL reserved keywords 10
2.1.5 Identifiers 10
2.16 Escapesyntax. 10
2.1.7 Casesensitivity oL 10
2.1.8 Literals 11
2.2 Querysyntax 12
2.2.1 Subqueries 13
222 Joinso 13
2.2.3 Search condition 13
2.3 Mathematical and Trigonometrical Functions 15
3 Type system 17
3.1 Logical types 17
3.1.1 BOOLEAN o 17
3.2 Numeric types.o 18
3.2.1 Numeric primitives 18
3.22 INTERVAL 18
3.3 Dateand time. L 19
3.3.1 TIMESTAMP 19
3.4 Character types 19
3.4.1 Character primitives 19

http://www.ivoa.net/documents/

342 CLOB 20

3.5 Binary types 20
3.5.1 Binary primitives 20
352 BLOB 20

3.6 Geometric types 21
3.6.1 POINT 21
3.62 CIRCLE, 22
3.6.3 POLYGON 22
3.64 REGION, 23

Optional components 24

4.1 Service capabilities 0oL 24

4.2 Geometrical functions L. 24
4.2.1 Overview 24
4.2.2 Coordinate limits 25
4.2.3 Datatype functionso 25
4.2.4 Coordsyso 26
4.2.5 Predicate functions 26
4.2.6 Utility functions 26
4.2.7 Preferred crossmatch syntax 28
428 AREA 30
429 BOX e 30
4.2.10 CENTROID o oo . 32
4211 CIRCLE 32
4.2.12 CONTAINSo 34
4.2.13 COORD1 o 35
4.2.14 COORD2 36
4.2.15 COORDSYS 37
4.2.16 DISTANCE o .. 37
4.2.17 INTERSECTS, 39
4.2.18 POINT o 40
4.2.19 POLYGON o 41

4.3 User defined functions 43
4.3.1 Overview 43
4.3.2 Metadata Lo 44

4.4 String functions and operators.o 44
441 LOWER 45
442 ILIKE 45

4.5 Set operators 45
4.5.1 UNION 46
4.5.2 EXCEPT 46

45.3 INTERSECT 47

4.6 Common table expressions 48

4.6.1 WITH 48

4.7 Typeoperations. Lo 49

4.7.1 CAST 49

4.8 Unit operations oo 49

481 IN _UNIT o o 50

4.9 Bitwise operators o 50

491 Bit AND 50

492 BitOR 51

493 Bit XOR 51

494 Bit NOT 51

4.10 Cardinality 52

4.10.1 OFFSET 52

A BNF grammar 53

B Language feature support 69

C Outstanding issues 70

D Changes from previous versions 71
Acknowledgements

The authors would like to acknowledge all contributors to this and previous
versions of this standard, especially: P. Dowler, J. Lusted, M. A. Nieto-
Santisteban, W. O’Mullane, M. Ohishi, I. Ortiz, P. Osuna, Y Shirasaki and
A. Szalay.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”
and “OPTIONAL” (in upper or lower case) used in this document are to
be interpreted as described in the Internet Engineering Task Force (IETF)
standard, Bradner (1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

https://www.ietf.org/
http://www.ivoa.net

1 Introduction

The Astronomical Data Query Language (ADQL) is the language used by
the IVOA to represent astronomy queries posted to VO services. The IVOA
has developed several standardized protocols to access astronomical data,
e.g., Simple Image Access (STA) protocol and Simple Spectral Access (SSA)
protocol for image and spectral data respectively. These protocols might
be satisfied using a single table query. However, different VO services have
different needs in terms of query complexity and ADQL arises in this context.

The ADQL specification makes no distinction between core and advanced
or extended functionalities. Hence ADQL has been built according to a single
Backus Naur Form (BNF) based language definition. Any service making
use of ADQL would then define the level of compliancy to the language.
This would allow the notion of core and extension to be service-driven and
it would decouple the language from the service specifications.

ADQL is based on the Structured Query Language (SQL), especially on
SQL 92. The VO has a number of tabular data sets and many of them are
stored in relational databases, making SQL a convenient access means. A
subset of the SQL grammar has been extended to support queries that are
specific to astronomy. Similarly to SQL, the ADQL language definition is not
semantically safe by design and therefore this specification defines syntactical
correctness only. Type safety has been achieved as far as it can be done in
SQL. The exact meaning of keywords indicating requirement levels can be
found in the References section.

USERS

ADQL o
% W,
USER LAYER

Browser Based Script Based
Apps Desktop Apps Apps

USING

VO Query

Languages

InProgress

COMPUTERS

> 4> 0
OXn7T

Semantics e Data AP

CORE Models

<AT-Hn-—60mMmaou
T OO 34
[oNeN¢

]

3

=]
(>_

=

Formats

w (

SHARING

Storage Data and Metadata Collection
g RESOURCE LAYER

3
20160508 y
IVOA Architecture @ & PROVIDERS E =

Figure 1: Architecture diagram for this document

Computation

1.1 Role within the VO architecture

Figure 1 shows the role this document plays within the IVOA architecture
(Arviset and Gaudet et al., 2010).

1.2 Extended functionality

This document defines the minimum set of functions, operators and datatypes
that a service MUST implement in order to register as a service that imple-
ments this version of the ADQL specification.

Service implementations are free to extend this functionality by providing
additional functions, operators or datatypes beyond those defined in this
specification, as long as the extended functionality does not conflict with
anything defined in this specification.

2 Language structure

This section describes the ADQL language structure. We will define in sub-
sequent sections the syntax for the special characters, reserved and non-
reserved words, identifiers and literals and then, finally, the syntax for the
query expression.

The formal notation for syntax of computing languages is often expressed
in BNF. This syntax is used by popular tools for producing parsers. Ap-
pendix A to this document provides the full BNF grammar for ADQL. The
following conventions are used through this document:

e Optional items are enclosed in meta symbols [and]

A group of items is enclosed in meta symbols { and }

Repetitive item (zero or more times) are followed by . ..

Terminal symbols are enclosed by < and >

Terminals of meta-symbol characters (=,[,],(,),<,>,*) are sur-
rounded by quotes (‘) to distinguish them from meta-symbols

Case-insensitive unless otherwise stated.

2.1 Characters, keywords, identifiers and literals
2.1.1 Characters

The language allows simple Latin letters (lower and upper case, i.e.
{aA-zZ}), digits ({0-9}) and the following special characters:

e space

e single quote ’

e double quote

e percent %

e left and right parenthesis ()
e asterisk *

e plus sign +

e minus sign -

e comma ,

e period .

e solidus /

e colon :

e semicolon ;

e less than operator <
e equals operator =

e greater than operator >
e underscore _

e ampersand &

e question mark ?

e circumflex =

e tilde ~

e vertical bar |

2.1.2 Keywords and identifiers

Besides the character set, the language provides a list of reserved keywords
plus the syntax description for regular identifiers.

A reserved keyword has a special meaning in ADQL and cannot be used
as an identifier unless it is isolated using the ADQL escape syntax defined
in Section 2.1.6.

The ADQL specification extends the list of SQL92 reserved keywords
to accommodate those useful for astronomical purposes and/or present in a
subset of vendor specific languages only (e.g. TOP).

Although the following lists are all in UPPERCASE, the matching of
keywords is case-insensitive.

2.1.3 SQL reserved keywords

ABSOLUTE, ACTION, ADD, ALL, ALLOCATE, ALTER, AND, ANY, ARE, AS, ASC,
ASSERTION, AT, AUTHORIZATION, AVG, BEGIN, BETWEEN, BIT, BIT_LENGTH,
BOTH, BY, CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR, CHARACTER,
CHARACTER_LENGTH, CHAR_LENGTH, CHECK, CLOSE, COALESCE, COLLATE,
COLLATION, COLUMN, COMMIT, CONNECT, CONNECTION, CONSTRAINT, CONSTRAINTS,
CONTINUE, CONVERT, CORRESPONDING, COUNT, CREATE, CROSS, CURRENT,
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, CURSOR,
DATE, DAY, DEALLOCATE, DECIMAL, DECLARE, DEFAULT, DEFERRABLE, DEFERRED,
DELETE, DESC, DESCRIBE, DESCRIPTOR, DIAGNOSTICS, DISCONNECT, DISTINCT,
DOMAIN, DOUBLE, DROP, ELSE, END, END-EXEC, ESCAPE, EXCEPT, EXCEPTION,
EXEC, EXECUTE, EXISTS, EXTERNAL, EXTRACT, FALSE, FETCH, FIRST,
FLOAT, FOR, FOREIGN, FOUND, FROM, FULL, GET, GLOBAL, GO, GOTO, GRANT,
GROUP, HAVING, HOUR, IDENTITY, IMMEDIATE, IN, INDICATOR, INITIALLY,
INNER, INPUT, INSENSITIVE, INSERT, INT, INTEGER, INTERSECT, INTERVAL,
INTO, IS, ISOLATION, JOIN, KEY, LANGUAGE, LAST, LEADING, LEFT,
LEVEL, LIKE, LOCAL, LOWER, MATCH, MAX, MIN, MINUTE, MODULE, MONTH,
NAMES, NATIONAL, NATURAL, NCHAR, NEXT, NO, NOT, NULL, NULLIF,
NUMERIC, OCTET_LENGTH, OF, ON, ONLY, OPEN, OPTION, OR, ORDER, OUTER,
OUTPUT, OVERLAPS, PAD, PARTIAL, POSITION, PRECISION, PREPARE, PRESERVE,
PRIMARY, PRIOR, PRIVILEGES, PROCEDURE, PUBLIC, READ, REAL, REFERENCES,
RELATIVE, RESTRICT, REVOKE, RIGHT, ROLLBACK, ROWS, SCHEMA, SCROLL,
SECOND, SECTION, SELECT, SESSION, SESSION_USER, SET, SIZE, SMALLINT,
SOME, SPACE, SQL, SQLCODE, SQLERROR, SQLSTATE, SUBSTRING, SUM,
SYSTEM_USER, TABLE, TEMPORARY, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TO, TRAILING, TRANSACTION, TRANSLATE, TRANSLATION,
TRIM, TRUE, UNION, UNIQUE, UNKNOWN, UPDATE, UPPER, USAGE, USER,
USING, VALUE, VALUES, VARCHAR, VARYING, VIEW, WHEN, WHENEVER, WHERE,
WITH, WORK, WRITE, YEAR, ZONE

2.1.4 ADQL reserved keywords

Mathematical functions and operators:

ABS, ACOS, ASIN, ATAN, ATAN2, CEILING, COS, DEGREES, EXP, FLOOR,
LOG, L0OG10, MOD, PI, POWER, RADIANS, RAND, ROUND, SIN, SQRT, TAN,
TOP, TRUNCATE

Geometric functions and operators:

AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1, COORD2, COORDSYS,
DISTANCE, INTERSECTS, POINT, POLYGON, REGION

2.1.5 Identifiers

Identifiers MUST begin with a letter {aA-zZ}, subsequent characters MAY
be letters, underscores or digits {0-9} as follows:

<Latin_letter>... [{ <digit> | <Latin_letter> | <underscore> | }...]

2.1.6 Escape syntax

To address reserved keyword and special character conflicts the ADQL lan-
guage provides a way to escape a non-compliant identifier by using the double
quote character " as a delimiter.

For example, to use the reserved word size as a column name it must
be isolated using double quotes.

e size — Invalid column name

e "size" — Valid column name

2.1.7 Case sensitivity

In addition to isolating keyword conflicts and special characters, the double
quote escape syntax also denotes case sensitivity.
Without double quotes, the following identifiers are all equivalent:

alpha == Alpha == ALPHA

When escaped using double quotes, the same set of identifiers are not
equivalent:

"alpha" != "Alpha" != "ALPHA"

10

2.1.8 Literals

String literals are expressed as a character expression delimited by single
quotes.

<character_string_literal> ::=
<quote> [<character_representation>...] <quote>

Numeric literals may be are expressed as an exact decimal value, e.g.
12 or 12.3, a floating point number with an exponent, e.g. 12.3E4, or a
unsigned hexadecimal value, e.g. 0x2F.

<signed_numeric_literal> ::= [<sign>] <unsigned_numeric_literal>

<unsigned_numeric_literal> ::=
<exact_numeric_literal>
| <approximate_numeric_literal>
| <unsigned_hexadecimal>

<exact_numeric_literal> ::=
<unsigned_decimal> [<period> [<unsigned_decimal>]]
| <period><unsigned_decimal>

<approximate_numeric_literal> ::= <mantissa> E <exponent>
<mantissa> ::= <exact_numeric_literal>

<exponent> ::= <signed_decimal>

<signed_decimal> ::= [<sign>] <unsigned_decimal>
<unsigned_decimal> ::= <digit>...

<digit> ::=0 11 | 2314561671819
<sign> ::= <plus_sign> | <minus_sign>

Hexadecimal literals are expressed using the ’C’ style notation, prefixed
by a zero and ’x’ e.g. 0x2F.

<unsigned_hexadecimal> ::= Ox<hex_digit>...
hex_digit ::= <digit> | a | bl cldlel £l AIBICIDIEIF

Hexadecimal literals are not case-sensitive. Hexadecimal literals can only
be used to create integer datatypes, SMALLINT, INTEGER and BIGINT.

Boolean literals are expressed in BNF as follows:

<boolean_literal> ::= True | False

Boolean literals are not case-sensitive.

11

2.2 Query syntax

A more detailed definition of the select statement is given by the <query_specification>
construct defined in Appendix A.

A simplified syntax for the SELECT statement follows, showing the main
constructs for the query specification:

SELECT
[ALL | DISTINCT]
[TOP unsigned_decimal]

{
* |
{ value_expression [[AS] column_name] },
}
FROM {
{
table_name [[AS] identifier] |
(SELECT) [[AS] identifier] |

table_name [NATURAL]
[INNER | { LEFT | RIGHT | FULL [OUTER] }]
JOIN table_name

[ON search_condition | USING (column_name,...)]
},
}
[WHERE search_condition]
[GROUP BY group_by_term, ...]
[HAVING search_condition]
[ORDER BY

{ order_by_expression } [ASC | DESC],

]
[OFFSET unsigned_decimal]

The SELECT statement defines a query to apply to a set of tables spec-
ified in the FROM clause. As a result of this query, a subset of the tables
is returned. The order of the rows MAY be arbitrary unless an ORDER BY
clause is specified. A TOP clause MAY be specified to limit the number of
rows returned. An OFFSET clause MAY be specified to skip a number of rows
at the start of the results. If both TOP and OFFSET are used together then
OFFSET is applied first followed by TOP (see Section 4.10.1).

The order of the columns in the query results SHALL be the same as
the order specified in the selection list, unless an asterisk is specified. The
selection list MAY include numeric, string or geometry value expressions.

12

2.2.1 Subqueries

Table subqueries MAY be used by predicates such as IN and EXISTS in the
WHERE clause of a query:

SELECT

alpha_source.id
FROM

alpha_source
WHERE

alpha_sourceid >=b
AND

alpha_sourceid IN

(
SELECT id FROM alpha_source WHERE id < 10

)

Table subqueries MAY be used for declaring derived tables in the FROM
clause of a query:

SELECT
alpha_source.id
FROM
alpha_source,

(
SELECT alpha_source.id FROM alpha_source WHERE id < 10
) AS subsample
WHERE
alpha_source.id >=b
AND
alpha_source.id = subsample.id

2.2.2 Joins
ADQL supports INNER and OUTER (LEFT, RIGHT and FULL) joins. If no type
is specified, the default is INNER. All of these can be NATURAL or not.

2.2.3 Search condition

A search condition MAY be part of other clauses including JOIN, HAVING and
WHERE.

A search condition MAY contain the standard logical operators, AND, OR
and NOT.

A search condition MAY contain the following predicates:

e Standard comparison operators: =, 1=, <>, <, >, <=, >=

e Range comparison, BETWEEN

13

e (Case-sensitive string comparison, LIKE
e Null value checks, IS NULL and IS NOT NULL

e Non-empty subquery check, EXISTS

In addition, some service implementations may also support the optional
ILIKE case-insensitive string comparison operator, defined in Section 4.4.2.

e ILIKE

14

2.3 Mathematical and Trigonometrical Functions

ADQL declares a list of reserved keywords (see Section 2.1.2) which include
the mathematical and trigonometrical function names. Their syntax, usage
and description are detailed in the following tables:

Name Argument | Return Description
datatype datatype
abs(x) z double double Returns the absolute value of z.
ceiling(x) z double double Returns the smallest integer that is not less than
Z.
degrees(x) x double double Converts the angle z from radians to degrees.
exp(x) z double double Returns Euler’s number e raised to the power of
Z.
floor(x) z double double Returns the largest integer that is not greater
than z.
log(x) z double double Returns the natural logarithm (base e) of 2. The
value of £ must be greater than zero.
log10(x) z double double Returns the base 10 logarithm of x. The value of
z must be greater than zero.
mod(x,y) z double, double Returns the remainder r of z/y as a double,
y double where:
e 7 has the same sign as x
e |r| is less than |y]
e z = (f *y) + r for a given integer f
pi() double The numeric constant 7.
power(x,y) z double, double Returns the value of z raised to the power of .
y double
radians(x) z double double Converts the angle z from degrees to radians.
sqrt(x) z double double Returns the positive square root of z.
rand(x) z double double Returns a random value between 0.0 and 1.0.
The optional argument, x, originally intended to
provide a random seed, has undefined semantics.
Query writers are advised to omit this argument.
round(x,n) z double, double Rounds z to n decimal places. The integer n is
n integer optinal and defaults to 0 if not specified. A nega-
tive value of n will round to the left of the decimal
point.
truncate(x, n) z double double Truncates z to n decimal places. The integer n is
n integer optinal and defaults to 0 if not specified.

Table 1: Mathematical functions

15

Name Argument | Return Description
datatype datatype
acos(x) x double double Returns the arc cosine of z, in the range of 0
through 7 radians. The absolute value of x must
be less than or equal to 1.0.
asin(x) z double double Returns the arc sine of z, in the range of -m/2
through 7/2 radians. The absolute value of z
must be less than or equal to 1.0.
atan(x) z double double Returns the arc tangent of z , in the range of - /2
through 7 /2 radians.
atan2(y,x) z double, double Converts rectangular coordinates z,y to polar an-
y double gle. It computes the arc tangent of y/z in the
range of —w through 7 radians.
cos(x) z double double Returns the cosine of the angle z in radians, in
the range of -1.0 through 1.0.
sin(x) z double double Returns the cosine of the angle z in radians, in
the range of -1.0 through 1.0.
tan(x) z double double Returns the tangent of the angle z in radians, in

the range of -1.0 through 1.0.

Table 2: Trigonometrical functions

16

3 Type system

ADQL defines no data definition language (DDL). It is assumed that table
definition and data ingestion are performed in the underlying database’s
native language and type system.

However, service metadata needs to give column types in order to allow
the construction of queries that are both syntactically and semantically cor-
rect. Examples of such metadata includes the TAP_SCHEMA tables defined in
the TAP specification and the /tables webservice response defined in the
VOSI specification.

Services SHOULD, if at all possible, try to express their column meta-
data in these terms even if the underlying database employs different types.
Services SHOULD also use the following mappings when interfacing to user

data, either by serializing result sets into VOTables or by ingesting user-
provided VOTables into ADQL-visible tables.

3.1 Logical types

3.1.1 BOOLEAN

The BOOLEAN datatype maps to the corresponding boolean datatype is
defined in the DALI specification. The serialization format for boolean is
defined in the VOTable specification.

ADQL VOTable
type datatype arraysize xtype
BOOLEAN boolean 1 -

Table 3: ADQL type mapping for BOOLEAN

The literal values 1 and TRUE are equivalent, and the values 0 and FALSE
are equivalent:

foo =1
foo = TRUE
bar = 0
bar = FALSE

The literal values TRUE and FALSE are not case-sensitive:

foo = true
foo = True

foo = TRUE
bar = 0

bar = false
bar = False
bar = FALSE

17

Comparing the equality of a BOOLEAN value or expression with another
BOOLEAN returns a BOOLEAN result.

When comparing the size of a BOOLEAN with another BOOLEAN, the
value TRUE is greater than the value FALSE.

Unless explicitly stated, the result of any other operation on a BOOLEAN
value is undefined.

3.2 Numeric types

3.2.1 Numeric primitives

The numeric datatypes, BIT, SMALLINT, INTEGER, BIGINT, REAL and
DOUBLE map to the corresponding datatypes defined in the VOTable spec-
ification.

ADQL VOTable
type datatype arraysize xtype
BIT bit - -
SMALLINT short - -
INTEGER int - -
BIGINT long - -
REAL float - -
DOUBLE double - -

Table 4: ADQL type mapping for numeric values

Where possible ADQL numeric values SHOULD be implemented us-
ing database types that correspond to the VOTable serialization types, e.g.
SMALLINT should map to a 16 bit integer, INTEGER should map to a 32
bit integer, etc.

3.2.2 INTERVAL

The DALI specification defines INTERVAL as a pair of integer or floating-
point numeric values which are serialized as an array of numbers.

TBD - The details of how INTERVAL values behave in ADQL are not
yet defined.

ADQL VOTable
type datatype arraysize xtype
INTERVAL short, int, float, double 2 dali:interval

Table 5: ADQL type mapping for INTERVAL

18

3.3 Date and time

Where possible, date and time values SHOULD be implemented as described
in the DALI specification.

3.3.1 TIMESTAMP

The TIMESTAMP datatype maps to the corresponding type defined in the
DALI specification.

ADQL VOTable
type datatype arraysize xtype
TIMESTAMP char n, n* * dali:timestamp)|

Table 6: ADQL type mapping for TIMESTAMP

TIMESTAMP literals should be created using the TIMESTAMP () construc-
tor, using the syntax defined in the DALI specification:

YYYY-MM-DD[’T’hh:mm:ss[.SSS] [?Z°]]

The basic comparison operators =, <, > <=, >=_ <> and BETWEEN can all
be applied to TIMESTAMP values:

SELECT
WHERE
obstime > TIMESTAMP(’2015-01-01?)
OR
obstime
BETWEEN
TIMESTAMP(°2014-01-01?)
AND

TIMESTAMP(’2014-01-02)

Within the database, the details of how TIMESTAMP values are imple-
mented is platform dependent. The primary requirement is that the results
of the comparison operators on TIMESTAMP values are consistent with
respect to chronological time.

3.4 Character types

3.4.1 Character primitives

The CHAR and VARCHAR datatypes map to the char or unicodeChar
type defined in the VOTable specification.

The choice of whether CHAR and VARCHAR map to char or unicodeChar
is implementation dependent and may depend on the data content.

19

ADQL VOTable
type datatype arraysize xtype
CHAR(n) char, unicodeChar n -
VARCHAR(n) char, unicodeChar n* -

Table 7: ADQL type mapping for character strings

3.42 CLOB

To provide support for string values which are generated by the server, ADQL
includes the Character Large OBject (CLOB) datatype, which behaves as
an opaque immutable string of characters.

None of the ADQL operators apply to CLOB values. However, specific
database implementations MAY provide user defined functions that operate
on some CLOB values.

CLOB values are serialized as arrays of characters.

ADQL VOTable
type datatype arraysize xtype
CLOB char, unicodeChar n, n*, * -

Table 8: ADQL type mapping for CLOB

The details of how CLOB values are handled within a database is imple-
mentation dependent.

An example use case for CLOB is a URL field that is generated on the
fly using one or more fields stored the database. Although some of the
components are stored in the database, the final URL that appears in the
results is not stored in the database. Hence it would not be possible to apply
ADQL functions or operators to the URL field without special knowledge
of the internal database structure. However, a service implementation could
provide user defined functions that used knowledge of the internal database
structure to perform specific operations on the generated URL field.

3.5 Binary types

3.5.1 Binary primitives

The BINARY and VARBINARY datatypes map to the unsignedByte type
defined in the VOTable specification.

3.5.2 BLOB

To support large blocks of binary data such as images, ADQL includes the
Binary Large OBject (BLOB) datatype, which behaves as an opaque im-
mutable array of bytes.

20

ADQL VOTable
type datatype arraysize xtype
BINARY (n) unsignedByte n -
VARBINARY (n) unsignedByte n* -

Table 9: ADQL type mapping for character strings

None of the ADQL operators apply to BLOB values. However, specific
database implementations MAY provide user defined functions that operate
on some BLOB values.

BLOB values are serialized as arrays of unsignedByte defined in the
VOTable specification.

ADQL VOTable
type datatype arraysize xtype
BLOB unsignedByte n, n* * -

Table 10: ADQL type mapping for BLOB

The details of how BLOB values are handled within a database is imple-
mentation dependent.

An example use case for BLOB is for storing thumbnail images in the
database alongside the tabular data. ADQL does not provide functions or
operations that operate on images. However, a service implementation could
provide user defined functions that use implemetation specific features to
perform operations on the image data.

3.6 Geometric types

ADQL provides support for the POINT, CIRCLE and POLYGON geometric
types defined in the DALI specification.

ADQL also provides support for STC-S based geomertic regions, as define
in the STC-S specification, using the REGION datatype.

3.6.1 POINT

The POINT datatype maps to the corresponding type defined in the DALI
specification.

POINT values are serialized as arrays of floating point numbers using
the point xtype defined in the DALI specification.

ADQL VOTable
type datatype arraysize xtype
POINT float, double 2 dali:point

Table 11: ADQL type mapping for POINT

21

POINT literals can be expressed using the POINT() constructor defined
in Section 4.2.18. For example:

POINT(
12.3,
45.6
)
3.6.2 CIRCLE

The CIRCLE datatype maps to the corresponding type defined in the DALI
specification.

CIRCLE values are serialized as arrays of floating point numbers using
the circle xtype defined in the DALI specification.

ADQL VOTable
type datatype arraysize xtype
CIRCLE float, double 3 dali:circle

Table 12: ADQL type mapping for CIRCLE

CIRCLE literals can be expressed using the CIRCLE() constructor defined
in Section 4.2.11. For example:

CIRCLE(
12.3,
45.6,
0.5
)

3.6.3 POLYGON

The POLYGON datatype maps to the corresponding type defined in the
DALI specification.

POLYGON values are serialized as arrays of floating point numbers using
the polygon xtype defined in the DALI specification.

ADQL VOTable
type datatype arraysize xtype
POLYGON float, double n, * n* dali:polygon

Table 13: ADQL type mapping for POLYGON

POLYGON literals can be expressed using the POLYGON() constructor
defined in Section 4.2.19. For example:

POLYGON (
10.0,

22

-10.5,
20.0,
20.5,
30.0,
30.5
)

describes a triangle, whose vertices are (10.0, -10.5), (20.0, 20.5) and (30.0,
30.5) degrees.

3.6.4 REGION

The REGION datatype provides support for complex geometric regions that
cannot be expressed by one of the simple geometric types described above.

REGION values are serialized as character arrays with a xtype of region
containing a STC-S string describing the geometric region.

The text of a REGION value SHOULD contain a simple or complex
spatial region as defined in the STC-S specification.

To fully support the the REGION datatype, a service implementation
SHOULD provide implementations of the INTERSECTS and CONTAINS
operators that support the REGION datatype in combination with with the
other geometric types, POINT, BOX, CIRCLE and POLYGON.

ADQL VOTable
type datatype arraysize xtype
REGION char * adqgl:region

Table 14: Type mapping for STC-S region

A key use case for the REGION datatype is to implement the s_region
column described in the ObsCore specification.

23

4 Optional components

In addition to the core components, the ADQL language also includes sup-
port for optional features and functions.

The following sections define the optional features that are part of the
the ADQL grammar, but are not required in order to meet the standard for
a basic ADQL service.

It is up to each service implementation to declare which optional or ad-
ditional features it supports.

If a service does not declare support for an optional feature, then a
client SHOULD assume that the service does NOT support that feature,
and SHOULD NOT make use of that feature in any ADQL queries that it
sends.

4.1 Service capabilities

The TAPRegExt specification defines an XML schema that a service
SHOULD use to declare which optional features it supports.

In general, each group of language features is identified by a type URI,
and each individual feature within the group is identified by the feature
name.

Appendix B contains examples of how to declare support for each of the
language features defined in this document using the XML schema from the
TAPRegExt specification.

For full details on the XML schema and how it can be used, please refer
to the TAPRegExt specification.

4.2 Geometrical functions
4.2.1 Overview

In addition to the mathematical functions, ADQL provides a the following
geometrical functions to enhance the astronomical usage of the language:

e AREA
e BOX
CENTROID

o CIRCLE
CONTAINS

COORD1

24

COORD2

COORDSYS

DISTANCE

INTERSECTS

e POINT
e POLYGON

4.2.2 Coordinate limits

If the arguments for a geometric function represent spherical coordinates
then the values SHOULD be limited to [0, 360] and [-90, 90], and the units
MUST be in degrees (square degrees for area).

If the arguments for a geometric function represent cartesian coordinates
then there are no inherent limits to the range of values, but coordinate
vectors MUST be normalized.

Details of the mechanism for reporting the out of range arguments are
implementation dependent.

4.2.3 Datatype functions

The following functions provide constructors for each of the geometry
datatypes. The semantics of these datatypes are based on the corresponding
concepts from the STC specification data model.

The geometry datatypes and expressions are part of the core <value_expression>
in the ADQL grammar.

<value_expression> ::=
<numeric_value_expression>
| <string_value_expression>
| <boolean_value_expression>
| <geometry_value_expression>

A <geometry_value_expression> does not simply cover the geometry
datatype constructors (POINT, CIRCLE, etc.) but also includes user de-
fined functions and column values where a geometry datatype is stored in a
column.

Therefore, <geometry_value_expression> is expanded as:

<geometry_value_expression> ::=

<value_expression_primary>
| <geometry_value_function>

25

where

<geometry_value_function> ::=
<box>

| <centroid>

| <circle>

| <point>

| <polygon>

| <user_defined_function>

and <value_expression_primary> enables the use of geometric functions
and column references.

4.2.4 Coordsys

For historical reasons, the geometry constructors (BOX, CIRCLE, POINT
and POLYGON) all accept an optional string value as the first argument.
This was originally intended to carry information on a reference system or
other coordinate system metadata. As of this version of the specification
this parameter has been marked as deprecated. Services are permitted to
ignore this parameter and clients are advised to pass an empty string here.
Future versions of this specification may remove this parameter from the
listed functions.

4.2.5 Predicate functions

Functions CONTAINS and INTERSECTS each accept two geometry datatypes
and return a numeric value of 1 or 0 according to whether the relevant verb
(e.g. contains) is satisfied against the two input geometries; 1 if the condition
is met and 0 if it is not.

Each of these functions can be used as a WHERE clause predicate by
comparing the numeric result with zero or one. For example:

SELECT
E3
FROM
table
WHERE
1 = CONTAINS(
POINT(...),
CIRCLE(...)
)

4.2.6 Utility functions

Function COORDSYS extracts the coordinate system string from a given
geometry. To do so it accepts a geometry expression and returns a calculated
string value.

26

This function has been included as a string value function because it
returns a simple string value.

<string_value_function> ::=
<string_geometry_function> | <user_defined_function>

<string_geometry_function> ::= <extract_coordsys>

<extract_coordsys> ::=
COORDSYS <left_paren> <geometry_value_expression> <right_paren>

As of this version of the specification the COORDSYS function has been
marked as deprecated. This function may be removed in future versions of
this specification.

Functions like AREA, COORD1, COORD2 and DISTANCE accept a
geometry and return a calculated numeric value.

The specification defines two versions of the DISTANCE function, one
that accepts two geometries, and one that accepts four separate numeric
values, both forms return a numeric value.

The predicate and most of the utility functions are included as numeric
value functions because they return simple numeric values. Thus:

<numeric_value_function> ::=
<trig_function>
| <math_function>
| <numeric_geometry_function>
| <user_defined_function>

where

<numeric_geometry_function> ::=
<predicate_geometry_function>
| <non_predicate_geometry_function>

and

<non_predicate_geometry_function> ::=
AREA <left_paren> <geometry_value_expression> <right_paren>
| COORD1 <left_paren> <coord_value> <right_paren>
| COORD2 <left_paren> <coord_value> <right_paren>
| DISTANCE <left_paren>
<coord_value> <comma>
<coord_value>
<right_paren>
| DISTANCE <left_paren>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression>
<right_paren>

27

and

<predicate_geometry_function> ::= <contains> | <intersects>

4.2.7 Preferred crossmatch syntax

An especially common operation that astronomers require when working
with source catalogues is the positional sky crossmatch. In its simplest form
this is a join between two tables with the requirement that the distance
along a great circle between the sky positions of the two associated rows is
less than or equal to a given threshold.

The geometrical functions provided by ADQL offer a number of semanti-
cally equivalent ways to specify such a condition in in either the JOIN or the
WHERE clause, using various combinations of POINT, CIRCLE and DIS-
TANCE. While a correct implementation MUST generate the same result
for any of these alternatives, the performance characteristics may differ dra-
matically depending on implementation. Given this, it is difficult for (human
or machine) ADQL authors to know how to phrase a crossmatch with the
expectation that it will be executed efficiently, and difficult for services to
know which forms of query to optimise. The result can be the unnecessarily
slow operation of the common sky crossmatch operation.

The purpose of this section is to recommend a preferred form of ADQL to
use for sky crossmatches. Clients posing crossmatch-like queries are advised
to phrase them this way rather than semantically equivalent alternatives, and
services are encouraged to ensure that this form of join is executed efficiently;
this might involve identifying such ADQL input clauses and rewriting them
appropriately for efficient processing on the database backend.

The preferred way to specify a sky position-only crossmatch is:

JOIN ... ON DISTANCE(
tl.lon,
tl.1lat,
t2.1lon,
t2.1lat
) < r_max_deg

where t1.lon, t1.lat, and t2.lon, t2.lat are references to numeric columns for
the latitude and longitude in the respective tables, t1, and 2.
Alternatively, using geometric POINT values,

JOIN ... ON DISTANCE(
tl.point,
t2.point
) < r_max_deg

where t1.point and t2.point are references to columns containing geometric
POINT wvalues for the sky positions in the two tables, t1, and t2.

28

Alternative semantically equivalent forms however MAY still be used by
clients, and MUST still be handled correctly by services.

29

The following sections provide a detailed description for each geometrical
function. In each case, the functionality and usage is described rather than
going into the BNF grammar details as above.

4.2.8 AREA

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: AREA

The AREA function computes the area, in square degrees, of a given
geometry.

For example, an expression to calculate the area of a POLYGON could
be written as follows:

AREA (
POLYGON (
10.0,
-10.5,
20.0,
20.5,
30.0,
30.5
)
)

The AREA of a single POINT is zero.

The geometry argument may be a literal value, as above, or it may be a
column reference, function or expression that returns a geometric type. For
example:

AREA(
tl.footprint
)

where t1.footprint is a reference to a database column that contains geometric
(POINT, BOX, CIRCLE, POLYGON or REGION) values.
429 BOX

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo

name: BOX
The BOX function expresses a box on the sky. A BOX is a special case of

POLYGON, defined purely for convenience, and it corresponds semantically
to the equivalent term, Box, defined in the STC specification.

30

It is specified by a center position and size (in both axes) defining a cross
centered on the center position and with arms extending, parallel to the
coordinate axes at the center position, for half the respective sizes on either
side. The box’s sides are line segments or great circles intersecting the arms
of the cross in its end points at right angles with the arms.

The function arguments specify the center position and the width and
height, where:

e the center position is given by a pair of numeric coordinates in degrees,
or a single geometric POINT

e the width and height are given by numeric values in degrees

e the center position and the width and height MUST be within the
ranges defined in Section 4.2.2.

For example, a BOX of ten degrees centered on a position (25.4, -20.0)
in degrees could be written as follows:

BOX (
2

[
= N
O O OO

-

O O O

~ =

Alternatively, the center position could be expressed as a POINT:

BOX(
POINT(
25.4,

-20.0
),

10.0,

10.0

)

The function arguments may be literal values, as above, or they may
be column references, functions or expressions that returns the appropriate
datatypes. For example:

BOX (
tl.center,
t1l.width,
t1l.height
)

where t1.center, t1.width and t1.height are references to database columns
that contain POINT, DOUBLE and DOUBLE values respectively.

31

For historical reasons, the BOX function accepts an optional string value
as the first argument. As of this version of the specification this parameter
has been marked as deprecated. Future versions of this specification may
remove this parameter (see Section 4.2.4).

4.2.10 CENTROID

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CENTROID

The CENTROID function computes the centroid of a given geometry
and returns a POINT.

For example, an expression to calculate the centroid of a POLYGON
could be written as follows :

CENTROID(
POLYGON (
10.0,
-10.5,
20.0,
20.5,
30.0,
30.5
)
)

The CENTROID of a single POINT is that POINT.

The geometry argument may be a literal value, as above, or it may be a
column reference, function or expression that returns a geometric type. For
example:

CENTROID(
tl.footprint
)

where t1.footprint is a reference to a database column that contains geometric

(POINT, BOX, CIRCLE, POLYGON or REGION) values.

4.2.11 CIRCLE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CIRCLE

32

The CIRCLE function expresses a circular region on the sky (a cone
in space), and it corresponds semantically to the equivalent term, Circle,
defined in the STC specification.

The function arguments specify the center position and the radius, where:

e the center position is given by a pair of numeric coordinates in degrees,
or a single geometric POINT

e the radius is a numeric value in degrees

e the center position and the radius MUST be within the ranges defined
in Section 4.2.2.

For example, a CIRCLE of ten degrees radius centered on position (25.4,
-20.0) in degrees could be written as follows:

CIRCLE(
25.4,
-20.0,
10.0
)

Alternatively, the center position may be expressed as a POINT:

CIRCLE(
POINT(
25.4,
-20.0,

),
10.0

)

The position argument may be a literal value, as above, or it may be a
column reference, function or expression that returns a geometric type. For
example:

CIRCLE(
t1l.center,
tl.radius

)

where t1.center and t1.radius are references to database columns that contain
POINT and DOUBLE values respectively.

For historical reasons, the CIRCLE function accepts an optional string
value as the first argument. As of this version of the specification this pa-
rameter has been marked as deprecated. Future versions of this specification
may remove this parameter (see Section 4.2.4).

33

4.2.12 CONTAINS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CONTAINS

The CONTAINS function determines if a geometry is wholly contained
within another. This is most commonly used to express a "point-in-shape"
condition.

For example, an expression to determine whether the point (25.0, -19.5)
degrees is within a circle of ten degrees radius centered on position (25.4,
-20.0) degrees, could be written as follows:

CONTAINS(
POINT(
25.0,
-19.5
),
CIRCLE(
25.4,
-20.0,
10.0
)
)

The CONTAINS function is not symmetric in the meaning of the argu-
ments.

The CONTAINS function returns the numeric value 1 if the first argu-
ment is in, or on, the boundary of the second argument and the numeric
value 0 if it is not.

When used as a predicate in the WHERE clause of a query, the numeric
return value must be compared to the numeric values 0 or 1 to form a SQL
predicate:

WHERE
1 = CONTAINS(

POINT(
25.0,
-19.5
),

CIRCLE(
25.4,
-20.0,
10.0
)

)

34

for "does contain" and

WHERE
0 = CONTAINS(
POINT(

25.0,
-19.5
),
CIRCLE(
25.4,
-20.0,
10.0
)
)

for "does not contain".

The geometric arguments for CONTAINS may be literal values, as above,
or they may be column references, functions or expressions that return geo-
metric values. For example:

WHERE
0 = CONTAINS(
tl.center,
t2.footprint
)

where t1.center and t2.footprint are references to database columns that
contain POINT and geometric (BOX, CIRCLE, POLYGON or REGION)
values respectively.

If the geometric arguments are expressed in different coordinate systems,
the CONTAINS function is responsible for converting one, or both, of the
arguments into a different coordinate system. If the CONTAINS function
cannot perform the required conversion then it SHOULD throw an error. De-
tails of the mechanism for reporting the error condition are implementation
dependent.

4.2.13 COORD1

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORD1

The COORDI function extracts the first coordinate value, in degrees, of
a given POINT (see Section 4.2.18) or column reference.

For example, the right ascension of a point with position (25, -19.5) in
degrees would be obtained using the following expression:

35

COORD1(

POINT(
25.0,
-19.5
)
)

which would return a numeric value of 25.0 degrees.
For example:

COORD1(
t.center

)

where t.center is a reference to a column that contans POINT values.

4.2.14 COORD2

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORD2

The COORD?2 function extracts the second coordinate value, in degrees,
of a given POINT (see Section 4.2.18) or column reference.

For example, the declination of a point with position (25, -19.5) in de-
grees, could be obtained using the following expression:

COORD2(
POINT(
25.0,
-19.5
)
)

which would return a numeric value of -19.5 degrees.
The COORD?2 function may be applied to any expression that returns a
geometric POINT value. For example:

COORD2(
t.center

)

where t.center is a reference to a column that contans POINT values.

36

4.2.15 COORDSYS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORDSYS

As of this version of the specification the COORDSYS function has been
marked as deprecated. This function may be removed in future versions of
this specification. Details of the coordinate system for a database column
are available as part of the service metadata, available via the TAP_SCHEMA
tables defined in the TAP specification and the /tables webservice response
defined in the VOSI specification.

The COORDSYS function returns the formal name of the coordinate
system for a given geometry as a string.

The following example would return the coordinate system of a POINT
literal:

COORDSYS (
POINT(
25.0,
-19.5
)
)

which would return a string value representing the coordinate system used
to create the POINT.

The COORDSYS function may be applied to any expression that returns
a geometric datatype. For example:

COORDSYS (
t.footprint
)

where t.footprint is a reference to a database column that contains geometric

(POINT, BOX, CIRCLE, POLYGON or REGION) values.

4.2.16 DISTANCE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: DISTANCE

The DISTANCE function computes the arc length along a great circle
between two points and returns a numeric value expression in degrees.

The specification defines two versions of the DISTANCE function, one
that accepts two POINT values, and a second that accepts four separate
numeric values.

37

If an ADQL service implementation declares support for DISTANCE,
then it must implement both the two parameter and four parameter forms
of the function.

For example, an expression calculating the distance between two points
of coordinates (25,-19.5) and (25.4,-20) could be written as follows:

DISTANCE(
POINT(
25.0,
-19.5
),
POINT(
25.4,
-20.0
)
)

where all numeric values and the returned arc length are in degrees.
The equivalent call to the four parameter form of the function would be:

DISTANCE(
25.0,
-19.5,
25.4,
-20.0
)

The DISTANCE function may be applied to any expression that returns
a geometric POINT wvalue. For example, the distance between to points
stored in the database could be calculated as follows:

DISTANCE(
t1.base,
t2.target
)

where t1.base and t2.target are references to database columns that contain
POINT values.

If the geometric arguments are expressed in different coordinate systems,
the DISTANCE function is responsible for converting one, or both, of the
arguments into a different coordinate system. If the DISTANCE function
cannot perform the required conversion then it SHOULD throw an error. De-
tails of the mechanism for reporting the error condition are implementation
dependent.

It is assumed that the arguments for the four numeric parameter form
all use the same coordinate system.

38

4.2.17 INTERSECTS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: INTERSECTS

The INTERSECTS function determines if two geometry values overlap.
This is most commonly used to express a "shape-vs-shape" intersection test.
For example, an expression to determine whether a circle of one degree
radius centered on position (25.4, -20.0) degrees overlaps with a box of ten
degrees centered on position (20.0, -15.0) degrees, could be written as follows:

INTERSECTS (

CIRCLE(
25.4,
-20.0,
1
),

BOX(
20.0,
-15.0,
10,
10
)

)

where the INTERSECTS function returns the numeric value 1 if the two
arguments overlap and 0 if they do not.

When used as a predicate in the WHERE clause of a query, the numeric
return value should be compared to the numeric values 0 or 1 to form a SQL
predicate:

WHERE
1 = INTERSECTS(
CIRCLE(

25.4,
-20.0,
1
),
BOX(
20.0,
-15.0,
10,
10
)
)

for "does intersect" and

39

WHERE
0 = INTERSECTS(

CIRCLE(
25.4,
-20.0,
1
),

BOX (
20.0,
-15.0,
10,
10
)

)

for "does not intersect".

The geometric arguments for INTERSECTS may be literal values, as
above, or they may be column references, functions or expressions that return
geometric values. For example:

WHERE
0 = INTERSECTS(
tl.target,
t2.footprint
)

where ti.target and t2.footprint are references to database columns that
contain geometric (BOX, CIRCLE, POLYGON or REGION) values.

The arguments to INTERSECTS SHOULD be geometric expressions
evaluating to either BOX, CIRCLE, POLYGON or REGION. Previous ver-
sions of this specification also allowed POINT values and required server im-
plementations to interpret the expression as a CONTAINS with the POINT
moved into the first position. Server implementations SHOULD still imple-
ment that behaviour, but clients SHOULD NOT expect it. This behaviour
MAY be dropped in the next major version of this specification.

If the geometric arguments are expressed in different coordinate systems,
the INTERSECTS function is responsible for converting one, or both, of the
arguments into a different coordinate system. If the INTERSECTS function
cannot perform the required conversion then it SHOULD throw an error. De-
tails of the mechanism for reporting the error condition are implementation
dependent.

4.2.18 POINT

Language feature :

type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo

40

name: POINT

The POINT function expresses a single location on the sky, and it cor-
responds semantically to the equivalent term, SpatialCoord, defined in the
STC specification.

The function arguments specify the position, where:

e the position is given by a pair of numeric coordinates in degrees

e the numeric coordinates MUST be within the ranges defined in Section
4.2.2.

For example, a function expressing a point with right ascension of 25
degrees and declination of -19.5 degrees would be written as follows:

POINT(
25.0,
-19.5
)

where numeric values are in degrees.

The coordinates for POINT may be literal values, as above, or they may
be column references, functions or expressions that return numeric values.
For example:

POINT(
t.ra,
t.dec
)

where t.ra and t.dec are references to database columns that contain numeric
values.

For historical reasons, the POINT function accepts an optional string
value as the first argument. As of this version of the specification this pa-
rameter has been marked as deprecated. Future versions of this specification
may remove this parameter (see Section 4.2.4).

4.2.19 POLYGON

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: POLYGON

The POLYGON function expresses a region on the sky with boundaries
denoted by great circles passing through specified coordinates. It corresponds
semantically to the STC Polygon.

41

A polygon is described by a list of vertices in a single coordinate system,
with each vertex connected to the next along a great circle and the last
vertex implicitly connected to the first vertex.

The function arguments specify three or more vertices, where:

e the position of the vertices are given as a sequence of numeric coordi-
nates in degrees, or as a sequence of geometric POINTs

e the numeric coordinates MUST be within the ranges defined in Section
4.2.2

For example, a function expressing a triangle, whose vertices are (10.0,
-10.5), (20.0, 20.5) and (30.0,30.5) in degrees would be written as follows:

POLYGON (
10.0,
-10.5,
20.0,
20.5,
30.0,
30.5
)

where all numeric values are in degrees.

The coordinates for the POLYGON vertices may be literal values, as
above, or they may be column references, functions or expressions that return
numeric values. For example:

POLYGON (
tl.ra,
tl.dec +
tl.ra -
tl.dec -
tl.ra -
tl.dec +
)

oo o o1

-

where t1.ra and t1.dec are references to database columns that contain nu-
meric values.

Alternatively, the coordinates for the POLYGON vertices may be column
references, functions or expressions that return POINT values. For example:

POLYGON (
t2.toppoint,
t2.bottomleft,
t2.bottomright
)

42

where t2.toppoint, t2.bottomleft and t2.bottomright are references to database
columns that contain POINT values.

The coordinates for the vertices MUST all be expressed in the same
datatype. The POLYGON function does not support a mixture of numeric
and POINT arguments.

For historical reasons, the POLYGON function accepts an optional string
value as the first argument. As of this version of the specification this pa-
rameter has been marked as deprecated. Future versions of this specification
may remove this parameter (see Section 4.2.4).

4.3 User defined functions

4.3.1 Overview

ADQL also provides a place holder to define user specific functions. The
grammar definition for user defined functions includes a variable list of pa-
rameters.

<user_defined_function> ::=
<user_defined_function_name> <left_paren>

L
<value_expression>
L
{
<comma> <value_expression>
oo
]
]

<right_paren>

In order to avoid name conflicts, user defined function names SHOULD
include a prefix which indicates the name of the institute or project which
created the function.

For example, the names of align and convert functions developed by
the Wide Field Astronomy Unit (WFAU) could be prefixed as follows:

wfau_align()
wfau_convert ()

This enables users to distinguish between functions with similar names
developed by a different service provider, e.g. the German Astrophysical
Virtual Observatory (GAVO):

gavo_align()
gavo_convert ()

43

The ivo prefix is reserved for functions that have been defined in an IVOA
specification. For example the RegTAP specification defines the following
functions:

ivo_nocasematch()
ivo_hasword ()
ivo_hashlist_has()
ivo_string_agg()

4.3.2 Metadata

The URI for identifying the language feature for a user defined function is
defined as part of the TAPRegExt specification.

ivo://ivoa.net/std/TAPRegExt#features-udf

For user defined functions, the form element of the language feature
declaration must contain the signature of the function, written to match the
signature nonterminal in the following grammar:

signature ::= <funcname> <arglist> "->" <type_name>
funcname ::= <regular_identifier>

arglist ::= "(" <arg> { "," <arg> } ")"

arg ::= <regular_identifier> <type_name>

For example, the following fragment declares a user defined function that
takes two TEXT parameters and returns an integer, zero or one, depending
on the regular expression pattern matching:

<languageFeatures type="ivo://ivoa.net/std/TAPRegExt#features-udf">
<feature>
<form>match(pattern TEXT, string TEXT) -> INTEGER</form>
<description>
match returns 1 if the POSIX regular expression pattern
matches anything in string, O otherwise.
</description>
</feature>
</languageFeatures>

See the TAPRegExt specification for full details on how to use the XML
schema to declare user defined functions.

4.4 String functions and operators

An ADQL service implementation MAY include support for the following
optional string manipulation and comparison operators:

e LOWER() Lower case conversion

e ILIKE Case-insensitive comparison.

44

441 LOWER

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-string
name: LOWER

The LOWER function converts its string parameter to lower case.

Since case folding is a nontrivial operation in a multi-encoding world,
ADQL requires standard behaviour for the ASCII characters, and recom-
mends following algorithm R2 described in Section 3.13, "Default Case Algo-
rithms" of The Unicode Consortium (2012) for characters outside the ASCII
set.

LOWER(’Francis Albert Augustus Charles Emmanuel’)
=>
francis albert augustus charles emmanuel

4.4.2 ILIKE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-string
name: ILIKE

The ILIKE string comparison operator performs a case-insensitive com-
parison of its string operands.

’Francis’ LIKE ’francis’ => False

’Francis’ ILIKE ’francis’ => True

Since case folding is a nontrivial operation in a multi-encoding world,
ADQL requires standard behaviour for the ASCII characters, and recom-
mends following algorithm R2 described in Section 3.13, "Default Case Algo-
rithms" of The Unicode Consortium (2012) for characters outside the ASCII
set.

4.5 Set operators

An ADQL service implementation MAY include support for the following
optional set operators:

e UNION
e EXCEPT

e INTERSECT

45

4.5.1 UNION

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: UNION

The UNION operator combines the results of two queries, accepting rows
from both the first and second set of results, removing duplicate rows unless
UNION ALL is used.

For a UNION operation to be valid in ADQL, the following criteria
MUST be met:

e the two queries MUST result in the same number of columns
e the columns in the operands MUST have the same datatypes.
In addition, the following criteria SHOULD be met:

e the columns in the operands SHOULD have the same metadata, e.g.
units, UCD, etc.

e the metadata for the results SHOULD be generated from the left-hand
operand.

Note that the comparison used for removing duplicates is based purely
on the column value and does not take into account the units. This means
that a row with a numeric value of 2 and units of m and a row with a numeric
value of 2 and units of km will be considered equal, despite the difference in
units.

2m = 2km

45.2 EXCEPT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: EXCEPT

The EXCEPT operator combines the results of two queries, accepting
rows that are in the first set of results but are not in the second, removing
duplicate rows unless EXCEPT ALL is used.

For an EXCEPT operation to be valid in ADQL, the following criteria
MUST be met:

e the two queries MUST result in the same number of columns

e the columns in the operands MUST have the same datatypes.

46

In addition, the following criteria SHOULD be met:

e the columns in the operands SHOULD have the same metadata, e.g.
units, UCD, etc.

e the metadata for the results MUST be generated from the left-hand
operand.

Note that the comparison used for removing duplicates is based purely
on the column value and does not take into account the units. This means
that a row with a numeric value of 2 and units of m and a row with a numeric
value of 2 and units of km will be considered equal, despite the difference in
units.

2m = 2km

4.5.3 INTERSECT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: INTERSECT

The INTERSECT operator combines the results of two queries, accepting
rows that are in the first set of results but are not in the second, removing
duplicate rows unless INTERSECT ALL is used.

For an INTERSECT operation to be valid in ADQL, the following criteria
MUST be met:

e the two queries MUST result in the same number of columns

e the columns in the operands MUST have the same datatypes.

In addition, the following criteria SHOULD be met:

e the columns in the operands SHOULD have the same metadata, e.g.
units, UCD, etc.

e the metadata for the results MUST be generated from the left-hand
operand.

Note that the comparison used for removing duplicates is based purely
on the column value and does not take into account the units. This means
that a row with a numeric value of 2 and units of m and a row with a numeric
value of 2 and units of km will be considered equal, despite the difference in
units.

47

4.6 Common table expressions

An ADQL service implementation MAY include support for the following
optional support for common table expressions:

e WITH

4.6.1 WITH

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-common-table

name: WITH

The WITH operator creates a temporary named result set that can be
referred to elsewhere in the main query.

Using a common table expression can make complex queries easier to
understand by factoring subqueries out of the main SQL statement.

For example, the following query with a nested subquery:

SELECT
ra,
dec
FROM
(
SELECT
*
FROM
alpha_source
WHERE
id 4 10 =0
)
WHERE
ra > 10
AND
ra < 20

can be refactored as a named WITH query and a simpler main query:

WITH alpha_subset AS

(
SELECT
*
FROM
alpha_source
WHERE
id % 10 =0
)

48

SELECT

ra,
dec
FROM
alpha_subset
WHERE
ra > 10
AND
ra < 20

The current version of ADQL does not support recursive common table
expressions.

4.7 Type operations

An ADQL service implementation MAY include support for the following
optional type conversion functions:

e CAST(O)

4.7.1 CAST

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-type
name: CAST

The CAST() function returns the value of the first argument converted to
the datatype specified by the second argument.

The ADQL CAST() function does not replicate the full functionality and
range of types supported by common RDBMS implementations of CAST.

The ADQL CAST() function only supports type conversion between the
standard numeric datatypes. The CAST() function does not support casting
to or from the character, binary, datetime or geometric datatypes.

The rounding mechanism used when converting from floating point values
(REAL or DOUBLE) to integer values (SHORTINT, INTEGER or BIGINT)
is implementation dependent.

When converting a numeric value to a datatype that is too small to
represent the value, this SHOULD be treated as an error. Details of the
mechanism for reporting the error condition are implementation dependent.

4.8 Unit operations

An ADQL service implementation MAY include support for the following
optional unit conversion functions:

e IN_UNITQO

49

481 IN_UNIT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-unit
name: IN_UNIT

The IN_UNIT() function returns the value of the first argument trans-
formed into the units defined by the second argument.

The second argument MUST be a string literal containing a valid unit
description using the formatting defined in the VOUnits specification.

The system SHOULD report an error in response to the following condi-
tions:

e if the second argument is not a valid unit description
e if the system is not able to convert the value into the requested units.

Details of the mechanism for reporting the error condition are implemen-
tation dependent.

4.9 Bitwise operators

An ADQL service implementation MAY include support for the following
optional bitwise operators:

e not 7 x

and x & y
eorx |y

~

e xXorx "y

4.9.1 Bit AND

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_AND

The ampersand (&) operator performs a bitwise AND operation on two
integer operands.

xX&y

The bitwise AND operation is only valid for integer numeric values,
SMALLINT, INTEGER or BIGINT. If the operands are not integer values,

then the result of the bitwise AND operation is undefined.

50

49.2 Bit OR

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_OR

The vertical bar (|) operator performs a bitwise OR operation on two
integer operands.

x|y

The bitwise OR operation is only valid for integer numeric values,
SMALLINT, INTEGER or BIGINT. If the operands are not integer values,
then the result of the bitwise OR operation is undefined.

4.9.3 Bit XOR

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_XOR

The circumflex (=) operator performs a bitwise XOR (exclusive or) op-
eration on two integer operands.

Xy

The bitwise XOR operation is only valid for integer numeric values,
SMALLINT, INTEGER. or BIGINT. If the operands are not integer values,
then the result of the bitwise XOR operation is undefined.

4.9.4 Bit NOT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_NOT

The tilde (7) operator performs a bitwise NOT operation on an integer
operand.

X
The bitwise NOT operation is only valid for integer numeric values,

SMALLINT, INTEGER or BIGINT. If the operand is not an integer value,
then the result of the bitwise NOT operation is undefined.

o1

4.10 Cardinality

An ADQL service implementation MAY include support for the following
optional clauses to modify the cardinality of query results:

e OFFSET

4.10.1 OFFSET

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-offset
name: OFFSET

An ADQL service implementation MAY include support for the OFFSET
clause which limits the number of rows returned by removing a specified
number of rows from the beginning of the result set.

If a query contains both an ORDER BY clause and an OFFSET clause,
then the ORDER BY is applied before the specified number of rows are
dropped by the OFFSET clause.

If the total number of rows is less than the value specified by the OFFSET
clause, then the result set is empty.

If a query contains both an OFFSET clause and a TOP clause, then the
OFFSET clause is applied first, dropping the specified number of rows from
the beginning of the result set before the TOP clause is applied to limit the
number of rows returned.

52

A BNF grammar

<ADQL_language_character> ::=

<simple_Latin_letter>
<digit>
<SQL_special_character>

<ADQL_reserved_word> ::=

ABS

ACOS
AREA
ASIN
ATAN
ATAN2
BIT_AND
BIT_NOT
BIT_OR
BIT_XOR
BOX
CEILING
CENTROID
CIRCLE
CONTAINS
COORD1
COORD2
COORDSYS
Cos
DEGREES
DISTANCE
EXP
FLOOR
ILIKE
INTERSECTS
IN_UNIT
LOG
LOG10
MOD

PI

POINT
POLYGON
POWER
RADIANS
REGION
RAND
ROUND
SIN

SQRT

TOP

93

TAN
TRUNCATE

<SQL_embedded_language_character> ::=

<left_bracket> | <right_bracket>

<SQL_reserved_word> ::=

ABSOLUTE | ACTION | ADD | ALL

ALLOCATE | ALTER | AND

ANY | ARE

AS | ASC

ASSERTION | AT

AUTHORIZATION | AVG

BEGIN | BETWEEN | BIT | BIT_LENGTH

BOTH | BY

CASCADE | CASCADED | CASE | CAST

CATALOG

CHAR | CHARACTER | CHAR_LENGTH
CHARACTER_LENGTH | CHECK | CLOSE | COALESCE
COLLATE | COLLATION

COLUMN | COMMIT

CONNECT

CONNECTION | CONSTRAINT

CONSTRAINTS | CONTINUE

CONVERT | CORRESPONDING | COUNT | CREATE | CROSS
CURRENT

CURRENT_DATE | CURRENT_TIME
CURRENT_TIMESTAMP | CURRENT_USER | CURSOR
DATE | DAY | DEALLOCATE

DECIMAL | DECLARE | DEFAULT | DEFERRABLE
DEFERRED | DELETE | DESC | DESCRIBE | DESCRIPTOR
DIAGNOSTICS

DISCONNECT | DISTINCT | DOMAIN | DOUBLE | DROP
ELSE | END | END-EXEC | ESCAPE

EXCEPT | EXCEPTION

EXEC | EXECUTE | EXISTS

EXTERNAL | EXTRACT

FALSE | FETCH | FIRST | FLOAT | FOR
FOREIGN | FOUND | FROM | FULL

GET | GLOBAL | GO | GOTO

GRANT | GROUP

HAVING | HOUR

IDENTITY | IMMEDIATE | IN | INDICATOR
INITIALLY | INNER | INPUT

INSENSITIVE | INSERT | INT | INTEGER | INTERSECT
INTERVAL | INTO | IS

ISOLATION

JOIN

KEY

54

LANGUAGE | LAST | LEADING | LEFT
LEVEL | LIKE | ILIKE | LOCAL | LOWER
MATCH | MAX | MIN | MINUTE | MODULE

MONTH
NAMES | NATIONAL | NATURAL | NCHAR | NEXT | NO
NOT | NULL

NULLIF | NUMERIC

OCTET_LENGTH | OF

ON | ONLY | OPEN | OPTION | OR

ORDER | OUTER

OUTPUT | OVERLAPS

PAD | PARTIAL | POSITION | PRECISION | PREPARE
PRESERVE | PRIMARY

PRIOR | PRIVILEGES | PROCEDURE | PUBLIC

READ | REAL | REFERENCES | RELATIVE | RESTRICT
REVOKE | RIGHT

ROLLBACK | ROWS

SCHEMA | SCROLL | SECOND | SECTION

SELECT

SESSION | SESSION_USER | SET

SIZE | SMALLINT | SOME | SPACE | SQL | SQLCODE
SQLERROR | SQLSTATE

SUBSTRING | SUM | SYSTEM_USER

TABLE | TEMPORARY

THEN | TIME | TIMESTAMP

TIMEZONE_HOUR | TIMEZONE_MINUTE

TO | TRAILING | TRANSACTION

TRANSLATE | TRANSLATION | TRIM | TRUE

UNION | UNIQUE | UNKNOWN | UPDATE | UPPER | USAGE
USER | USING

VALUE | VALUES | VARCHAR | VARYING | VIEW

WHEN | WHENEVER | WHERE | WITH | WORK | WRITE
YEAR

ZONE

<SQL_special_character> ::=

<space>
<double_quote>
<percent>
<ampersand>
<quote>
<left_paren>
<right_paren>
<asterisk>
<plus_sign>
<comma>
<minus_sign>
<period>
<solidus>

55

<colon>

<semicolon>
<less_than_operator>
<equals_operator>
<greater_than_operator>
<question_mark>
<underscore>
<vertical_bar>

<ampersand> ::= &
<approximate_numeric_literal> ::= <mantissa>E<exponent>
<area> ::= AREA <left_paren> <geometry_value_expression> <right_paren>
<as_clause> ::= [AS] <column_name>
<asterisk> ::= *
<between_predicate> ::=
<value_expression> [NOT] BETWEEN
<value_expression> AND <value_expression>
<bitwise_expression> ::=
<bitwise_not> <numeric_value_expression>
| <numeric_value_expression> <bitwise_and> <numeric_value_expression>

| <numeric_value_expression> <bitwise_or> <numeric_value_expression>
| <numeric_value_expression> <bitwise_xor> <numeric_value_expression>

<bitwise_and> ::= <ampersand>

<bitwise_not> ::= <tilde>

<bitwise_or> = <vertical_bar>

<bitwise_xor> ::= <circumflex>
<boolean_factor> ::= [NOT] <boolean_primary>

<boolean_function> ::=

True | False

<boolean_literal>

<boolean_primary> ::=
<left_paren> <search_condition> <right_paren>
| <predicate>
| <boolean_value_expression>

<boolean_term> ::=

<boolean_factor>
| <boolean_term> AND <boolean_factor>

56

<boolean_value_expression> ::=
<boolean_literal>
| <boolean_function>
| <user_defined_function>

<box> ::=
BOX <left_paren>
[<coord_sys> <comma>]
<coordinates>
<comma> <numeric_value_expression>
<comma> <numeric_value_expression>
<right_paren>

<catalog_name> ::= <identifier>

<centroid> ::=
CENTROID <left_paren>
<geometry_value_expression>
<right_paren>

<character_factor> ::= <character_primary>
<character_primary> ::=

<value_expression_primary>
| <string_value_function>

<character_representation> ::= <nonquote_character> | <quote_symbol>

<character_string_literal>

<quote> [<character_representation>...] <quote>
<character_value_expression> ::= <concatenation> | <character_factor>
<circle> ::=

CIRCLE <left_paren>
[<coord_sys> <comma>]
<coordinates>
<comma> <radius>
<right_paren>

<circumflex> ::=
<colon> ::=

<column_name> ::= <identifier>

<column_name_list> <column_name> [{ <comma> <column_name> }...]

<column_reference> [<qualifier> <period>] <column_name>

o7

<comma> ::= ,

<comment> ::= <comment_introducer> [<comment_character>...] <newline>
<comment_character> ::= <nonquote_character> | <quote>
<comment_introducer> ::= <minus_sign><minus_sign> [<minus_sign>...]
<comp_op> ::=

<equals_operator>
<not_equals_operator>
<less_than_operator>
<greater_than_operator>
<less_than_or_equals_operator>
<greater_than_or_equals_operator>

<comparison_predicate> ::=
<value_expression> <comp_op> <value_expression>

<concatenation> ::=
<character_value_expression>
<concatenation_operator>
<character_factor>

<concatenation_operator> ::= ||
<contains> ::=
CONTAINS <left_paren>
<geometry_value_expression> <comma> <geometry_value_expression>

<right_paren>

<coordl> ::= COORD1 <left_paren> <coord_value> <right_paren>

<coord2> COORD2 <left_paren> <coord_value> <right_paren>

<coord_sys> ::= <string_value_expression>

<coord_value> <point> | <column_reference>

<coordinatel> ::= <numeric_value_expression>

<coordinate2> <numeric_value_expression>

<coordinatel> <comma> <coordinate2>

<coordinates>
<correlation_name> ::= <identifier>

<correlation_specification> ::= [AS] <correlation_name>

o8

<default_function_prefix> ::=

<delimited_identifier> ::=
<double_quote> <delimited_identifier_body> <double_quote>

<delimited_identifier_body> <delimited_identifier_part>...

<delimited_identifier_part>
<nondoublequote_character> | <double_quote_symbol>

<delimiter_token> ::=
<character_string_literal>
<delimited_identifier>
<SQL_special_character>
<not_equals_operator>
<greater_than_or_equals_operator>

<concatenation_operator>
<double_period>
<left_bracket>

|
|
I
|
| <less_than_or_equals_operator>
|
|
I
| <right_bracket>

<derived_column> ::= <value_expression> [<as_clause>]
<derived_table> ::= <table_subquery>
<digit> ::=0 1121314156161 718129

<distance_function> ::=
DISTANCE <left_paren>

<coord_value> <comma>
<coord_value>
<right_paren>

| DISTANCE <left_paren>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression>
<right_paren>

<double_period> ::=
<double_quote> ::= "

<double_quote_symbol> ::= <double_quote><double_quote>

<equals_operator> ::= =

99

<exact_numeric_literal> ::=
<unsigned_decimal> [<period> [<unsigned_decimal>]]
| <period> <unsigned_decimal>

<exists_predicate> ::= EXISTS <table_subquery>
<exponent> ::= <signed_integer>

<extract_coordsys> ::=
COORDSYS <left_paren>
<geometry_value_expression>
<right_paren>

<factor> ::= [<sign>] <numeric_primary>

<from_clause> ::=
FROM <table_reference>
[{ <comma> <table_reference> }...]

<general _literal> ::= <character_string_literal>

<general_set_function> ::=
<set_function_type> <left_paren>
[<set_quantifier>] <value_expression>
<right_paren>

<geometry_value_expression> ::=
<value_expression_primary > | <geometry_value_function>

<geometry_value_function> ::=
<box>

<centroid>

<circle>

<point>

<polygon>
<user_defined_function>

<greater_than_operator> ::= >
<greater_than_or_equals_operator> ::= >=
<group_by_clause> ::= GROUP BY <group_by_term_list>

<group_by_term> ::=
<column_reference>
| <value_expression>

<group_by_term_list> ::=
<group_by_term>

60

[{ <comma> <group_by_term> }...]

<having_clause> ::= HAVING <search_condition>
<hex_digit> ::=<digit> |l a | bl c | dl e | £ | AIB|CIDIEIF
<identifier> ::= <regular_identifier> | <delimited_identifier>

<in_predicate> ::=
<value_expression> [NOT] IN <in_predicate_value>

<in_predicate_value> ::=
<table_subquery> | <left_paren> <in_value_list> <right_paren>

<in_value_list> ::=
<value_expression> { <comma> <value_expression> } ...

<intersects > ::=
INTERSECTS <left_paren>
<geometry_value_expression> <comma> <geometry_value_expression>
<right_paren>

<join_column_list> ::= <column_name_list>
<join_condition> ::= ON <search_condition>
<join_specification> ::= <join_condition> | <named_columns_join>

<join_type> ::=
INNER | <outer_join_type> [OUTER]

<joined_table> ::=
<qualified_join> | <left_paren> <joined_table> <right_paren>

<keyword> ::= <SQL_reserved_word> | <ADQL_reserved_word>
<left_bracket> ::= [
<left_paren> ::= (
<less_than_operator> ::= <
<less_than_or_equals_operator> ::= <=
<like_predicate> ::=

<match_value> [NOT] LIKE <pattern>

| <match_value> [NOT] ILIKE <pattern>

<mantissa> ::= <exact_numeric_literal>

61

<match_value> ::= <character_value_expression>

<math_function> ::=

ABS <left_paren> <numeric_value_expression> <right_paren>
CEILING <left_paren> <numeric_value_expression> <right_paren>
DEGREES <left_paren> <numeric_value_expression> <right_paren>
EXP <left_paren> <numeric_value_expression> <right_paren>
FLOOR <left_paren> <numeric_value_expression> <right_paren>
LOG <left_paren> <numeric_value_expression> <right_paren>
L0OG10 <left_paren> <numeric_value_expression> <right_paren>
MOD <left_paren>

<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
PI <left_paren><right_paren>
POWER <left_paren>

<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
RADIANS <left_paren> <numeric_value_expression> <right_paren>
RAND <left_paren> [<unsigned_decimal>] <right_paren>
ROUND <left_paren>

<numeric_value_expression> [<comma> <signed_integer>]
<right_paren>
SQRT <left_paren> <numeric_value_expression> <right_paren>
TRUNCATE <left_paren>

<numeric_value_expression>

[<comma> <signed_integer>]
<right_paren>

<minus_sign> ::= -

<named_columns_join> ::=

USING <left_paren>
<join_column_list>
<right_paren>

<newline> ::=

<non_predicate_geometry_function> ::=

<area>
<coordl>
<coord2>
<distance>

<nondelimiter_token> ::=

<regular_identifier>
<keyword>
<unsigned_numeric_literal>

62

<nondoublequote_character> ::=
<nonquote_character> ::=

<not_equals_operator> ::= <not_equals_operatorl> | <not_equals_operator2>

<not_equals_operatoril> <>

<not_equals_operator2>

<non_join_query_expression> ::=
<non_join_query_term>
| <query_expression> UNION [ALL] <query_term>
| <query_expression> EXCEPT [ALL] <query_term>

<non_join_query_primary> ::=
<query_specification>
| <left_paren> <non_join_query_expression> <right_paren>

<non_join_query_term> ::=
<non_join_query_primary>
| <query_term> INTERSECT [ALL] <query_expression>

<null_predicate> ::= <column_reference> IS [NOT] NULL

<numeric_geometry_function> ::=
<predicate_geometry_function> | <non_predicate_geometry_function>

<numeric_primary> ::=
<value_expression_primary>
| <numeric_value_function>

<numeric_value_expression> ::=
<term>
| <bitwise_expression>
| <numeric_value_expression> <plus_sign> <term>
| <numeric_value_expression> <minus_sign> <term>

<numeric_value_function> ::=
<trig_function>
| <math_function>
| <numeric_geometry_function >
| <user_defined_function>

<offset_clause> ::= OFFSET <unsigned_decimal>
<order_by_clause> ::= ORDER BY <order_by_term_list>
<order_by_direction> ::= ASC | DESC

63

<order_by_expression> ::=
<unsigned_decimal>

| <column_reference>

| <value_expression>

<order_by_term> ::=
<order_by_expression> [<order_by_direction>]

<order_by_term_list> ::=

<order_by_term> [{ <comma> <order_by_term> }...]
<outer_join_type> ::= LEFT | RIGHT | FULL
<pattern> ::= <character_value_expression>
<percent> ::= Y
<period> ::=

1]
+

<plus_sign>

<point> ::=
POINT <left_paren>
[<coord_sys> <comma>]
<coordinates>
<right_paren>

<polygon> ::=
POLYGON <left_paren>
[<coord_sys> <comma>]
<coordinates>
<comma> <coordinates>
{ <comma> <coordinates> } ?
<right_paren>

<predicate> ::=
<comparison_predicate>
<between_predicate>
<in_predicate>
<like_predicate>
<null_predicate>
<exists_predicate>

<predicate_geometry_function> ::= <contains> | <intersects>
<qualified_join> ::=

<table_reference> [NATURAL] [<join_type>] JOIN
<table_reference> [<join_specification>]

64

<qualifier> ::= <table_name> | <correlation_name>

<query_expression> ::=
<non_join_query_expression>
| <joined_table>

<query_term> ::=
<non_join_query_term>
| <joined_table>

<query_name> ::= <identifier>
<query_specification> :=

WITH <with_query> [, ...]
<select_query>

<question_mark> ::= 7

<quote> ::= "’

<quote_symbol> ::= <quote> <quote>
<radius> ::= <numeric_value_expression>

<regular_identifier> ::=
<simple_Latin_letter>...
[{ <digit> | <simple_Latin_letter> | <underscore> }...]

1]
—

<right_bracket>

]
~

<right_paren>

[<catalog_name> <period>] <unqualified_schema name>

<schema_name>

<search_condition> ::=
<boolean_term>
| <search_condition> OR <boolean_term>

<select_list> ::=
<asterisk>
| <select_sublist> [{ <comma> <select_sublist> }...]

<select_query> ::=
SELECT
[<set_quantifier>]
[<set_limit>]
<select_list>
<table_expression>

65

<select_sublist> ::= <derived_column> | <qualifier> <period> <asterisk>
<semicolon> ::= ;
<set_function_specification> ::=

COUNT <left_paren> <asterisk> <right_paren>
| <general_set_function>

<set_function_type> ::= AVG | MAX | MIN | SUM | COUNT
<set_limit> ::= TOP <unsigned_decimal>
<set_quantifier> ::= DISTINCT | ALL

<sign> ::= <plus_sign> | <minus_sign>
<signed_integer> ::= [<sign>] <unsigned_decimal>

<simple_Latin_letter> ::=
<simple_Latin_upper_case_letter>
| <simple_Latin_lower_case_letter>

<simple_Latin_lower_case_letter> ::=
alblcldlelflglhliljlkllimlnlolplglrisitiulviwlxl|ylz

<simple_Latin_upper_case_letter> ::=
AIBICIDIEIFIGIHITIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

<solidus> ::= /

<space> ::=

<string_geometry_function> ::= <extract_coordsys>
<string_value_expression> ::= <character_value_expression>

<string_value_function> ::=
<string_geometry_function> | <user_defined_function>

<subquery> ::= <left_paren> <query_expression> <right_paren>

<table_expression> ::=
<from_clause>
[<where_clause>]
[<group_by_clause>]
[<having_clause>]
[<order_by_clause>]
[<offset_clause>]

66

<table_name> ::= [<schema_name> <period>] <identifier>

<table_reference> ::=
<table_name> [<correlation_specification>]
| <derived_table> <correlation_specification>
| <joined_table>

<table_subquery> ::= <subquery>
<term> ::=
<factor>
| <term> <asterisk> <factor>

| <term> <solidus> <factor>

<tilde> ::= 7

<token> ::=
<nondelimiter_token> | <delimiter_token>

<trig_function> ::=
ACOS <left_paren> <numeric_value_expression> <right_paren>
| ASIN <left_paren> <numeric_value_expression> <right_paren>
| ATAN <left_paren> <numeric_value_expression> <right_paren>
| ATAN2 <left_paren>
<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
COS <left_paren> <numeric_value_expression> <right_paren>
COT <left_paren> <numeric_value_expression> <right_paren>
SIN <left_paren> <numeric_value_expression> <right_paren>
TAN <left_paren> <numeric_value_expression> <right_paren>

<underscore> ::= _

<unqualified_schema name> ::= <identifier>
<unsigned_decimal> ::= <digit>...
<unsigned_hexadecimal> ::= Ox<hex_digit>...

<unsigned_literal> ::=
<unsigned_numeric_literal>
| <general_literal>

<unsigned_numeric_literal> ::=
<exact_numeric_literal>
| <approximate_numeric_literal>
| <unsigned_hexadecimal>

67

<unsigned_value_specification> ::= <unsigned_literal>

<user_defined_function> ::=
<user_defined_function_name> <left_paren>

L
<user_defined_function_param>
L
{
<comma> <user_defined_function_param>
Yoo
]
]

<right_paren>

<user_defined_function_name> ::=
[<default_function_prefix>] <regular_identifier>

<user_defined_function_param> ::= <value_expression>

<value_expression> ::=
<numeric_value_expression>
| <string_value_expression>
| <boolean_value_expression>
| <geometry_value_expression>

<value_expression_primary> ::=
<unsigned_value_specification>
| <column_reference>
| <set_function_specification>
| <left_paren> <value_expression> <right_paren>

<vertical_bar>

<where_clause> WHERE <search_condition>

<with_query> :=

<query_name>
[(<column_name> [,...])] AS (<query_specification>)

68

B Language feature support

In the TAPRegExt specification XML schema, each group of features is de-
scribed by a languageFeatures element, which has a type URI that identi-
fies the group, and contains a form element for each individual feature from
the group that the service supports.
For example, the following XML fragment describes a service that sup-
ports the POINT and CIRCLE functions from the set of geometrical functions,
Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: POINT, CIRCLE

<languageFeatures
type="ivo://ivoa.net/std/TAPRegExt#features-adql-geo"
>
<feature>
<form>POINT</form>
</feature>
<feature>
<form>CIRCLE</form>
</feature>
</languageFeatures>

69

C Outstanding issues

The following section identifies areas of the specification that have known
issues that are still to be resolved.

e 20171129-003 Now that we allow polymorphism, do we still need to
deprecate the coordsys param for BOX, CIRCLE AND POLYGON?
(see Section 4.2.4)

e 20171129-004 Should support for REGION be optional (if so, how) ?
(see Section 3.6.4)

e 20171129-005 Should we add a literal constructor for REGION? (see
Section 3.6.4)

e 20171129-006 The description of BOX has known issues, particularly
its behaviour close to the poles. (see Section 4.2.9)

e 20171129-007 Should we add prefixes to the xytpe names to indicate
which standard they are defined in?

e 20171129-008 INTERVAL is define in DALI but not in ADQL. (see
Section 3.2.2)

e 20170608-009 Can we add in ADQL an INTERSECTION function
which returns the polygon intersection of two regions? http://mail.ivoa.net /pipermail /dal /2017-
June/007721.html

70

D Changes from previous versions

e Changes from WD-ADQL-2.1-20171129

— Added xtype prefixes
(svn version 4613, 08 Dec 2017)

e Changes from WD-ADQL-2.1-20171024

— Fixed issue 20171129-002 : Added text to describe ’'preferred
crossmatch method’
(svn version 4594, 29 Nov 2017)

— Fixed issue 20171129-001 : Imported changes for MOD, RAND,
ROUND and TRUNCATE from ADQL-2.0 Erratum 2
(svn version 4593, 29 Nov 2017)

— Added section for outstanding issues
(svn version 4592, 29 Nov 2017)

— Updated STC-S description for REGION
(svn version 4590, 29 Nov 2017)

— Restoring STC-S REGION
(svn version 4588, 28 Nov 2017)

— Added use case for BLOB and CLOB
(svn version 4587, 28 Nov 2017)

— Added expressions in ORDER BY and GROUP BY clauses
(svn version 4586, 28 Nov 2017)

— Added explicit permission for providing extensions
(svn version 4585, 28 Nov 2017)

— Clarification of geometric function arguments
(svn version 4581, 24 Nov 2017)

— Added support for STC-S REGION in results
(svn version 4575, 21 Nov 2017)

— Exclude recursive WITH statements
(svn version 4558, 25 Oct 2017)

— Updated architecture diagram
(svn version 4555, 25 Oct 2017)

— Removed duplicate description for unsignedByte
(svn version 4554, 25 Oct 2017)

e Changes from WD-ADQL-2.1-20160502
— Changed coordsys to be optional in BNF
(svn version 4545, 23 Oct 2017)

71

— Removed hard coded version number
(svn version r4544, 23 Oct 2017)

— Restored coordsys param for now
(svn version r4543, 23 Oct 2017)

— Updates to CAST and IN_UNIT
(svn version r4539, 18 Oct 2017)

— Updates to UNION, EXCEPT, INTERSECT and WITH
(svn version r4538, 18 Oct 2017)

— Updates to user defined functions
(svn version r4537, 18 Oct 2017)
— Updates to DISTANCE, POINT and POLYGON
(svn version r4536, 18 Oct 2017)
— Proof reading typos and readability fixes
(svn version r4527, 16 Oct 2017)
— Updates to COORDSYS
(svn version r4522, 16 Oct 2017)

— Removed (commented) text describing coordsys argument
(svn version r4521, 16 Oct 2017)

— Updates to COORD1, COORD2 and COORDSYS
(svn version r4520, 16 Oct 2017)

— Updates to AREA, BOX, CENTROID, CIRCLE and CONTAINS
(svn version r4519, 13 Oct 2017)

— Removed old section about 'Geometry in the SELECT clause’
(svn version r4481, 10 Oct 2017)

— Updated text for AREA and BOX
(svn version r4480, 10 Oct 2017)

— Updated text for AREA
(svn version r4469, 09 Oct 2017)

— Cleaned up text describing ranges for coordinates
(svn version r4467, 09 Oct 2017)

— Removed REGION
(svn version r4466, 09 Oct 2017)

— Removed reference to ADQL from section titles in the ADQL
document
(svn version r4465, 09 Oct 2017)

— Expanded the datatypes to add sub-section for each xtype
(svn version r4353, 19 Sep 2017)

— Removed restriction on nested JOINs
(svn version r4283, 12 Sep 2017)

72

— Added subversion properties
(svn version r4282, 12 Sep 2017)

— Updated types and xtypes to match DALI
(svn version r4281, 12 Sep 2017)

— Clarify text for SELECT and subqueries
(svn version r4256, 12 Sep 2017)

— Improved wording for keywords and identifiers
(svn version r4242, 11 Sep 2017)

— Fixed section references
(svn version r3637, 18 Oct 2016)

— Fixed typo in definition of MOD
(svn version 3456)

— Fixed section references
(svn version 3637)

— Improved wording for keywords and identifiers
(svn version 4242)

e Changes from ADQL-20150601

— Added boolean type
(svn version 3364)

— Removed bitwise functions and updated the operators
(svn version 3365)

— Changed ’hierarchical queries’ to ‘common table expressions’
(svn version 3366)

— Added OFFSET clause
(svn version 3367)

— Added four parameter DISTANCE
(svn version 3370)

— Added hexadecimal literals
(svn version 3374)

e Changes from Demleitner and Harrison et al. (2013)

— 2.1.1. The Separator Nonterminal

— 2.1.2. Type System

— 2.1.4. Empty Coordinate Systems

— 2.1.5. Explanation of optional features

— 2.2.2. No Type-based Decay of INTERSECTS
— 2.2.3. Generalized User Defined Functions

73

— 2.2.4. Case-insensitive String Comparisons
— 2.2.5. Set Operators

— 2.2.6. Boolean Type

— 2.2.7. Casting to Unit

— 2.2.10. Bitwise operators

— 2.2.10. Hexadecimal literals

— 2.2.11. CAST operator

— 2.NN WITH

e Created |Optional components| section.
e Moved [Geometrical Functions| into [Optional components|.

e Added |Language feature| information.

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
http://www.ivoa.net/documents/Notes/IVOAArchitecture

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Harrison, P. and Taylor, M. (2013), ‘TAP Implementation
Notes, Version 1.0’, IVOA Note.

The Unicode Consortium (2012), ‘The Unicode standard, version 6.1 core
specification’.
http://www.unicode.org/versions/Unicode6.1.0

74

http://www.ivoa.net/documents/Notes/IVOAArchitecture
http://www.ietf.org/rfc/rfc2119.txt
http://www.unicode.org/versions/Unicode6.1.0

	Introduction
	Role within the VO architecture
	Extended functionality

	Language structure
	Characters, keywords, identifiers and literals
	Characters
	Keywords and identifiers
	SQL reserved keywords
	ADQL reserved keywords
	Identifiers
	Escape syntax
	Case sensitivity
	Literals

	Query syntax
	Subqueries
	Joins
	Search condition

	Mathematical and Trigonometrical Functions

	Type system
	Logical types
	BOOLEAN

	Numeric types
	Numeric primitives
	INTERVAL

	Date and time
	TIMESTAMP

	Character types
	Character primitives
	CLOB

	Binary types
	Binary primitives
	BLOB

	Geometric types
	POINT
	CIRCLE
	POLYGON
	REGION

	Optional components
	Service capabilities
	Geometrical functions
	Overview
	Coordinate limits
	Datatype functions
	Coordsys
	Predicate functions
	Utility functions
	Preferred crossmatch syntax
	AREA
	BOX
	CENTROID
	CIRCLE
	CONTAINS
	COORD1
	COORD2
	COORDSYS
	DISTANCE
	INTERSECTS
	POINT
	POLYGON

	User defined functions
	Overview
	Metadata

	String functions and operators
	LOWER
	ILIKE

	Set operators
	UNION
	EXCEPT
	INTERSECT

	Common table expressions
	WITH

	Type operations
	CAST

	Unit operations
	IN_UNIT

	Bitwise operators
	Bit AND
	Bit OR
	Bit XOR
	Bit NOT

	Cardinality
	OFFSET

	BNF grammar
	Language feature support
	Outstanding issues
	Changes from previous versions

