
 International

 Virtual

 Observatory

Alliance

Universal Worker Service
Version 0.5
IVOA Internal Working Draft 2008 June 05

This version:
0.4-2006-05-11

Latest version:
not issued outside GWS-WG

Previous version(s):
Internal Working Draft v0.1, 2005-01-24

Internal Working Draft v0.2, 2006-05-11

 Internal Working Draft v.0.3, 2007-04-26

Author(s):
Guy Rixon, Paul Harrison

Abstract
The Universal Worker Service pattern (UWS) defines how to manage asynchronous
execution of jobs on a service. Any application of the pattern defines a family of related
services with a common service contract. Four possible applications are described.

Status of This Document
This is an internal working draft of the GWS-WG. The first release of this document was
on 2005-01-24 within the working group; it has not yet been issued outside the working
group.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or made obsolete by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be found
at http://www.ivoa.net/Documents/.

Acknowledgements
The need for the UWS pattern was inspired by AstroGrid’s Common Execution
Architecture and particularly by discussions with Noel Winstanley. The ideas about
statefulness are distilled from debates in the Global Grid Forum in respect of the Open
Grid Services Infrastructure that was the fore-runner of Web Services Resource
Framework. The REST binding came initially from suggestions by Norman Gray.

ISSUES TO BE RESOLVED
1. Possible blocking behaviour on getResults – or what behaviour for for allowing

results to appear before the app is finished....
2. Perhaps remove the SOAP binding section – although the most basic of the WS-

* standards, it not clear how well supported WS-Addressing is in tools, and how
best to use it for UWS to really achieve interoperability (see
http://wiki.apache.org/ws/StackComparison for a SOAP stack comparison).
Possibly re-introduce SOAP binding in a later version (2.x?) of the UWS
standard, when there is more experience.

Contents
1 Introduction 4

1.1 Synchronous, stateless services 4
1.2 Some IVO activities that outgrow synchronous, stateless services 5
1.3 Asynchronous and stateful services 5
1.4 Job description language, service contracts and universality 6

2 Universal Worker Service pattern 7
2.1 Objects within a UWS 7

2.1.1 Job list ... 7

2.1.2 Job ... 7

2.1.3 Execution Phase .. 8

2.1.4 Execution Duration .. 8

http://www.ivoa.net/Documents/
http://wiki.apache.org/ws/StackComparison
http://wiki.apache.org/ws/StackComparison
http://wiki.apache.org/ws/StackComparison
http://www.ivoa.net/Documents/
http://www.ivoa.net/Documents/

2.1.5 Destruction Time .. 8

2.1.6 Quote ... 9

2.1.7 Error .. 9

2.1.8 Results List .. 9

2.2 Bindings 9
2.2.1 REST binding .. 9

2.2.2 SOAP binding .. 13

3 Security Considerations 15
4 Applications of UWS (informative) 15
4.1 Image service with data staging 15
4.2 ADQL service with cursor 16
4.3 Parameterized applications 16

5 Implementing a Synchronous Service on top of UWS (informative) 17
6 Updates rom previous version 18
7 References 18
8 Appendix A Schema 19
9 Appendix B WSDL 1.0 for SOAP binding 24

1 Introduction
The Universal Worker Service (UWS) pattern defines how to build asynchronous,
stateful, job-oriented services (the italicized terms are defined in sub-sections of this
introduction). It does so in a way that allows for wide-scale reuse of software and
support from software toolkits.
Section 2 of this document describes the pattern and lists the aspects that are common
to all its applications. Any such application would involve a service contract that
embodies the pattern and fixes the issues left undefined in the pattern itself. The
contract would include the XML schemata (XSD and WSDL) for the application. It is
intended that each such contract cover a family of related applications, such that the
implementations may be widely reused.
Section 3 outlines several possible applications of the pattern. These use-cases may be
expanded into full IVOA standards that are siblings of the current document.
Section 4 describes the preferred method of creating a synchronous facade to a UWS
system.

1.1 Synchronous, stateless services
Simple web services are synchronous and stateless. Synchronous means that the client
waits for each request to be fulfilled; if the client disconnects from the service then the
activity is abandoned. Stateless means that the service does not remember results of a
previous activity (or, at least, the client cannot ask the service about them).
Synchronous, stateless services work well when two criteria apply.

1. The length of each activity is less than the “attention span” of the connection.
2. The results of each activity are compact enough to be easily passed back to the

client via the connection on which the request was made (and possibly pushed
back to the service as parameters of the next activity).

There are various limits to the attention span.
 HTTP assumes that the start of a reply quickly follows its request, even if the

body of the reply takes a long time to stream. If the service takes too long to
compute the results and to start the reply, then HTTP times out at the request is
lost.

 A client runs computer which will not stay on-line indefinitely.

 A network with finite reliability will eventually break communications during an
activity.

 A service is sometimes shut down for maintenance.

Synchronous, stateless services, in short, do not scale well.

1.2 Some IVO activities that outgrow synchronous, stateless
services

These cases are examples. They are not a complete list!
1. An ADQL [1] service gives access to a large object-catalogue. Most queries run

in less than a minute, but some legitimate queries involve a full-table traverse
and take hours or days. The service needs to run these special cases in a low-
priority queue.

2. An object-finding service runs the SExtractor application on a list of images.
Normally, the list is short and the request is quickly satisfied. Occasionally, a list
of 10,000 images is sent in the expectation that the work will be finished over the
weekend.

3. A cone-search [2] request on a rich catalogue raises 10,000,000 rows of results,
but the client is connected via a slow link and cannot read all the results in a
reasonable time. The client needs the service to send the results into storage
over a faster link. This could mean sending them to VOSpace, or simply holding
them temporarily until the user can retrieve them on a fast link.

4. An ADQL service allows users to save query results into new tables such that
they can be the target of later queries. However, space is limited and the results
tables can only be kept for a short time. The client and service negotiate the
lifetime of the results tables.

5. A service performs image stacking on a list of fields. Each field can be processed
by a synchronous service but the list is long and the user wants to retrieve the
results of the early fields before the last fields are processed.

1.3 Asynchronous and stateful services
Services can be made to scale better by making them asynchronous and stateful.
Asynchronous means that a client makes two or more separate requests to the service
in the course of one activity, and that the client and service may be disconnected,
possibly for days or more, in between those requests. Stateful means that the service

stores state information about the activity and the client addresses requests to this
state.
Web services that are asynchronous are almost always stateful. Most of special extra
arrangements for asynchronous activities are actually managing the state of the activity.
There is an important class of stateful services where the state is peculiar to one job or
session and the job is “owned” by one user. These, for the purpose of this document,
are called job-oriented services. There are stateful services that are not job-oriented
(e.g. a service managing a shared, client-writeable DB table), but UWS does not apply
to these.
For the purpose of this discussion, let the term job refer to the work specified by the JDL
instructions and the term resource refer to the state of the job as recorded by the
service. Both have a finite duration. The lifetime of the resource – i.e. the time from
inception until the service forgets the state – is generally finite and must be at least as
long the duration of the job.

1.4 Job description language, service contracts and universality
Consider the web-service operation that starts off a job. This operation must express
what is to be done in the activity: it must carry parameters in some form.
The parameters may be expressed as a list. E.g., a cone search service takes a list of
three parameters: RA, DEC, RADIUS. Alternatively, the parameters may be arranged as
an XML document (e.g. ADQL, CEA). The rules for setting and arranging the
parameters for a job are called the Job-Description Language (JDL).
The combination of the UWS pattern, a JDL and details of the job state visible to the
client defines a service contract; for a SOAP service, this contract can be captured in
WSDL. Changing the JDL changes the contract. Thus, it is not meaningful to
“implement UWS” in isolation; any implementation standard must specify the rest of the
contract.
If the JDL is very general, a single service-contract can be reused for many kinds of
service. AstroGrid’s CEA exploits this: one JDL covers all services offering
parameterized applications and even ADQL services. In the limit, a sufficiently-general
JDL turns a specialized worker service into a universal worker service.

2 Universal Worker Service pattern

2.1 Objects within a UWS
A UWS consists logically in a set of objects that may be read and written to in order to
control jobs.
In a SOAP binding of UWS, these components are exposed as properties of the object
that lives at the endpoint registered for the service. In a REST binding, the components
are distinct web-resources each with its own URI.

The following sub-sections explain the semantics of the objects. The UML diagram
shows the relationships more succinctly.

2.1.1 Job list
The Job List is the outermost object: it contains all the other objects in the UWS. The
immediate children of the job list are Job objects (see next sub-section).
The job list may be read to find the extant jobs.
The job list may be updated to add a new job.
The job list itself does not allow jobs to be deleted. Instead, when a job is destroyed by
an action on its job object, then the list updates itself accordingly.

2.1.2 Job
A Job object contains the state of one job. The state is a collection of other objects.
Each Job aggregates

● Exactly one Execution Phase.
● Exactly one Execution Duration.
● Exactly one Deletion Time
● Exactly one Quote.
● Exactly one Results List.
● Zero or one Error.

2.1.3 Execution Phase
The job is treated as a state machine with the Execution Phase naming the state. The
phases are

● PENDING: the job is accepted by the service but not yet committed for execution
by the client. In this state, the job quote can be read and evaluated. This is the
state into which a job enters when it is first created.

Illustration
1: UWS
Objects

● QUEUED: the job is committed for execution by the client but the service has not
yet assigned it to a processor. No Results are produced in this phase.

● EXECUTING: the job has been assigned to a processor. Results may be
produced at any time during this phase.

● COMPLETED: the execution of the job is over. The Results may be collected.
● ERROR: the job failed to complete. No further work will be done nor Results

produced. Results may be unavailable or available but invalid; either way the
Results should not be trusted.

● ABORTED: the job has been manually aborted by the user, or the system has
aborted the job due to lack of or overuse of resources.

2.1.4 Execution Duration
An Execution Duration object defines the duration for which a job shall run. This
represents the “computation time” that a job is to be allowed, although because a
specific measure of CPU time may not be available in all environments, this duration is
defined in real clock seconds. An execution duration of 0 implies unlimited execution
duration.
When the execution duration has been exceeded the service will automatically abort the
job, which has the same effect as when a manual “Abort” is requested.
Specifically, when a job is aborted:

● if the job is still executing, the execution is aborted.
● any previously generated results of the job are retained.

When a job is created, the service sets the initial execution duration. The client may
write to an Execution Duration to try to change the job's cpu time allocation. The service
may forbid changes, or may set limits on the allowed execution duration.

2.1.5 Destruction Time
The Destruction Time object represents the instant when the job shall be destroyed.
The Destruction Time is an absolute time.
Destroying a job implies;

● if the job is still executing, the execution is aborted.
● any results from the job are destroyed and storage reclaimed.
● the service forgets that the job existed.

The Destruction Time may be viewed as a measure of the amount of time that a service
is prepared to allocate storage for a job – typically this will be a longer duration that the
amount of CPU time that a service would allocate.
When a job is created the service sets the initial Destruction Time. The client may write
to the Destruction Time to try to change the life expectancy of the job. The service may
forbid changes, or may set limits on the allowed destruction time.

2.1.6 Quote
A Quote object predicts when the job is likely to complete. The intention is that a client
creates the same job on several services, compares the quotes and then accepts the
best quote.
Quoting for a computational job is notoriously difficult. A UWS implementation must
always provide a quote object, in order that the two-phase committal of jobs be uniform
across all UWS, but it may supply a “don't know” answer for the completion time.

2.1.7 Error
The error object gives a human readable error message (if any) for the underlying job.
This object is intended to be a detailed error message, and consequently might be a
large piece of text such as a stack trace. When there is an error running a job a
summary of the error should be given using the optional errorSummary element of the
JobSummary type.

2.1.8 Results List
The Results List object is a container for formal results of the job. Its children may be
any objects resulting from the computation that may be fetched from the service when
the job has completed.
Reading the Results List itself enumerates the available or expected result objects.
The children of the Results List may be read but not updated or deleted. The client may
not add anything to the Results List.

2.2 Bindings

2.2.1 REST binding

2.2.1.1 Resources and URIs
In a REST (Representational State Transfer) binding of UWS, each of the objects
defined above is available as a web resource with its own URI. These URIs must form a
hierarchy as follows:
/{jobs} the Job List
/{jobs}/(job-id) a Job
/{jobs}/(job-id)/phase the Phase of (job-id)
/{jobs}/(job-id)/executionduration the maximum execution duration of (job-id)
/{jobs}/(job-id)/destruction the destruction instant for (job-id)
/{jobs}/(job-id)/error any error message associated with (job-id)
/{jobs}/(job-id)/quote the Quote for (job-id)
/{jobs}/(job-id)/results the Results List for (job-id)
The service implementor is free to choose the names given in parentheses above; the
other names are part of the UWS standard.
The URI for the Job List, in its absolute form is the root URI for the whole UWS. This
URI should be given as the access URL in the UWS' registration.

2.2.1.2 Representations of resources
For each of the resources, HTTP GET fetches a representation.
The representation of the Job List is a list of links to extant jobs. The list may be empty
if the UWS is idle.
The representation of a Job is a list of links to its Phase, Execution Duration,
Destruction Time, Error, Quote and Results List.
The representation of a Results List is a list of links to the resources representing the
results. These resources may have any URI and any MIME type. A sensible default for
their URIs is to make them children of /{jobs}/(job-id)/results, but this is not required. It
may sometimes be easier for a service implementor to point to a resource on some web
server separate from that running the UWS. Therefore, a client must always parse the
Results List to find the results. Where a protocol applying UWS specifies standard
results it must do so by naming those results; the names then appear in the Results List
in addition to the URIs. Not all results need to be named; sometimes the meaning of the
result is obvious from the context and the name is omitted.
HTTP allows multiple representations of a resource distinguished by their MIME types
and selected by the HTTP headers of a GET request. UWS exploits this to support both
web browsers and rich clients in the same tree of resources.
A UWS should return HTML or XHTML to clients that accept these types. These clients
are assumed to be web browsers and the UWS is generating its own user interface.
The HTML interface generated should allow full control of the UWS via the use of HTML
forms and appropriate links.
Clients which are assumed to be part of remote applications that drive UWS without
showing the details to their users should accept only application/xml. A UWS must
therefore return XML representations of the resources.
The XML schemata for the lists of links, and for the Phase, Execution Duration and
Quote documents, are detailed in Appendix A of this specification. They should not vary
between UWS installations.

2.2.1.3 State changing requests
Certain of the UWS' resources accept HTTP POST and DELETE messages to change
the state of the service – This is the fundamental way that a client controls the
execution of a job. In most of the cases where a job subobject is set the response will
have a http 303 “See other” status and a Location header that points back to the main
job summary obtained at the /{jobs}/(job-id) URI. The job summary contains the
values of the main parameters within the returned XML (or XHTML). This mode
of operation was chosen (as opposed to returning only the sub-object being
altered) as it makes for a more natural user interface – especially in the case of
the XHMTL interface. A client that wants to obtain only the value of a particular
sub-object can at any time request that sub-object with a HTTP GET.

2.2.1.3.1 Creating a Job
POSTing a request to the Job List creates a new job (unless the service rejects the
request). The response when a job is accepted must have code 303 “See other” and
the Location header of the response must point to the created job.

This initial POST will in most cases carry parameters for the protocol that is using the
UWS pattern, as detailed in section 3.

2.2.1.3.2 Deleting a Job
Sending a HTTP DELETE to a Job resource destroys that job, with the meaning noted
in the definition of the Job object, above. No other resource of the UWS may be directly
deleted by the client. The response to this request must have code 303 “See other” and
the Location header of the response must point to the Job List at the /{jobs} URI.
Posting a request with a parameter ACTION=DELETE to the Job also destroys the job,
the response being as for a deletion. This action supports web browsers which typically
cannot send DELETE requests.

2.2.1.3.3 Changing the Destruction Time
The Destruction Time may be changed by POSTing to /{jobs}/(job-id)/destruction. In
this case, the body of the posted request is of type application/x-www-form-
urlencoded and contains the parameter named DESTRUCTION whose value is
the new destruction time in ISO8601 format; i.e. this request is what an HTML
form sends.
The response to this request must have code 303 “See other” and the Location
header of the response must point to the /{jobs}/(job-id) URI so that the client
receives the value that the service has actually set the Destruction Time to within
the Job summary response.

2.2.1.3.4 Changing the Execution Duration
The Execution Duration may be changed by POSTing to /{jobs}/(job-id)/termination. In
this case, the body of the posted request is of type application/x-www-form-
urlencoded and contains the parameter named TERMINATION whose value is
the new executionduration in seconds.
The response to this request must have code 303 “See other” and the Location
header of the response must point to the /{jobs}/(job-id)/URI so that the client
receives the value that the service has actually set the Execution Duration to –
the service is free to override the request if it needs.

2.2.1.3.5 Starting a Job
A job may be started by POSTing to the /{jobs}/(job-id)/phase URI. The POST
contains a single parameter PHASE=RUN which instructs the UWS to attempt to
start the job. The response to this request must have code 303 “See other” and
the Location header of the response must point to the /{jobs}/(job-id) URI so that
the client receives the phase that the job has been set to. Typically a UWS will
put a job into a QUEUED state on receipt of this command, but depending on
how busy the server is, the job might be put almost immediately (and without
client intervention) into an EXECUTING state.

2.2.1.3.6 Aborting a Job
A job may be aborted by POSTing to the /{jobs}/(job-id)/phase URI. The POST
contains a single parameter PHASE=ABORT which instructs the UWS to attempt

to abort the job. The response to this request must have code 303 “See other”
and the Location header of the response must point to the /{jobs}/(job-id) URI so
that the client receives the phase that the job has been set to.

2.2.1.4 Message pattern
The REST binding results in the message pattern shown in figure 2.

2.2.2 SOAP binding

2.2.2.1 Resources and URIs
For a SOAP-bound UWS there is only one web resource and therefore one URI. This
resource corresponds roughly to the Job List object of the UWS and all the other
objects are accessed via methods on the Job List.
The single URI of a SOAP-bound UWS must be registered as its access URL.
Since the SOAP binding has only a single URI it needs a different way to indicate the
job to which a request applies. Job-specific requests and reponses must carry a SOAP
header containing a WS-Addressing structure. In this structure, the
wsa:ResourceIdentifier element names the resource; it is an opaque string to the client
and is meaningful only to the service. The identifier for a given job is stated in the
response to the request that creates it; that request is one that does not need a WS-
Addressing header.
The exact use of WS-Addressing will be stated in the WSDL for the SOAP binding
which is TDB.

Illustration 2: Typical calling sequence for the REST binding of UWS

2.2.2.2 Representations of objects
The SOAP binding allows the client to retrieve representations of some of the UWS
objects. Unlike the REST binding, it does not allow all the objects to be represented.
Further, the SOAP binding only provides XML representations; it does not support
HTML in any way.
Representations may be got from the following methods.

● getJobs() - return the currently known job identifiers
● getSummary() - return a summary of the job
● getExecutionDuration() - return the execution duration for a job
● getDestructionTime() - get the destruction time for a job
● getQuote() - get the quote for a job
● getPhase() - get the phase for a job
● getResults() - get the Results for a job
● getError() - get the error associated with a job

Note that there is no representation of a Job as a whole. The method getResults()
packs all the results in one XML document and returns that document. The details of the
available results are defined by applications of the UWS pattern.

2.2.2.3 State-changing operations
The following methods of a UWS change its state; most of them change the state of one
particular job.

● createJob()
● setExecutionDuration()
● setDestructionTime()
● execute()
● abort()
● destroy()

The excute() method commits a job for execution. The destroy() method destroys the
target job.
The exact content posted to create a job is defined by applications of the UWS pattern.

2.2.2.4 Message pattern
The SOAP binding has the message pattern shown in figure 3.
Note that the number of objects is much lower than in the REST binding and the
number of messages lower by one. However, the complexity of each message is
significantly greater. The overall complexity of the pattern is roughly the same in each
binding.

Client UWS

createJob

getQuote

acceptQuote

setTerminationTime

getPhase

getResults

destroy

Negotiating the lifetime

Get results and tidy up

3 Security Considerations
TBC

4 Applications of UWS (informative)
The UWS pattern leaves undefined two essential parts of the service contract: the
content that must be posted to create a job; and the pattern of results made available by
a completed job. An application of UWS completes a service contract by defining these
matters.
There follow some use cases applying the UWS pattern. The descriptions are neither
formal nor complete. The intention is to show a range of ways that the pattern can be
applied without burdening the reader with the level of detail needed for a standard
implementation.
Any of these cases could be worked up into a full IVOA standard by formalizing the
description, adding detail (schemata, WSDL) and generally making the specification
more exact and complete. I suggest that each case so treated be broken out into a
separate specification-document.

4.1 Image service with data staging
Consider a service that computes images from archive data. The computation takes
significant time, so the service is asynchronous. The service keeps the computed
images in its own storage until the user downloads them; this is essentially the model of
SIAP [9].
The asynchronous image-service is a logical extension of a synchronous SIA service.
Therefore it uses the REST binding of UWS.
The parameters for posting a new job are as for SIAP 1.0:

● POS, the position on the sky to be searched;
● SIZE, the size of the search box;
● FORMAT: the type of images to be computed.

Particular implementations are free to add extra parameters.

These parameters are posted in a document of type application/x-www-form-
urlencoded: i.e. they can be sent from an HTML form.
The images generated by the job are accessible as unnamed results. Each
image has its own URI and can be downloaded over HTTP at any time until the
destruction time of the job. The URIs for the images may be discovered from the
Results List in the normal UWS way.
SIAP 1.0 produces, for each query, a table of metadata describing the images.
The asynchronous image-service produces a table to the same schema as a
named result, called “table”.
Image results are added to the results list, and to the “table” result, as they are
generated. Hence, a client that polls the service can discover, download and use
some of the images before the job is finished. If the client is satisfied with these

early images, the client can cancel the rest of the job by destroying the job. However,
destroying the job deletes the cached images so the client has to download them first.

4.2 ADQL service with cursor
ADQL [1] can serve as a JDL. Consider an ADQL service that supports long-running
queries as asynchronous operations. In general, the results of the query may be a large
set of data. They may be too large to download comfortably. We might like to cache
these results on the service and to operate a cursor, drawing down from the resource a
few rows of the table at a time.
The parameters of a job are as follows:

● ADQL: the query text
● FORMAT: the format for the results

These parameters are posted in a document of type application/x-www-form-
urlencoded: i.e. they can be sent from an HTML form.
A successful query generates the following, named results.

● table: the whole result set as one file resource.
● header: the metadata for the output table.
● cursor: a selection of rows of output.

The cursor result is parameterized by the query parameters FIRST and LAST in the
query string of its URI: these parameters state the index of the first and last row to be
returned; e.g.

http://whatever.org/adlqService/results/cursor?FIRST=1&LAST=100

If the parameters are missing, the service decides which rows to emit.

4.3 Parameterized applications
There is a class of applications on which a job may be defined by a list of simple
parameters. “Simple” here means unstructured: a scalar value such as a number, a
string of text or a Boolean value. If the parameters are allowed to name files, so that
structured data are passed indirectly, then the class of applications is very large indeed:
almost any non-interactive application can be driven in this way.
Turning each application of choice into a service (with or without UWS semantics) would
be onerous. However, if the application’s interface is entirely characterized, through the
JDL, in terms of typed input and output parameters, then one service contract will work
for all the applications and a single implementation of the contract can be reused for all
cases.
AstroGrid’s Common Execution Architecture (CEA) [11] works in this way. It has just
one service contract for all applications (including ADQL services; the ADQL query is
passed in the list of parameters). It has four implementations, one for each of the
possible interfaces between the service and a kind of job (jobs can be implemented with
Java classes, command-line applications, HTTP-get services or JDBC databases). CEA
also specifies stateful, asynchronous services and makes use of VOSpace.
Consider a CEA reworked to use the UWS pattern for consistency with other (future)
IVOA standards. Call it CEA v2 to distinguish it from CEA v1 as currently maintained by

AstroGrid. For this example, consider the particular kind of CEA service that runs
applications supplied as executable binaries.
A binary application-server has a library of applications co-located with its service and
defined in the service configuration set by the service provider. It does not accept code
from the client for local execution.
The JDL in CEA v2 is similar to that in CEA v1 [11]. It is a formal, XML vocabulary for
expressing choice of application and parameter lists [12]. Parameters may be inputs or
outputs of the job.
To start a job, a document in this JDL is posted to the UWS. The document is sent in its
native MIME-type, application/xml, so this is not an interface that can be driven directly
from an HTML form, although it can be driven from the emerging Xforms technology.
The results of the job depend on the choice of application. They are all named results
and the names and types are defined in the definition of the application. That
application-definition is registered, so the client knows before running the job what
results to expect.
CEA input-parameters may be indirect: i.e. they may refer to data in on-line storage. In
this case, the JDL document contains the URIs for those data objects Alternatively, the
parameters may be direct, in which case the JDL contains the actual value of the
parameters.
Similarly, CEA results may be made indirect. In this case, the results are named as
parameters in the JDL where the values are the URIs to which the results are delivered.
The application server can then stream the results to the specified destination as they
become available and need not cache them locally. If a job result is indirect, then the
server can choose whether or not to keep a local copy. If it chooses not to cache locally,
then the result URI in the UWS is set to the external location named in the URI.

5 Implementing a Synchronous Service on top of UWS
(informative)

Whilst the provision of synchronous services is not one of the design aims of the UWS
pattern, there is clearly a desire in second generation IVOA services to still allow a
simple synchronous calling pattern to be available to simple clients. What follows is a
recommended recipe for putting a synchronous facade on UWS;
It is assumed that the core of the service does provide a true UWS compliant set of
endpoints rooted at /async (equivalent to the /{jobs} endpoint in the nomenclature used
above). The desired synchronous service is to be rooted at /sync.

1. The job is started by either a GET (for compatibility with existing IVOA standards) or a
POST (preferably) of form encoded parameters to the /sync endpoint.

2. Internally the service creates a job in the standard UWS system with the given
parameters and sets the PHASE to RUN, noting the returned job identifier which we
will call {job-id}. The /sync endpoint then responds with a STATUS 303 (redirection)
response to the URL /sync/{job-id}.

3. The /sync/{job-id} endpoint then blocks until it detects that the underlying job has
finished at which point it responds with a STATUS 303 (redirection) to the /{jobs}/{job-
id}/results/mainresult URL, where “mainresult” is the name of the primary result of the
job.

In this way the service appears to be a synchronous to the original client – assuming it
obeys standard HTTP redirection semantics, so a simple client like a web browser could
obtain the result with a single “click”. At the same time a more sophisticated, UWS
aware, client could control the same job from the standard /{jobs} endpoint – indeed if
the synchronous call timed out for some reason, then it would be possible for the
original client to retrieve the results by looking at the /{jobs}/{job-id} URL tree, because it
could make the association of the job-Id from the URL it receives in step 2 above.
The purely synchronous client is restricted compared with the full UWS pattern in that
there can only be one result directly returned to the client, as noted in stage 3 above.
This is usually not a problem for compatibility with existing version 1.0 DAL services as
they typically return a single VOTable containing references to the desired data.

6 Updates rom previous version
● changed the POST parameter names to be the same as the resource paths/
● added synchronous section.
● updated SOAP binding section
●

7 References
[1] M. Ohishi, A. Szalay (eds.), IVOA Astronomical Data query Language,
http://www.ivoa.net/Documents/latest/ADQL.html

[2] US NVO project, NVO compliance: Simple Cone Search, http://us-
vo.org/pubs/files/conesearch.html

[3] D. Box, F. Curbera (eds.), Web Services Addressing (WS-Addressing),
http://www.w3.org/Submission/ws-addressing/

[4] T. Banks (ed.), Web Service Resource Framework (WSRF) – Primer, http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf

[5] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin (eds.), Web Services
Resource 1.2 (WS-Resource), http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-
os.pdf

[6] S. Graham,, J. Treadwell (eds.), Web Services Resource Properties 1.2 (WS-
ResourceProperties), http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-
os.pdf

[7] L. Srinivasan, T. Banks (eds.), Web Services Resource Lifetime 1.2 (WS-ResourceLifetime),
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf

[8] S. Graham, D. Hull, B. Murray, Web Services Base Notification 1.3, http://docs.oasis-
open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf

[9] D. Tody, R. Plante, Simple Image Access Specification,
http://www.ivoa.net/Documents/latest/SIA.html

[10] Grid and Web Services Working Group of IVOA, work in progress,
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices

[11] P. Harrison, Proposal for a Common Execution Architecture,
http://www.ivoa.net/Documents/latest/CEA.html

http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/Documents/latest/SIA.html
http://www.ivoa.net/Documents/latest/SIA.html
http://www.ivoa.net/Documents/latest/SIA.html
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://us-vo.org/pubs/files/conesearch.html
http://www.ivoa.net/Documents/latest/ADQL.html
http://www.ivoa.net/Documents/latest/ADQL.html
http://www.ivoa.net/Documents/latest/ADQL.html

[12] P. Harrison, XML schema for namespace
http://www.astrogrid.org/schema/CommonExecutionArchitectureBase/v1,
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExe
cutionArchitectureBase.xsd

[13] Boyer et al., Xforms 1.0 http://www.w3.org/TR/xforms/
[14] Gudgin et.al, Web Services Addressing 1.0 - WSDL
Binding,http://www.w3.org/TR/ws-addr-wsdl/
[15] Gudgin et al. Web Services Addressing 1.0 – Core http://www.w3.org/TR/ws-addr-
core/
[16] Box et al., http://www.w3.org/Submission/ws-addressing/

8 Appendix A Schema
<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id: UWS.xsd,v 1.6 2008/10/01 11:54:02 pah Exp $ -->
<!-- proposal for basic UWS schema - Paul Harrison May 2008 -->
<!--

$Log: UWS.xsd,v $
Revision 1.6 2008/10/01 11:54:02 pah
fix up cvs header

Revision 1.5 2008/09/25 00:22:35 pah
change termination time to execution duration

 -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ivoa.net/xml/UWS/v0.9.2"
xmlns:uws="http://www.ivoa.net/xml/UWS/v0.9.2"
 xmlns:xlink="http://www.w3.org/1999/xlink" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="../../../stc/STC/v1.30/XLINK.xsd" />
 <!--
 <xs:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="http://www.ivoa.net/xml/Xlink/xlink.xsd"/>
 -->
 <xs:complexType name="ShortJobDescription">
 <xs:sequence>
 <xs:element ref="uws:phase"></xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="uws:JobIdentifier" use="required"></xs:attribute>
 <xs:attributeGroup ref="uws:reference"></xs:attributeGroup>
 </xs:complexType>
 <xs:attributeGroup name="reference">
 <xs:annotation>
 <xs:documentation>standard xlink references</xs:documentation>
 </xs:annotation>
 <xs:attribute ref="xlink:type" use="optional"
 default="simple" />
 <xs:attribute ref="xlink:href" use="optional" />
 </xs:attributeGroup>
 <xs:simpleType name="ExecutionPhase">
 <!--
 need to think a little here about the implication of allowing a

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd

 "re-entrant" application that is capable of running
 mini-jobs...probably this is indicated with a different state
 varible entirely
 -->
 <xs:annotation>
 <xs:documentation>
 Enumeration of possible phases of job execution
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="PENDING">
 <xs:annotation>
 <xs:documentation>
 The first phase a job is entered into - this is where a job is being
set up but no request to run has occurred.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="QUEUED">
 <xs:annotation>
 <xs:documentation>
 An job has been accepted for execution but is waiting
 in a queue
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="EXECUTING">
 <xs:annotation>
 <xs:documentation>An job is running</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="COMPLETED">
 <xs:annotation>
 <xs:documentation>
 An job has completed successfully
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="ERROR">
 <xs:annotation>
 <xs:documentation>
 Some form of error has occurred
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="UNKNOWN">
 <xs:annotation>
 <xs:documentation>
 The job is in an unknown state
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="HELD">
 <xs:annotation>
 <xs:documentation>
 The job is HELD pending execution and will not
 automatically be executed (cf pending)
 </xs:documentation>

 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="SUSPENDED">
 <xs:annotation>
 <xs:documentation>
 The job has been suspended by the system during
 execution
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="ABORTED">
 <xs:annotation>
 <xs:documentation>
 The job has been aborted, either by user request or by the server
because of lack or overuse of resources.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="JobSummary">
 <xs:sequence>
 <xs:element name="jobId" type="uws:JobIdentifier" />
 <xs:element ref="uws:phase" />
 <xs:element ref="uws:quote" maxOccurs="1" minOccurs="0" />
 <xs:element name="startTime" type="xs:dateTime"
 nillable="true" />
 <xs:element name="endTime" type="xs:dateTime"
 nillable="true" />
 <xs:element ref="uws:executionDuration" />
 <xs:element ref="uws:destruction" />
 <xs:element name="errorSummary" type="uws:ErrorSummary"
 maxOccurs="1" minOccurs="0"
 ></xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="JobIdentifier">
 <xs:annotation>
 <xs:documentation>
 The identifier for the job
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string" />
 </xs:simpleType>
 <xs:element name="job" type="uws:JobSummary">
 <xs:annotation>
 <xs:documentation>
 This is the information that is returned when a GET is made
 for a single job resource - i.e. /(jobs)/(jobid)
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="phase" type="uws:ExecutionPhase">
 <xs:annotation>
 <xs:documentation>
 the execution phase - returned at /(jobs)/(jobid)/phase
 </xs:documentation>
 </xs:annotation>

 </xs:element>
 <xs:element name="quote" type="xs:dateTime" nillable="true">
 <xs:annotation>
 <xs:documentation>
 A Quote predicts when the job is likely to complete - returned at
/(jobs)/(jobid)/quote
 TODO - how to encode "don't know"
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="executionDuration" type="xs:int"
 nillable="false"
 >
 <!-- TODO look if xs:duration here has any benefits -->
 <xs:annotation>
 <xs:documentation>
 The duration (in seconds) for which the job should be allowed to run - a
value of 0 is intended to mean unlimited - returned at
/(jobs)/(jobid)/executionduration
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="destruction" type="xs:dateTime"
 nillable="true"
 >
 <xs:annotation>
 <xs:documentation>
 The time at which the whole job + records + results will be destroyed.
returned at /(jobs)/(jobid)/destruction
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="jobList">
 <xs:annotation>
 <xs:documentation>
 The list of job references returned at /(jobs)
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 ISSUE - do we want to have any sort of paging or
 selection mechanism in case the job list gets very
 large? Or is that an unnecessary complication...
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="jobref" type="uws:ShortJobDescription"
 maxOccurs="unbounded" minOccurs="0"
 ></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ResultReference">
 <xs:annotation>
 <xs:documentation>
 A reference to a UWS result
 </xs:documentation>

 </xs:annotation>
 <xs:sequence>
 <xs:element ref="uws:phase" maxOccurs="1" minOccurs="0"></xs:element><!--
TODO why is this here - pah? -->
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"></xs:attribute>
 <xs:attributeGroup ref="uws:reference"></xs:attributeGroup>
 </xs:complexType>
 <xs:element name="resultList">
 <xs:annotation>
 <xs:documentation>
 The element returned for /(jobs)/(jobid)/results
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="uws:ResultReference"
 maxOccurs="unbounded" minOccurs="0"
 ></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ErrorSummary">
 <xs:annotation>
 <xs:documentation>
 A short summary of the error
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="message" type="xs:string"></xs:element>
 <xs:element name="detail" maxOccurs="1" minOccurs="0">
 <xs:complexType>
 <xs:attributeGroup ref="uws:reference"></xs:attributeGroup>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" type="uws:ErrorType">
 <xs:annotation>
 <xs:documentation>characterization of the type of the
error</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:simpleType name="ErrorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="transient"></xs:enumeration>
 <xs:enumeration value="fatal"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

9 Appendix B WSDL 1.0 for SOAP binding
Although it is not possible to provide a complete WSDL 1.0 contract for a general UWS
service because WSDL requires the exact form of the createJob and getResults

operations to be defined, the following WSDL is included as a template for
implementors to follow.
<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id:$ -->
<!-- UWS SOAP binding template -->
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:uwsws="http://www.ivoa.net/xml/UWS-WS/v0.9"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
name="UWS" targetNamespace="http://www.ivoa.net/xml/UWS-WS/v0.9">
 <wsdl:types>
 <xsd:schema targetNamespace="http://www.ivoa.net/xml/UWS-WS/v0.9"
xmlns:uws="http://www.ivoa.net/xml/UWS/v0.9.2">
 <xsd:import namespace="http://www.ivoa.net/xml/UWS/v0.9.2"
schemaLocation="../../UWS/v0.9/UWS.xsd"></xsd:import>
 <xsd:element name="createJob">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation>This should be properly specified in a real
UWS implementation of a web service to constrain the job initialization
parameters</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any></xsd:any>
 </xsd:sequence></xsd:complexType>
 </xsd:element>
 <xsd:element name="createJobResponse" type="uws:JobSummary">
 </xsd:element>
 <xsd:element name="listJobs">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="listJobsResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="job" type="uwsws:ShortJobSummary"
maxOccurs="unbounded" minOccurs="0"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="execute">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="executeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:phase"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="abort">
 <xsd:complexType>
 </xsd:complexType>

 </xsd:element>
 <xsd:element name="abortResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="success" type="xsd:boolean"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destroy">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destroyResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="success" type="xsd:boolean"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getSummary">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getSummaryResponse" type="uws:JobSummary">
 </xsd:element>
 <xsd:element name="setExecutionDuration">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="duration" type="xsd:int"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="setExecutionDurationResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:executionDuration"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="setDestructionTime">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="time" type="xsd:dateTime"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="setDestructionTimeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:destruction"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getPhase">
 <xsd:complexType>
 </xsd:complexType>

 </xsd:element>
 <xsd:element name="getPhaseResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:phase"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getExecutionDuration">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getExecutionDurationResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:executionDuration"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getDestructionTime">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getDestructionTimeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:destruction"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getQuote">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getQuoteResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="uws:quote"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getResults">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in" type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getResultsResponse">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation>in an implemented UWS service this should be
properly defined</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any></xsd:any>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in" type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getErrorResponse" type="uws:ErrorSummary">
 </xsd:element>
 <xsd:complexType name="ShortJobSummary">
 <xsd:sequence>
 <xsd:element name="jobId" type="xsd:string"></xsd:element>
 <xsd:element ref="uws:phase"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="createJobRequest">
 <wsdl:part element="uwsws:createJob" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="createJobResponse">
 <wsdl:part element="uwsws:createJobResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="listJobsRequest">
 <wsdl:part name="parameters" element="uwsws:listJobs"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listJobsResponse">
 <wsdl:part name="parameters" element="uwsws:listJobsResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="executeRequest">
 <wsdl:part name="parameters" element="uwsws:execute"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="executeResponse">
 <wsdl:part name="parameters" element="uwsws:executeResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="abortRequest">
 <wsdl:part name="parameters" element="uwsws:abort"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="abortResponse">
 <wsdl:part name="parameters" element="uwsws:abortResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="destroyRequest">
 <wsdl:part name="parameters" element="uwsws:destroy"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="destroyResponse">
 <wsdl:part name="parameters" element="uwsws:destroyResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getSummaryRequest">
 <wsdl:part name="parameters" element="uwsws:getSummary"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getSummaryResponse">
 <wsdl:part name="parameters" element="uwsws:getSummaryResponse"></wsdl:part>
 </wsdl:message>

 <wsdl:message name="setExecutionDurationRequest">
 <wsdl:part name="parameters" element="uwsws:setExecutionDuration"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="setExecutionDurationResponse">
 <wsdl:part name="parameters"
element="uwsws:setExecutionDurationResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="setDestructionTimeRequest">
 <wsdl:part name="parameters" element="uwsws:setDestructionTime"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="setDestructionTimeResponse">
 <wsdl:part name="parameters"
element="uwsws:setDestructionTimeResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getPhaseRequest">
 <wsdl:part name="parameters" element="uwsws:getPhase"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getPhaseResponse">
 <wsdl:part name="parameters" element="uwsws:getPhaseResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getExecutionDurationRequest">
 <wsdl:part name="parameters" element="uwsws:getExecutionDuration"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getExecutionDurationResponse">
 <wsdl:part name="parameters"
element="uwsws:getExecutionDurationResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getDestructionTimeRequest">
 <wsdl:part name="parameters" element="uwsws:getDestructionTime"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getDestructionTimeResponse">
 <wsdl:part name="parameters"
element="uwsws:getDestructionTimeResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getQuoteRequest">
 <wsdl:part name="parameters" element="uwsws:getQuote"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getQuoteResponse">
 <wsdl:part name="parameters" element="uwsws:getQuoteResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getResultsRequest">
 <wsdl:part name="parameters" element="uwsws:getResults"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getResultsResponse">
 <wsdl:part name="parameters" element="uwsws:getResultsResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getErrorRequest">
 <wsdl:part name="parameters" element="uwsws:getError"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getErrorResponse">
 <wsdl:part name="parameters" element="uwsws:getErrorResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:portType name="UWS">
 <wsdl:documentation></wsdl:documentation>
 <wsdl:operation name="createJob">
 <wsdl:documentation>create a new job</wsdl:documentation>

 <wsdl:input message="uwsws:createJobRequest"/>
 <wsdl:output message="uwsws:createJobResponse"/>
 </wsdl:operation>
 <wsdl:operation name="listJobs">
 <wsdl:documentation>list the jobs that the UWS server currently knows
abou</wsdl:documentation>
 <wsdl:input message="uwsws:listJobsRequest"></wsdl:input>
 <wsdl:output message="uwsws:listJobsResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="execute">
 <wsdl:documentation>execute a job that has previously been
create</wsdl:documentation>
 <wsdl:input message="uwsws:executeRequest"></wsdl:input>
 <wsdl:output message="uwsws:executeResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="abort">
 <wsdl:documentation>abort a job that is runnin</wsdl:documentation>
 <wsdl:input message="uwsws:abortRequest"></wsdl:input>
 <wsdl:output message="uwsws:abortResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="destroy">
 <wsdl:documentation>destroy a job - i.e. remove all resources that a job has
create</wsdl:documentation>
 <wsdl:input message="uwsws:destroyRequest"></wsdl:input>
 <wsdl:output message="uwsws:destroyResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getSummary">
 <wsdl:input message="uwsws:getSummaryRequest"></wsdl:input>
 <wsdl:output message="uwsws:getSummaryResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setExecutionDuration">
 <wsdl:input message="uwsws:setExecutionDurationRequest"></wsdl:input>
 <wsdl:output message="uwsws:setExecutionDurationResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setDestructionTime">
 <wsdl:input message="uwsws:setDestructionTimeRequest"></wsdl:input>
 <wsdl:output message="uwsws:setDestructionTimeResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getPhase">
 <wsdl:input message="uwsws:getPhaseRequest"></wsdl:input>
 <wsdl:output message="uwsws:getPhaseResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getExecutionDuration">
 <wsdl:input message="uwsws:getExecutionDurationRequest"></wsdl:input>
 <wsdl:output message="uwsws:getExecutionDurationResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getDestructionTime">
 <wsdl:input message="uwsws:getDestructionTimeRequest"></wsdl:input>
 <wsdl:output message="uwsws:getDestructionTimeResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getQuote">
 <wsdl:input message="uwsws:getQuoteRequest"></wsdl:input>
 <wsdl:output message="uwsws:getQuoteResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getResults">
 <wsdl:input message="uwsws:getResultsRequest"></wsdl:input>

 <wsdl:output message="uwsws:getResultsResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getError">
 <wsdl:input message="uwsws:getErrorRequest"></wsdl:input>
 <wsdl:output message="uwsws:getErrorResponse"></wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="UWSSOAP" type="uwsws:UWS">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"
 />
 <wsdl:operation name="createJob">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/NewOperation"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="listJobs">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/listJobs"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="execute">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/execute"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="abort">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/abort"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="destroy">

 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/destroy"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getSummary">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getSummary"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setExecutionDuration">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/setExecutionDuration"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setDestructionTime">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/setDestructionTime"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getPhase">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getPhase"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getExecutionDuration">
 <soap:operation

 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getExecutionDuration"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getDestructionTime">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getDestructionTime"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getQuote">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getQuote"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getResults">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getResults"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getError">
 <soap:operation
 soapAction="http://www.ivoa.net/xml/UWS-WS/v0.9/getError"
 />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="UWS">
 <wsdl:port binding="uwsws:UWSSOAP" name="UWSSOAP">

 <soap:address location="http://www.example.org/"/>
 <!-- specify that ws-addressing is used -->
 <wsaw:UsingAddressing />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

	1Introduction
	1.1Synchronous, stateless services
	1.2Some IVO activities that outgrow synchronous, stateless services
	1.3Asynchronous and stateful services
	1.4Job description language, service contracts and universality

	2Universal Worker Service pattern
	2.1Objects within a UWS
	2.1.1Job list
	2.1.2Job
	2.1.3Execution Phase
	2.1.4Execution Duration
	2.1.5Destruction Time
	2.1.6Quote
	2.1.7Error
	2.1.8Results List

	2.2Bindings
	2.2.1REST binding
	2.2.1.1Resources and URIs
	2.2.1.2Representations of resources
	2.2.1.3State changing requests
	2.2.1.3.1Creating a Job
	2.2.1.3.2Deleting a Job
	2.2.1.3.3Changing the Destruction Time
	2.2.1.3.4Changing the Execution Duration
	2.2.1.3.5 Starting a Job
	2.2.1.3.6 Aborting a Job

	2.2.1.4Message pattern

	2.2.2SOAP binding
	2.2.2.1Resources and URIs
	2.2.2.2Representations of objects
	2.2.2.3State-changing operations
	2.2.2.4Message pattern

	3Security Considerations
	4Applications of UWS (informative)
	4.1Image service with data staging
	4.2ADQL service with cursor
	4.3Parameterized applications

	5Implementing a Synchronous Service on top of UWS (informative)
	6Updates rom previous version
	7References
	8Appendix A Schema
	9Appendix B WSDL 1.0 for SOAP binding

