
 1

Updated heliophysics
services in VESPA:

science products, service
design and capabilities

Baptiste CECCONI
Chloé AZRIA

 2

Heliophysics services in VESPA
(Virtual European Solar and Planetary Access)

● Heliophysics:
Solar physics, interplanetary medium, planetary magnetospheres/plasma

● Remote sensing: images, spectra, dynamic spectra, events, cubes
In-situ: time-series, dynamic spectra, events
Modelled: images, spectra, time-series, dynamic spectra, events, cubes

● VESPA: TAP table compliant with EPNcore dictionary

● Updated services from ObsParis and Nançay

 3

● BASS2000: daily solar images at various wavelengths

● HFC1AR/HFC1T3: heliophysics features: active regions, radio bursts

● NRH: Nançay Radio Heliograph: images, movies

● ORFEES: Nançay solar monitoring antenna: dynamic spectra

● NDA: Nançay Decameter Array: dynamic spectra (Sun and Jupiter)

● MASER (Voyager/PRA, Cassini/Kronos, Wind/Waves, Juno/Waves…): dynamic spectra,
events, times-series (Sun and planets)

● ExPRES: modelled dynamic spectra (Jupiter)

● Update: Move to DaCHS 2.5, add datalink support, new metadata ingestion methods…

Updated Heliophysics Services

 4

● Using new metadata ingestion method.
● Using datalink when possible, to link with:

– progenitor data
– quicklooks (often several formats available)
– documentation / metadata
– data access API (see below)

● Data access API for time-series and dynamic spectra (data streaming):
– HAPI (Heliophysics API: https://github.com/hapi-server)
– Das2 (temporal resampling on the y: http://das2.org)

● Serve catalogues of spectral-temporal features (using TFCat format)

● Serve collections and datasets associated to recent publications (e.g.,
supplementary material)

Updates and new features

 5

EPN-TAP Helio Services
Technical aspects

DaCHS

EPN-TAP standard

– NRH / ORFEES
● CustomGrammar

– Elasticsearch

– bass2000, hfc1ar, hfc1t3
● odbcGrammar

SQL

Resource
Descriptor

odbcGrammar

customGrammar

Resource
Descriptor

get_metadata.py ES

 6

NRH/ORFEES
CustomGrammar

Gathering metadata

• CustomGrammar calls the
get_metadata.py

• Json containing query
parameters

• Elsaticsearch.helpers.scan
– To iterate over query

result

Extract of
get_metadata.py

 7

NRH
thumbnails /

datalinks

 8

Bass2000, hfc1ar, hfc1t3
odbcGrammar

<sources pattern="data/driver.txt">

<odbcGrammar query="SELECT * FROM
hfc1.view_sp_hqi JOIN hfc1.sunspots ON
hfc1.view_sp_hqi.ID_SUNSPOT=hfc1.sunspots.ID_S
UNSPOT LIMIT 100">

Contains connection chain

SQL query

Hfc1ar : s_region active
regions

• From Chaincode to s_region
– Chaincode : contour of the active region

● Each number in the chain defines the location of next
pixel

– Coordinate conversions :
● Pixels , original record referential

– chaincode

● Helioprojective : center of the sun, angular radius
– Pairs of coordinates (x,y)

● Carrington : spherical coordinates in an absolute
referential

– Pairs of coordinates (lon,lat)

sunpy.net.helio.chaincode

astropy.coordinates.SkyCoord
transform_to
sunpy.coordinates frames

s_region
• Transform (lon,lat) pairs into s_region polygons
• Only simple polygons allowed

shapely.is_simple funtion
– Simple polygons

● « Polygon lon1 lat1 lon2 lat2 … »
– Multi polygons

● Shapely.make_simple function returns a list of shapes
– Several polygons : regroup in one, small circle to make the

union
– Other shapes : (eg : line, multipolygon) solutions to be found

s_region

VESPA
↓

Aladin Beta

SAMP

 12

hfc1ar: update
Heavy database
odbcGrammar with update : new <makeQuery> element (DaCHS 2.5.5)

Access the posgtgres database of
the service – previously imported

Build a fragment
of the odbc
query

Return the final odbc query
Default : query without fragment

Daily cron with service import

 13

Updated heliophysics
services in VESPA: science

products, service design
and capabilities

support.epntap@obspm.fr

Baptiste CECCONI
Chloé AZRIA

mailto:support.epntap@obspm.fr
mailto:support.epntap@obspm.fr

 1

Updated heliophysics
services in VESPA:

science products, service
design and capabilities

Baptiste CECCONI
Chloé AZRIA

 2

Heliophysics services in VESPA
(Virtual European Solar and Planetary Access)

● Heliophysics:
Solar physics, interplanetary medium, planetary magnetospheres/plasma

● Remote sensing: images, spectra, dynamic spectra, events, cubes
In-situ: time-series, dynamic spectra, events
Modelled: images, spectra, time-series, dynamic spectra, events, cubes

● VESPA: TAP table compliant with EPNcore dictionary

● Updated services from ObsParis and Nançay

 3

● BASS2000: daily solar images at various wavelengths

● HFC1AR/HFC1T3: heliophysics features: active regions, radio bursts

● NRH: Nançay Radio Heliograph: images, movies

● ORFEES: Nançay solar monitoring antenna: dynamic spectra

● NDA: Nançay Decameter Array: dynamic spectra (Sun and Jupiter)

● MASER (Voyager/PRA, Cassini/Kronos, Wind/Waves, Juno/Waves…): dynamic spectra,
events, times-series (Sun and planets)

● ExPRES: modelled dynamic spectra (Jupiter)

● Update: Move to DaCHS 2.5, add datalink support, new metadata ingestion methods…

Updated Heliophysics Services

 4

● Using new metadata ingestion method.
● Using datalink when possible, to link with:

– progenitor data
– quicklooks (often several formats available)
– documentation / metadata
– data access API (see below)

● Data access API for time-series and dynamic spectra (data streaming):
– HAPI (Heliophysics API: https://github.com/hapi-server)
– Das2 (temporal resampling on the y: http://das2.org)

● Serve catalogues of spectral-temporal features (using TFCat format)

● Serve collections and datasets associated to recent publications (e.g.,
supplementary material)

Updates and new features

 5

EPN-TAP Helio Services
Technical aspects

DaCHS

EPN-TAP standard

– NRH / ORFEES
● CustomGrammar

– Elasticsearch

– bass2000, hfc1ar, hfc1t3
● odbcGrammar

SQL

Resource
Descriptor

odbcGrammar

customGrammar

Resource
Descriptor

get_metadata.py ES

I will talk about technical aspects of other
helophysics services we have updated.

These services are set up with DaCHS and
following EPN-TAP standards.

The services NRH and ORFEES, provides data
from nancay radio observations. It is deployed using
the customgrammar method of dachs. Which means
the resource descriptor calls an external python
script. This python script interrogates the
elasticsearch database to extract metadata and fill
the table.

The services bass2000, hfc1 active regions and hfc
type 3 uses odbc grammar method to fill the
epn_core table from SQL databases.

 6

NRH/ORFEES
CustomGrammar

Gathering metadata

• CustomGrammar calls the
get_metadata.py

• Json containing query
parameters

• Elsaticsearch.helpers.scan
– To iterate over query

result

Extract of
get_metadata.py

The python script here called by the
customgrammar method of dachs must contain the
iterow method. It uses the files given in the sources
element of the resource descriptor to make the
import. Here the only file needed is a json file
containing the query applied to the elasticsearch
database.
As we want to obtain all the results matching this
query and not just a sample like elasticsearch
provides natively, we use elasticsearch helpers scan
that iterates over query results.

Then, the function my_metadata written somewhere
else in the python script makes a mapping.

 7

NRH
thumbnails /

datalinks

Here you can see the quicklooks of the Nancay
radioHeliograph service which are gifs video-plots.
The thumbnail is chosen as the higher-frequency
available video-plot.
In datalinks we provide a list of alternative
quicklooks at different frequencies. (excluding some
frequencies where there is too much noise).
This is done by making a post query to the database
in the datalink element to obtain links to the gifs with
the matching unique_id.

 8

Bass2000, hfc1ar, hfc1t3
odbcGrammar

<sources pattern="data/driver.txt">

<odbcGrammar query="SELECT * FROM
hfc1.view_sp_hqi JOIN hfc1.sunspots ON
hfc1.view_sp_hqi.ID_SUNSPOT=hfc1.sunspots.ID_S
UNSPOT LIMIT 100">

Contains connection chain

SQL query

For the services bass 2000, hfc1 active regions and
hfc1 type 3 that uses odbcgrammar. In the resource
descriptor, the sources links to the driver (the
remote database connection information)
 And the SQL source database is interrogated with a
query into the odbcgrammar element.

Hfc1ar : s_region active
regions

• From Chaincode to s_region
– Chaincode : contour of the active region

● Each number in the chain defines the location of next
pixel

– Coordinate conversions :
● Pixels , original record referential

– chaincode

● Helioprojective : center of the sun, angular radius
– Pairs of coordinates (x,y)

● Carrington : spherical coordinates in an absolute
referential

– Pairs of coordinates (lon,lat)

sunpy.net.helio.chaincode

astropy.coordinates.SkyCoord
transform_to
sunpy.coordinates frames

One of the difficulties of this update was to add s_regions on the
active regions service.
The information provided initially was chaincodes of the contour.
A chaincode is a string of numbers where each number
represents a shift to the next pixel.
So we had to make the conversion between the original
chaincode in the original record pixel referential to helioprojective
pairs of x,y positions. The helioprojective referential is a projected
referential centered on the sun and the x and y axis increment
are the angular radius. We do that using
sunpy.net.helio.chaincode and the informations given in the
database.

Then, the next step is to convert these projected coodinates on
carrington heliographic coordinates, which is a spherical
referential centered on the center of the sun that does not
depends on the observator location. The
astropy.coordinates.SkyCoord allows to create an instance of a
position in a given referential defined thanks to
sunpy.coordinates.frames so we can use the transnform_to
method to obtain the pairs of coordinates in carrington.

s_region
• Transform (lon,lat) pairs into s_region polygons
• Only simple polygons allowed

shapely.is_simple funtion
– Simple polygons

● « Polygon lon1 lat1 lon2 lat2 … »
– Multi polygons

● Shapely.make_simple function returns a list of shapes
– Several polygons : regroup in one, small circle to make the

union
– Other shapes : (eg : line, multipolygon) solutions to be found

Antother difficulty of the s_region build is that
DaCHS only handle simple polygons. So, the
contour must not cross itself.

For the already-simple polygons, we basically write
the s_region with the pairs of longitude and latitude.

For the other, we try to use the make_simple
function that returns a list of shapely shapes. If
evereything happens like we want, it returns a list of
polygons and we make the union using a small
circle that makes the original polygons a simple one.

There still some cases where the make_simple
does not return a list of polygons, but some other
types of shapes.
In this case, we do not yet have a solution.
This case happens mostly when the active regions
is located at limbs on the observation

s_region

VESPA
↓

Aladin Beta

SAMP

As a result, on the VESPA portal, we can select
granules we want, send it using SAMP and plot
immediately the s_regions on Aladin bêta in
clincking on these buttons.

 12

hfc1ar: update
Heavy database
odbcGrammar with update : new <makeQuery> element (DaCHS 2.5.5)

Access the posgtgres database of
the service – previously imported

Build a fragment
of the odbc
query

Return the final odbc query
Default : query without fragment

Daily cron with service import

The active region database is very heavy and
updating every day, the added s_regions had made
the problem even worse.
Dachs basically re-import the whole service each
time we want to make an update, but in our case it
takes several days for one import.
So, recently from dachs 2.5.5 (so the beta version)
the new makequery element has been made
available. So this element allows to adapt the SQL
query with python by accessing to the already-
imported service.

In the resource descriptor, the data updating must
be set to true and the dupe policy in the table must
be set as dropold which means that if the primary
key is duplicated, it will keep the new row.

So here, we access the local postgres database,
and we use a monotonously increasing parameter
(here the date, time_min). And the query is made
with the fragment here in selecting the part of the
database where the date is uppper or equal to the
max time in the table.

That enables us to set a daily cron to import
updates that will only add the new events.

 13

Updated heliophysics
services in VESPA: science

products, service design
and capabilities

support.epntap@obspm.fr

Baptiste CECCONI
Chloé AZRIA

Thank you for your attention,

Feel free to ask questions or send e mails to
support epntap

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

