Displaying data on shape models

S. Erard and the VESPA / Europlanet team

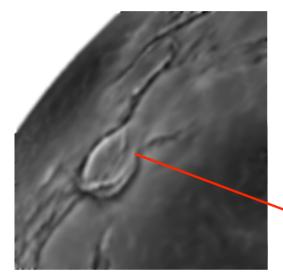
Observatoire de Paris-PSL

IVOA Interop, Malta Nov 14-16, 2024

(sequel to my IVOA presentation last year, on imaging spectrometry)

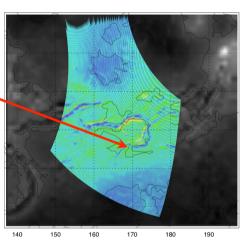
Application to measurements on small bodies

Support of:


- past missions (Hayabusa 1 and 2, Osiris-REX, Rosetta...)
- missions to come (including MMX to Phobos)

Imaging spectrometry

Coordinates - projection on body

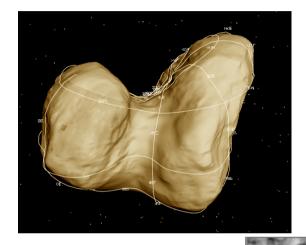

Extra info required for each pixel:

- Coordinates + wvl vector (to plot data)
- Illumination angles (to analyse data)
- each pixel has an extended footprint (for comparison with HR imaging)

Cube slice: spatial dimensions (~ single wavelength image)

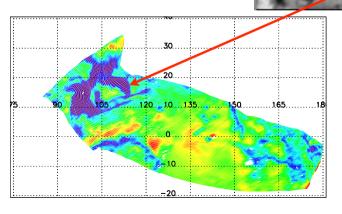
VIRTIS-M VenusExpress

Projected image on surface (~ map)


Imaging spectrometry

Coordinates - projection on body

Particularly important for irregular small bodies...


Coordinates and angles typically computed by the teams with SPICE (JPL), on a pixel basis

Visualisation may be tricky

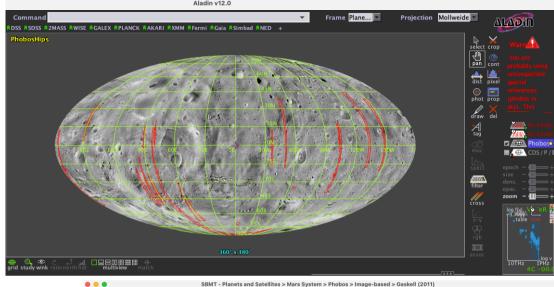
VIRTIS-M Rosetta

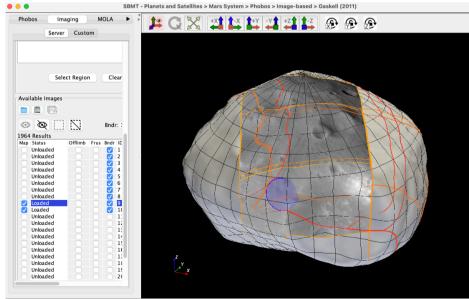
Projected image on shape model (~ map)

Phobos HiPS and footprints in Aladin

Shape models

2D maps can be acceptable

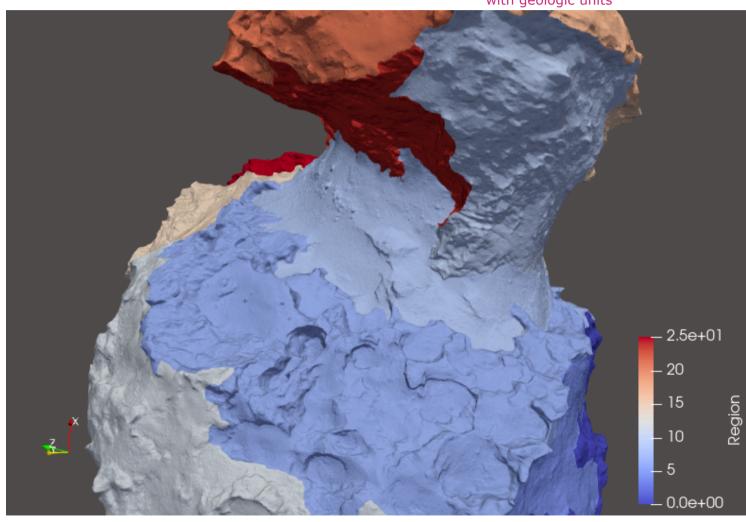

(if Ion/lat coordinates are OK)


- but spherical 3D plots are misleading...

Tools to plot data in 3D?

Mostly Small Bodies Mapping Tool from JHUAPL, but

- data precomputed / prepared
- stored on their server


Phobos images and footprints in SBMT

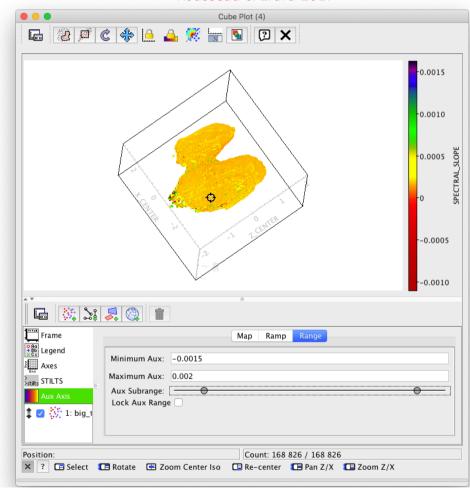
Shape models

67P 5M facets shape in Paraview, with geologic units

Dedicated 3D tools

Paraview is extremely rapid supports full resolution but not very flexible to overplot external data

TOPCAT?


We know TOPCAT has a capacity to address this problem with derived data

(the shape model is embedded in the data)

Not optimized for 3D, but very appealing:

- no data sharing
- data can be modified/computed on the fly
- versatile: many parameters in the same file
- subsets
- cross-matches between tables
- many other display functions available
- VO-connected

VIRTIS-M Rosetta integrated table on 67P Rousseau & Erard 2017

TOPCAT use case

Steps:

- Plot complete shape model in 3D
- Overplot point data on a region
- Overplot many points data
- Overplot images
- Quicklook and publication-ready modes

Most 3D shape models use plate formats:

Section 1: vertices with 3D coordinates

Section2: plates (usually triangular) with vertices from section1

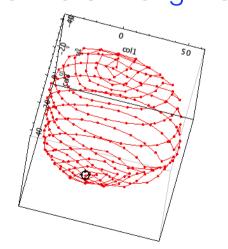
(some are restrictions of powerful 3D design formats)

=> Do not enter TOPCAT directly, need reorganisation

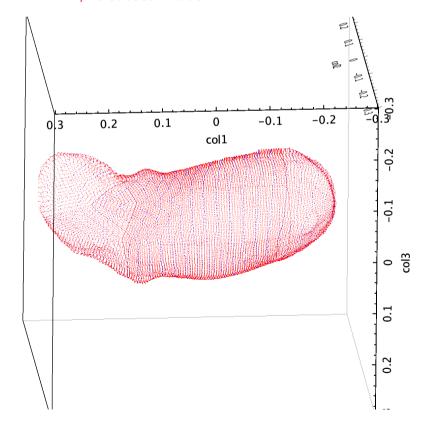
+ SPICE Digital Shape Kernel type2 - used to project data on target bodies

Displaying complete shape models

Shape model reorganized as regular array of vertices (section1 only)

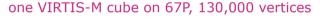

low density/few vertices: from light curve inversion add connecting lines

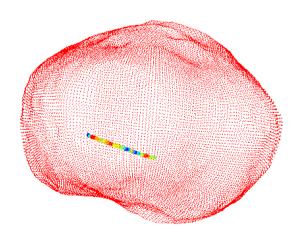
high density: from flyby/orbital images


decimate via sample subset to make it lighter

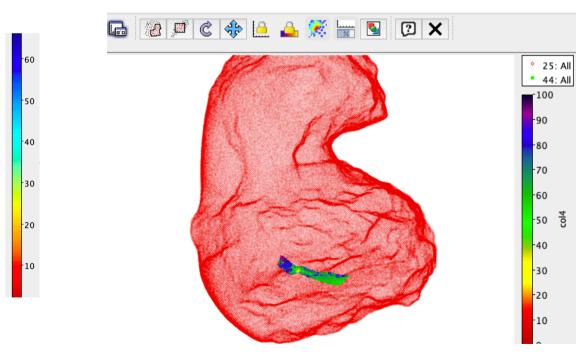
Plots directly in Cube plot but need to specify x/y/z

dimensions (default dim are wrong - is it a bug?)


Lutetia from ground, pre-Rosetta 258 vertices Itokawa from Hayabusa ~25,000 vertices 1/10 subset in blue



Overplotting data


Using the central vertex to plot measurements: row = 3 coordinates + data

- Use another Mark form with Aux shading
- May need to adapt symbol size
- OK for quicklook, still rapid

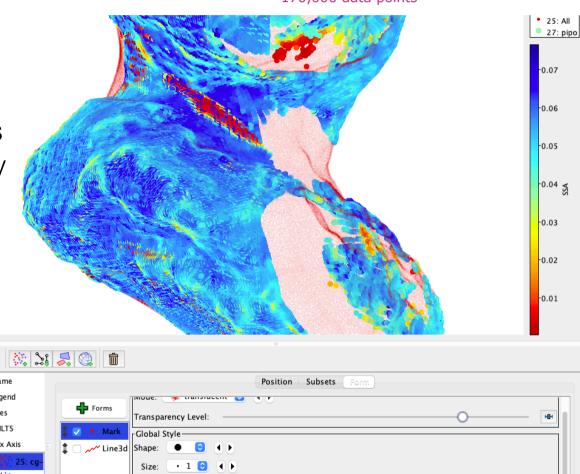
Dummy data on Phobos 25,000 vertices

Overplotting data

Same with large file/many observations:

- Still easy to set a plot
- 3D manipulations become slow-ish
- The array may contain various quantities
- OK for quicklook, but semi-transparency becomes hard to read (far-side still visible)

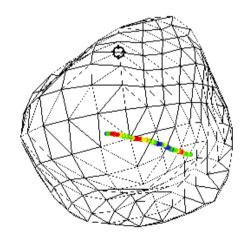
Frame

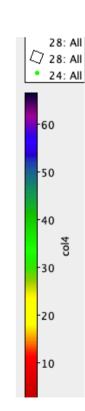

Robb Legend

Axes

Stilks STILTS

Aux Axis


1 week of prepared VIRTIS-M data on 67P (single scattering albedo \sim 1 $\mu m)$ 130,000 vertices 170,000 data points


Clean plots

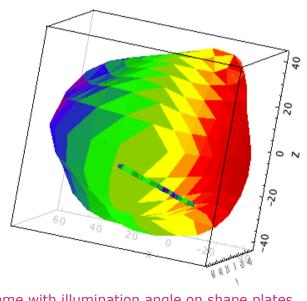
Right way to do: plot data on plates, not vertices:

- Global shape as plate => Polygonal form or Polygon control and keep them opaque
- 1- Data as previously, on vertices (light)
- 2- Data is best plotted also on plates for accuracy: either shape model plates (plate# makes it light) or actual footprint (new plates)
- Last solution is probably more demanding
- to be tested with larger datasets & images

Dummy data on small Lutetia shape model Shape as opaque plates (not vertices)

Clean plots

Right way to do: plot data on plates, not vertices:


Global shape as plate => Polygonal form or Polygon control
 Can be used to overplot albedo, illumination, or to highlight the mesh

Requires another reorganization of input table:

row = plate # (for table match)

+ 9 coordinates (3 vertices delimitating the plate)

+ possibly albedo or incidence angle

Same with illumination angle on shape plates

Conclusions

TOPCAT is very capable! Can be used at least as quicklook for space experiments Tutorial in preparation: https://github.com/epn-vespa/tutorials

ssues:

- A single color table available for two quantities ;(
- Ingesting current formats directly would make it simpler:
 .ver format => table of vertex coordinates, or plate coordinates
 SPICE dsk format => table