The Virtual Astronomy Classroom: New Frontiers in Science Education

Priya Hasan Asst Professor in Physics Maulana Azad National Urdu University Hyderabad, India priya.hasan@gmail.com

IVOA June 2025 Interoperability Meeting, Univ of Maryland

Abstract

The digital revolution has transformed astronomy education through the Virtual Observatory, creating dynamic, accessible learning environments that transcend traditional classroom limitations. By integrating real-time data, like Gaia, Kepler, TESS, SDSS, virtual astronomy classrooms empower students worldwide to explore the cosmos regardless of geographic or socioeconomic barriers. These tools not only enhance engagement through hands-on experimentation with actual astronomical datasets but also cultivate critical STEM skills like data analysis and computational thinking. As the Virtual Observatory bridges the gap between cutting-edge research and education, it represents a paradigm shift in science pedagogy-democratizing access to the universe while preparing a new generation of learners for data-driven discovery. This innovative approach redefines astronomy education as an immersive, boundaryless experience, where every student can participate in the scientific process under the same "digital sky".

- We live an era of multi-wavelength astronomy
- Various ground based and space surveys ranging from gamma rays, X-rays, ultraviolet, optical, and infrared to radio bands has brought astronomy into the big data era.
- Astronomical data is already amounting to petabytes and increasing with the advent of new instruments.
- Astronomy has evolved from "hypothesisdriven", data poor to a data rich science

Dr Priya HasanProf S N HasanAsst ProfessorProfessor(Astronomy /Physics)(Mathematics/Astronomy)

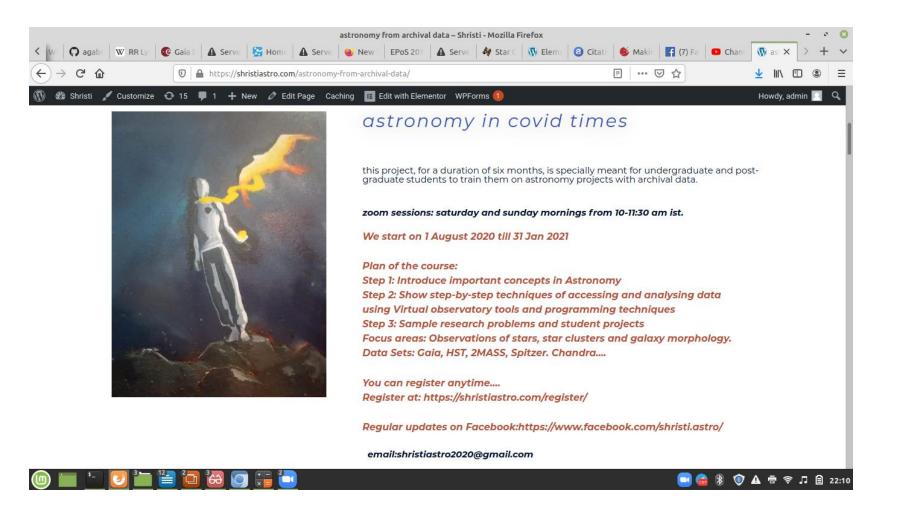
Maulana Azad National Urdu University, Hyderabad, India

IVOA June 2025 Interoperability Meeting, Univ of Maryland

Summaries of projects are listed below (in alphabetical order). For more information on any of the projects, write to info (at) astro4dev.org.

Astronomy from Archival Data

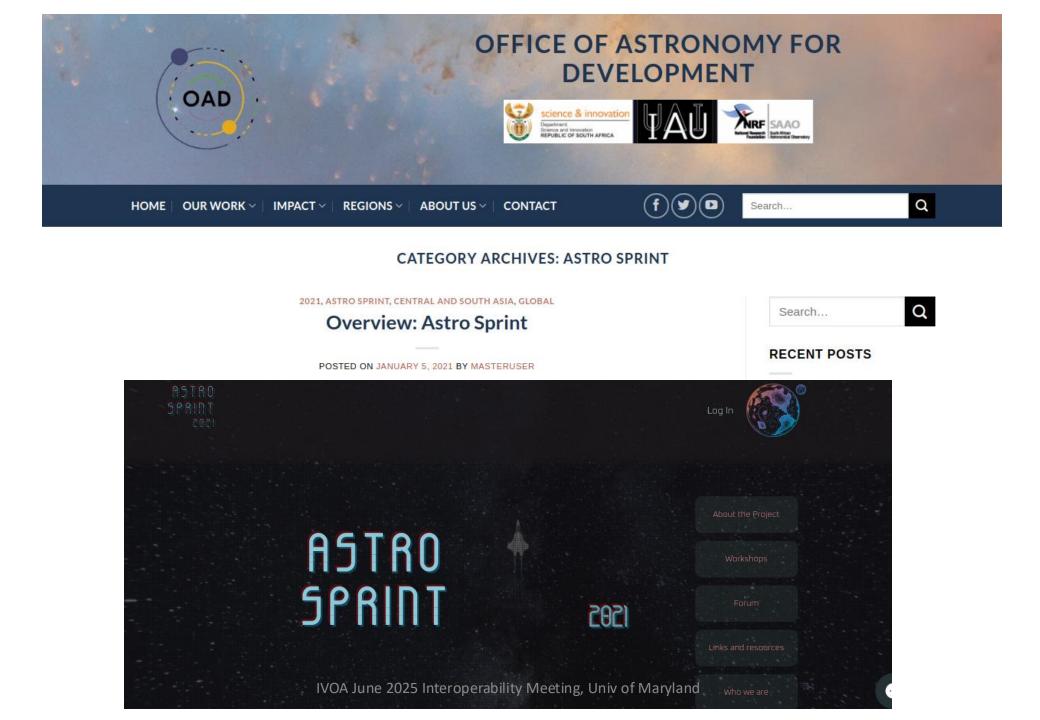
India and all over the world The project will train students to use the high-quality astronomy data from various facilities. Participants will be shown step-by-step techniques of accessing and analysing astronomy data from the internet, introduced to virtual observatory tools and programming techniques, and supported to formulate and develop projects. The training will include special sessions on report writing, publishing and presenting in scientific journals. More info at: https://shristiastro.com/astronomy-from-archival-data/

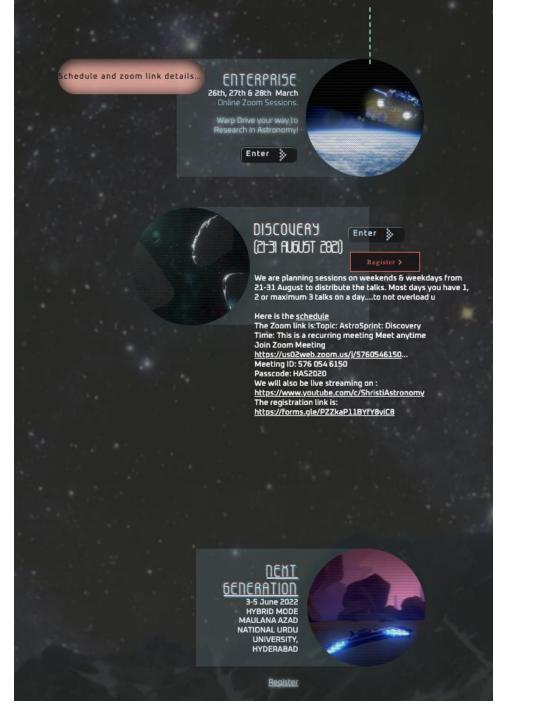


915 RESPONSES

INDIA, PAKISTAN, BANGLADESH, SRILANKA, NEPAL, GERMANY, ITALY, UK, USA, SA, NIGERIA, BOTSWANA, NAMIBIA, GHANA, COLUMBIA, BRAZIL, MEXICO, PHILIPENES, INDONESIA, THAILAND, MALAYSIA, CHINA, JAPAN... 23..COUNTRIES

SOMETHING THAT STUDENTS WANT!!!


A TOUR OF OUR WEBSITE.... HTTPS://SHRISTIASTRO.COM/



MODUS OPERANDI

- Virtual teaching has been there for a while..now a serious option to consider
- Website designing and maintenance
- Social Media
- · Contact: Telegram, Email
- · Feedback: Homework, Quizzes, Polls
- Variety of Speakers: Mark Taylor, Sushan Konar, Luisa Rebull, Bruno Merin, Deborah Baines, Tim Hamilton, Ajit Kembhavi, Avinash Deshpande, Kaustubh Waghmare, Tarun Deep Saini...

AstroSprint: The Next Generation 3-4 June 2022

Hybrid mode 20 recoded lectures Stars, pulsars, star clusters, galaxies, AGN.... Projects ongoing Publications, posters

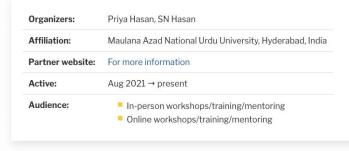
Very good response

LC	🧕 DO	NATE	۹ 🗗	¥ 🖸 🛛 🗘
Las Cumbres Observatory	Explore LCO 🐱	Education & Outreach 🐱	Science 🐱	For Observers 🗸

Global Sky Partners

Shristi Astronomy

A Back to Global Sky Partners


About

Shristi Astronomy has been using LCO as an Educational Tool to help participants understand how observations are made, how to plan observations, exposure times, filters, and analyse data. We hope that the experience will train students to analyse data and obtain results. We have conducted various online and offline workshops on stellar photometry, plotting HR diagrams, study of star clusters, the BANZAI pipeline, etc. We propose to extend our activities with our Global Sky Partners.

Asia

Audience Region

NEWS

Researchers Discover Cosmic Dust Storms from a Type Ia Supernova

NEWS

A Double Detonation Supernova

NEWS

LCO detects planetary collision in distant solar system, revealing new cosmic object

NEWS

LCO Scientists Share the Secrets of an Important Supernova

NEWS

Alan Hale Recovers Comet with LCO Telescopes

Education

- Activities at Home
- Education Homepage
- Global Sky Partners

IVOA June 2025 Interoperability Meeting, Univ of Maryland Resources

Aims: Educational

Fundamentals of observing Planning observations Photometry Standardisation

Star Clusters HR Diagrams Using Gaia and other datasets Science with HR diagrams

The HR diagram with LCO-2 30 October 2021 10-12 am IST

We plan a short online workshop on observations with the Las Cumbres Observatory to observe Star Clusters and plot their HR diagrams. This program is planned for serious amateur and young aspiring professional astronomers.

This is a follow-up of the earlier workshop held. Participants will learn how to plot HR diagrams for Star Clusters.

The registration link is: https://forms.gle/npXuri4HYBheo4Fc6 Youtube:https://www.youtube.com/c/shristiastronomy Contact us at +91 9866619519 or priya.hasan@gmail.com . More details at: https://shristiastro.wordpress.com/the-hrdiagram-with-lco/ Contact: Priya Hasan, S N Hasan, MANUU, Hyd +91 9866619519, priya.hasan@gmail.com

:O

OAD

Twenty-five telescopes at seven sites around th world working together as a single instrument

The HR diagram with LCO (2 -3 October 2021)

We plan a two-day online workshop on observations with the Las Cumbres Observatory to observe Star Clusters and plot their HR diagrams. This program is planned for serious amateur and young aspiring professional astronomers. We shall have detailed presentations on magnitude scales, extinction, photometry and HR diagrams. There will be hands-on sessions on using the Aperture Photometry Tool (APT) and TopCat and participants will learn how to plot HR diagrams for Star Clusters.

(OAD) THURKING

Ö

Global Sky

Partners

Clusters. The registration link is: https://forms.gle/bR2jkZfZGbVVkPef6 Youtube:https://www.youtube.com/c/shristiastronomy Contact us at +91 9866619519 or priya.hasan@gmail.com . More details at: https://shristiastro.wordpress.com/the-hr-dia.rom with lag/ diagram-with-lco/ Contact: Priya Hasan, S N Hasan, MANUU, Hyd +91 9866619519, priya.hasan@gmail.com

Twenty-five telescopes at seven sites around the world working together as a single instrument ➤

Las Cumbres Observatory

Contact

Hands-on session with Topcat, Jupyter Notebooks

Resource persons Priva & Naiam Hasar The registration link

for queries

University of Sharjah Dec 2022

IVOA June 2025 Interoperability Meeting, Univ of Maryland

Workshops

- May 24, 2022, "Stars and HR Diagram", The Bush School, Seattle, Washington, USA. Online Workshop by Priya Hasan
- **2 -3 October 2021,** The HR diagram with LCO. Online Workshop by Priya Hasan and S N Hasan.
- **30 October 2021,** The HR diagram with LCO-2. Online Workshop by Priya Hasan and S N Hasan.
- 8 9 October 2022: Stellar photometry with LCO. Online Workshop by Priya Hasan and S N Hasan.
- STELLAR PHOTOMETRY AND HR DIAGRAMS WITH SOO and LCO, Wed. 21 to Fri. 23 Dec. 2022

Sharjah Academy for Astronomy, Space Sciences and Technology, UoS, UAE

• May 2023, AstroEdu, Workshop on LCO Observations

Third the K Egyp

Third Advanced ArAS School for Astrophysics in the Kottamia Astronomical Observatory, Egypt, on September 15-22, 2023.

المدرسة العربية المتقدم

24 - 18 احتوير

ومد القطابية القكرية جنبورية

الفيزياء الفلكية

البريد الاكترول

ssasegypt@gmail.com البراج الأورز www.ntiag.sci.eg

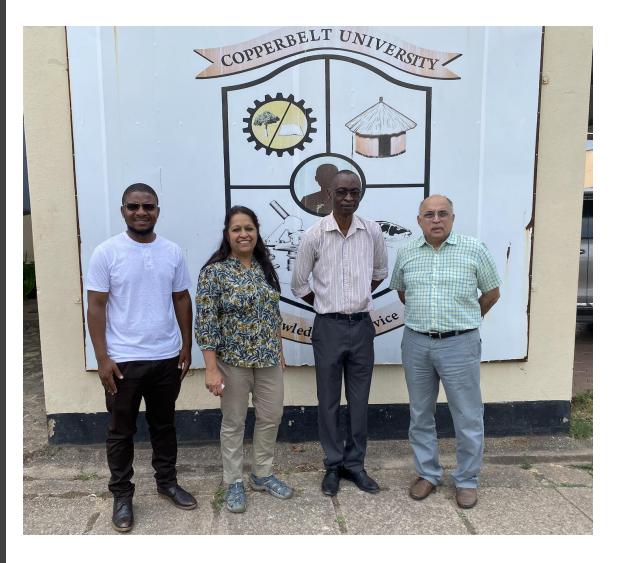
• The 2nd International Science Conference "Science and Industry", which will be held during October 14-15, 2024 in Culture and Arts Building, Helwan University, Egypt.

• Third Advanced ArAS School for Astrophysics in the Kottamia Astronomical Observatory, Egypt, October 18-24, 2024.

IVOA June 2025 Interoperability Meeting, Univ of Maryland

	No	ACTIVITY	DATE	TIME
+	1	Courtesy call on the administration: Dean, HOD, Faculty	23 October 2023	09:00 - 10:00
	2	Postgraduate workshop in astronomy	25-27 October 2023	09:00 - 17:00
	3	Staff workshop: Hands on training	30 October to 01 November 2023	09:00 - 17:00
	4	Public lecture: Machine learning based on Gaia	3 November 2023	10:00 - 11:00
	5	Workshop3: Open mode development of MSc resources	4 – 9 November 2023	10:00 - 17:00
	6	Public lecture: Quantifying Galaxy Morphology	8 November 2023	10:00 - 11:00
	7	Departure of experts	10 November 2023	08:00

Office of Astronomy for Development


Astronomy for a Better World!

 $\mathsf{HOME} ~|~ \mathsf{OUR}~\mathsf{WORK} \lor ~|~ \mathsf{IMPACT} \lor ~|~ \mathsf{REGIONS} \lor ~|~ \mathsf{ABOUT}~\mathsf{US} \lor ~|~ \mathsf{CONTACT}$

f 🖸 🎔 🗈 Search...

Q

Virtual Observatory - Office of Astronomy for Development Special Grant

Other Workshops

IAU GA, Virtual Observatory Tools for Students and Educators workshop

M. Allen, M. Baumann, B. Berriman, P. Hasan, M. Marchand, P. Sharma, P. Whitelock, 2024 IAU GA, Remote Telescopes FM 10 Nagpur, India, 2023, 2024 Mathura, 2023 SPPU University, Anand, India 2024 Nehru Planetarium, Delhi, April 2025

Science Cases

Exoplanets: Kepler and TESS data

Star Clusters: HR diagrams with Gaia

- 1D Galaxy Morphology: Isophotes
- Observations with LCO
- CCD Data Analysis with astropy

Analyzing interstellar reddening and calculating synthetic photometry with astropy

Computing Galactic Orbits of Stars with Gala

https://archive.stsci.edu/ prepds/kepler_hlsp/

Accessing Data:

A		Barbara A. MIKUL	_SKI AR(SPACE	TELE	ESC	OPES
MAST	STSc	Tools 🔻	Mission Search 🔻	Search Website	🗗 🎽 Follow Us 📼	Register	Forum	
About M	AST	Getting Started						

Kepler HLSP

Below are README files describing version 1.0 HLSP data:

<u>README_dtr.txt</u> describing the files containing time series of detrended, normalized stellar fluxes of individual target stars as observed by NASA's Kepler Mission.

<u>README_rvb.txt</u> describing the files containing time series of radial velocity and spectral line bisector span for ground-based spectroscopic observations of individual target stars that have been observed by NASA's Kepler Mission.

Click on the target name to see more information and a quick-look plot. Click on the filenames to download txt files. You may also download via anonymous ftp from archive.stsci.edu. cd /pub/hlsp/kepler_hlsp/

Transit Light Curves

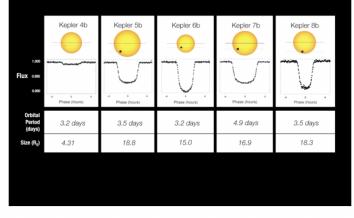
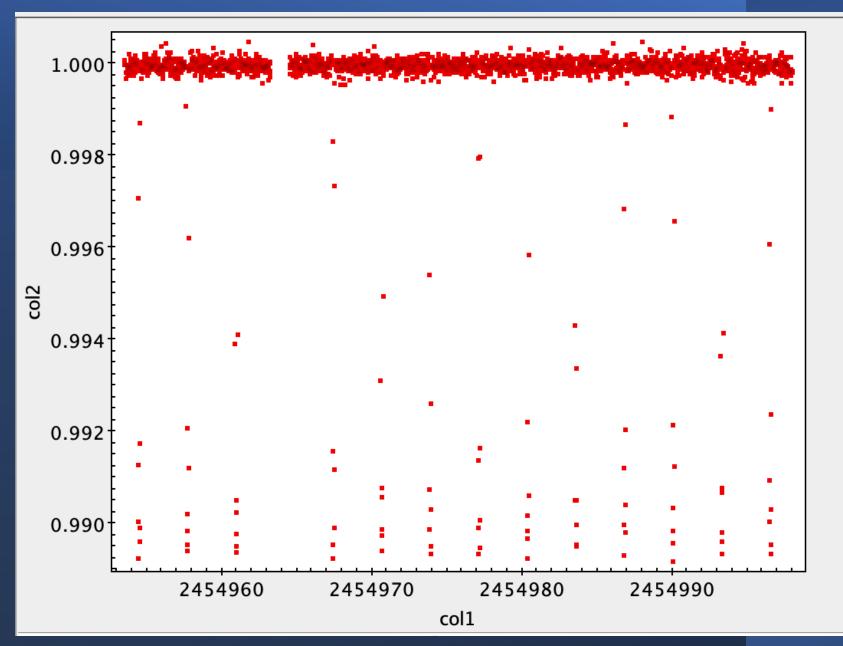


Illustration from Bill Borucki's Jan 2010 AAS Presentation

The First Five Targets

Target	Kepler Time Series	Ground Based Time Series
KPLR10874614 Kepler-6b	hlsp_exo_kepler_phot_KPLR10874614_kep_v1.0_dtr.txt	hlsp_exo_kepler_spec_KPLR10874614_wide_v1.0_rvb.txt
KPLR11853905 Kepler-4b	hlsp_exo_kepler_phot_KPLR11853905_kep_v1.0_dtr.txt	hlsp_exo_kepler_spec_KPLR11853905_wide_v1.0_rvb.txt
KPLR5780885	Line and located about KDI DE70000E local of 0 dealer	

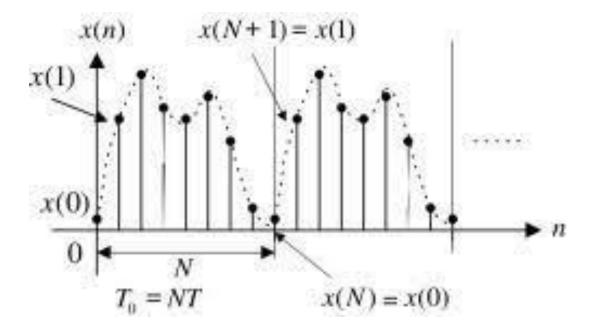
IVOA June 2025 Interoperability Meeting, Univ of Maryland

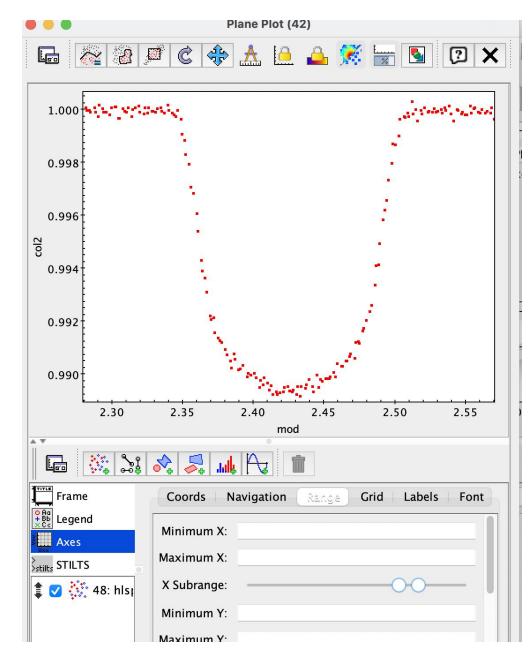

Open in Topcat

• Julian Date

• Flux

- The Julian day number (JDN) is the integer assigned to a whole solar day in the Julian day count starting from noon <u>Universal Time</u>, with Julian day number 0 assigned to the day starting at noon on Monday, January 1, <u>4713 BC</u>, <u>proleptic Julian calendar</u> (November 24, 4714 BC, in the <u>proleptic Gregorian calendar</u>), a date at which three multi-year cycles started (which are: <u>Indiction</u>, <u>Solar</u>, and <u>Lunar</u> cycles) and which preceded any dates in <u>recorded</u> <u>history</u>.^[a]
- For example, the Julian day number for the day starting at 12:00 UT (noon) on January 1, 2000, was 2 451 545.


	col1	col2	r
1	2.454954E6	1.00007	
2	2.454954E6	0.99999	
3	2.454954E6	0.99998	
4	2.454954E6	0.99983	
5	2.454954E6	0.99982	
6	2.454954E6	0.99969	
7	2.454954E6	0.99998	
8	2.454954E6	0.99987	
9	2.454954E6	0.99994	
10	2.454954E6	0.99978	
11	2.454954E6	0.99993	
12	2.454954E6	0.99988	
13	2.454954E6	1.00023	
14	2.454954E6	0.99999	
15	2.454954E6	0.99974	
16	J 1E10E1E6	A 00001	


IVOA June 2025 Interoperability Meeting, Univ of Maryland

Folding functions mod(y,P)

_	C6 • (2	fx =N	MOD(A6,B6)
1	A	В	С
1	Number	Divisor	MOD Result
2	12	3	0
3	12	5	2
4	15	-3	0
5	-10	3	2
6	23	-5	-2
7	(1.1.1)		

Light curve (folded) P=3.2346 mod(col1,3.2346)

IVOA June 2025 Interoperability Meeting, Univ of Maryland

Measuring the Distance from the Star to the Planet

 $a = \left[G\mathcal{M}_* \left(\frac{P}{2\pi} \right)^2 \right]^{\frac{1}{3}}$

Recall Kepler's Third Law,

$$P^2 \propto a^3,$$

where P is the planet's orbital period, and a is its semi-major axis (for a circular orbit, this will be the orbital radius).

$$\frac{a^3}{P^2} = \frac{G(\mathcal{M}_* + \mathcal{M}_p)}{4\pi^2},$$

where \mathcal{M}_* is the mass of the host star, \mathcal{M}_p is the mass of the planet, and G is Newton's gravitational constant.

If $\mathcal{M}_p \ll \mathcal{M}_*$ (the star is much more massive than the planet), then $\mathcal{M}_* + \mathcal{M}_p \approx \mathcal{M}_*$, and

$$\frac{a^3}{P^2} = \frac{G\mathcal{M}_*}{4\pi^2}$$
$$a^3 = G\mathcal{M}_* \frac{P^2}{4\pi^2}$$
$$a^3 = G\mathcal{M}_* \left(\frac{P}{2\pi}\right)^2$$

For M_{*:} The Extrasolar Planets Encyclopaedia

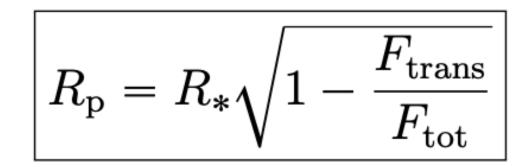
http://exoplanet.eu/

							-		
Exoplanet.et	J		Home	All Catalogs	Diagrams	Bibliography	Research	Meetings Oth	ner Sites VO
Catalog 💿								Download VOTa	ble CSV DA
Status - Detection	"Kepler-6 b"	IN name							Filter
howing 4988 planets / 3676 plan	etary systems / 816	multiple plane	t systems						All field
now 100 v entries					PI	anet Search		Sho	w / hide columns
Planet	Mass (M _{Jup})	Radius (R _{Jup})	Period (day)	a (AU)	е	i (deg)	Ang. dist. (arcsec)	Discovery	Update
GJ 367 b	0.00047	0.0526	0.3219659	0.0069	-	-	-	2021	2022-04-0
WASP-178 b	1.41	1.94	3.3448285	0.0558	0	85.7	. 	2019	2022-04-0
KMT-2019-BLG-2974 b	0.28	-	_	2	-	-	-	2022	2022-04-0
KMT-2019-BLG-1552 b	4.05	—	_	2.6	—	—	—	2022	2022-04-0
KMT-2019-BLG-1042 b	0.19	-	—	1.7	_	-	_	2022	2022-04-0
WASP-5 b	1.637	1.171	1.6284246	0.02729	0	85.8	0.000092	2007	2022-04-0
AB Aur b	9	-		93.9	0.4	42.6	0.708333	2008	2022-04-0
GJ 9066 c	—	-	772.05	0.88	0.49	-	_	2020	2022-04-0
Kepler-1656 c	0.3977	-	1919	3.053	0.527	89.31	-	2022	2022-04-0
Kepler-1656 b	0.1504	0.448	31.562	0.1974	0.838	89.31	·	2018	2022-04-0
K2-2016-BLG-0005L b	1.1	-	—	4.18	-	-	-	2022	2022-04-0
KMT-2021-BLG-1077L c	0.25	-	_	0.93	-		_	2022	2022-04-0
KMT-2021-BLG-1077L b	0.22	_	-	1.26	_	_	_	2022	2022-04-0

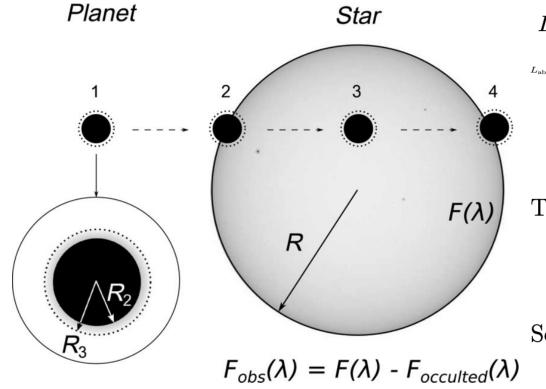
Star data

Radius $1.39(_{-0.03}^{+0.02}) R_{Sun}$ Metallicity $0.34(+0.04)$	Star		
Distance $597.14(-5.16^{+5.16})$ pc Spectral type— Apparent magnitude \vee - Mass $1.21(-0.04^{+0.04})$ Msun Age $3.8(\pm 1.0)$ Gyr Effective temperature $5647.0(\pm 44.0)$ K Radius $1.39(-0.03^{+0.02})$ Rsun Metallicity $0.34(\pm 0.04)$	Kepler-6		
Spectral type— Apparent magnitude V — Mass $1.21(-0.04^{+0.04})$ Msun Age $3.8(\pm 1.0)$ Gyr Effective temperature $5647.0(\pm 44.0)$ K Radius $1.39(-0.03^{+0.02})$ Rsun Metallicity $0.34(\pm 0.04)$	Name	Kepler-6	
Apparent magnitude VMass $1.21 (-0.04 + 0.04) M_{Sun}$ Age $3.8 (\pm 1.0) Gyr$ Effective temperature $5647.0 (\pm 44.0) K$ Radius $1.39 (-0.03 + 0.02) R_{Sun}$ Metallicity $0.34 (\pm 0.04)$	Distance	597.14 (_{-5.16} ^{+5.16}) pc	
magnitude V Mass $1.21 (-0.04^{+0.04}) M_{Sun}$ Age $3.8 (\pm 1.0) Gyr$ Effective temperature $5647.0 (\pm 44.0) K$ Radius $1.39 (-0.03^{+0.02}) R_{Sun}$ Metallicity $0.34 (\pm 0.04)$	Spectral type	e—	
Age 3.8 (± 1.0) Gyr Effective temperature 5647.0 (± 44.0) K Radius 1.39 (-0.03 + 0.02) R _{Sun} Metallicity 0.34 (± 0.04)	Apparent magnitude V	,—	
Effective temperature 5647.0 (± 44.0) K Radius 1.39 (-0.03 ^{+0.02}) R _{Sun} Metallicity 0.34 (± 0.04)	Mass	1.21 ($_{\rm -0.04}$ $^{\rm +0.04}$) $\rm M_{Sun}$	
temperature 5647.0 (± 44.0) K Radius 1.39 (-0.03 + 0.02) R _{Sun} Metallicity 0.34 (± 0.04)	Age	3.8 (± 1.0) Gyr	[
Metallicity 0.34 (+ 0.04)		5647.0 (± 44.0) K	[
	Radius	1.39 ($_{\rm -0.03}$ $^{+0.02}$) $\rm R_{Sun}$	
	Metallicity [Fe/H]	0.34 (± 0.04)	[

IVOA June 2025 Interoperability Meeting, Univ of Maryland


Measuring the Size of the Planet

R_p =factor * R_*


$$\frac{F_{\rm tot} - F_{\rm trans}}{F_{\rm tot}} = \frac{A_{\rm p}}{A_{*}}.$$

Since both the star and the planet are circular, we can write their area in terms of radius, $A = \pi r^2$. Substituting this in and simplifying the left hand side,

$$1 - \frac{F_{\rm trans}}{F_{\rm tot}} = \frac{\pi R_{\rm p}^2}{\pi R_*^2}$$

Calculating the Temperature of the Planet

$$L_{\rm em} = \sigma T_{\rm p}^4 \ 4\pi R_{\rm p}^2. \qquad L_{\rm abs} = (1-\alpha)\sigma T_*^4 \frac{R_*^2}{a^2} \pi R_{\rm p}^2$$

$$L_{\rm abs} = (absorption \ coefficient) \times F_{\rm bc}A_{\rm cross}$$

$$L_{\rm em} = L_{\rm abs}$$

$$\sigma T_{\rm p}^4 \ 4\pi R_{\rm p}^2 = (1-\alpha) \ \sigma T_*^4 \ \frac{R_*^2}{a^2} \pi R_{\rm p}^2$$
The σ and $\pi R_{\rm p}^2$ cancel out on both sides.
$$T_{\rm p}^4 = \frac{1}{4}(1-\alpha)T_*^4 \ \frac{R_*^2}{a^2}$$
Solving for $T_{\rm p}$,
$$T_{\rm p} = T_* \left[(1-\alpha) \ \frac{R_*^2}{a^2} \right]^{\frac{1}{4}},$$

Getting the Planet's Mass and density From Radial Velocity

$$\mathcal{M}_p = \frac{v_{*, \max}}{\sin i} \sqrt{\frac{a \,\mathcal{M}_*}{G}}$$

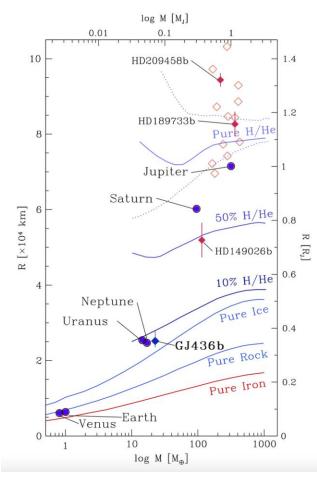
$$P^2 = \frac{4\pi^2}{GM_*}a^3$$

from P, we get a and (knowing M_*) V_p :

$$V_p = \sqrt{\frac{GM_*}{a}}$$

then, conservation of momentum:

$$M_p V_p = M_* V_*$$


 $M_p \stackrel{\text{we can get } \mathbf{M}_p}{=} M_*(\tfrac{V_*}{V_p})$

but we really get M_psin(i) $M_p \sin i = M_* (rac{V_* \sin i}{V_p})$

Density

$$\rho_p = \frac{\mathcal{M}_p}{(4/3) \,\pi \, r_p^3}.$$

Planet composition Gillon 2007

Plotting HR Diagrams with Gaia

GAIA The Milkyway Mapper Dr. Priya Hasan, MANUU, Hyderabad S PM Orwards Sugr. 2022 Nehru Planetarium Nehru Planetarium

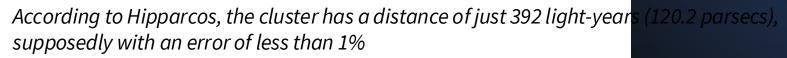
Astronomical Society of India

Invite you to a Webinar

Be with us on the Nehru Planetarium Youtube Channel GAIA-The Milkyway Mapper "A selection of case studies with Topcat" Dr. Priya Hasan MANUU, Hyderabad

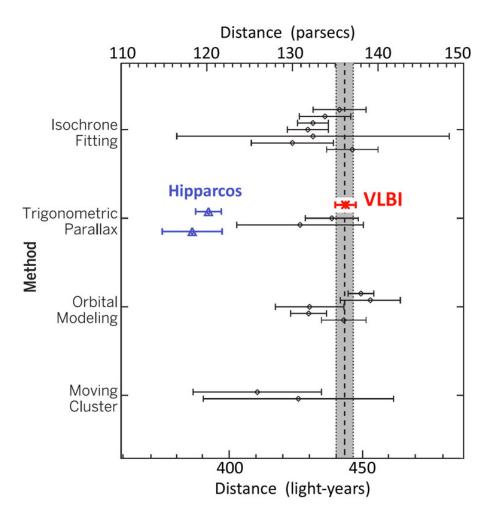
> 6 PM Onwards 29.08.2020

7th Session of Astro Adda


Nehru Planetarium Nehru Memorial Museum & Library &

Public Outreach and Education Committee, Astronomical Society of India Invite you to a Webinar

> Be with us on the Nehru Planetarium Youtube Channe


Pleiades distance problem (M45)

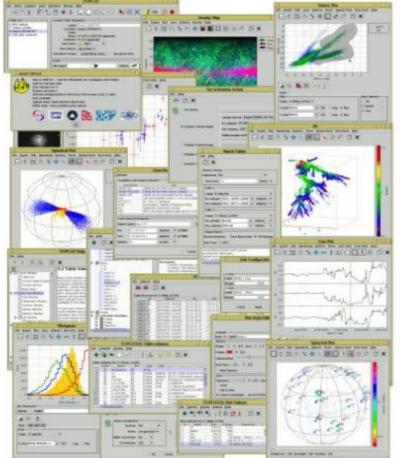
• Ground-based methods had consistently shown that the Pleiades lie about 435 light-years (133 parsecs) away.

Courtsey: Mark Taylor, TOPCAT and how to use it for Gaia, Gaia DR1 Workshop, ESAC, Madrid.

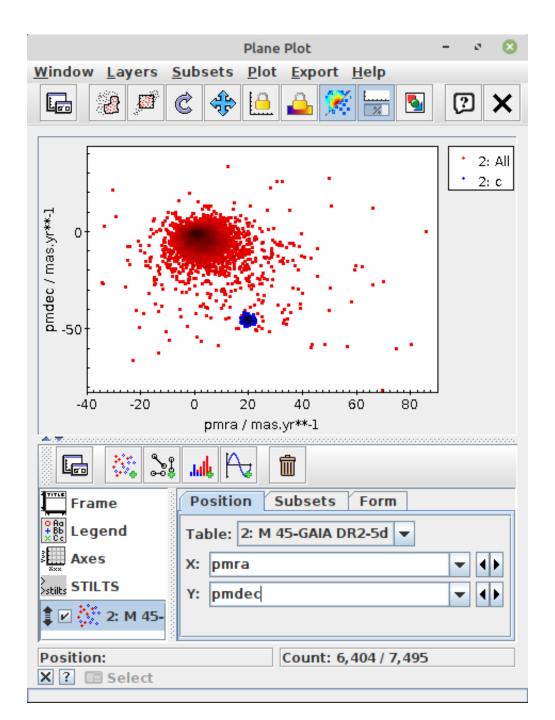
Pleiades Distance

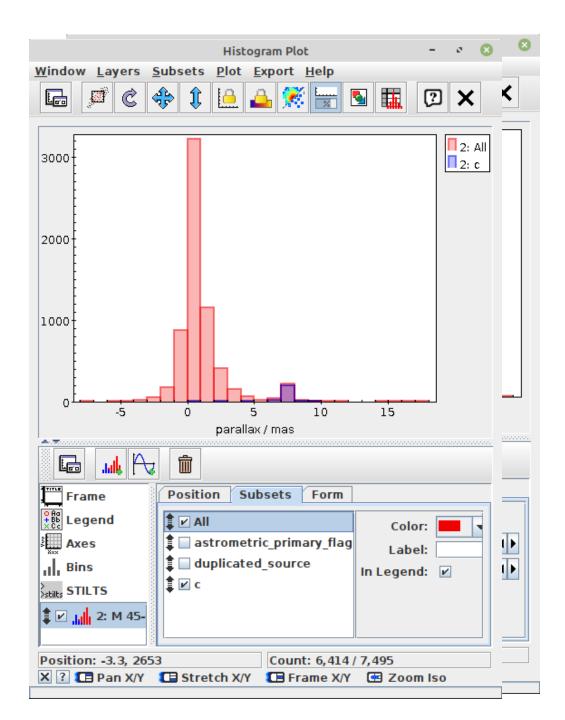
TOPCAT

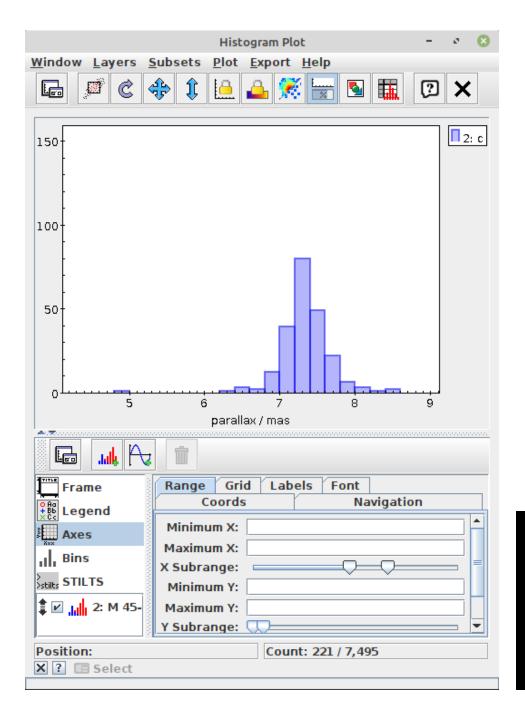
TOPCAT = Tool for OPerations on Catalogues And Tables

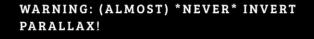

Capabilities:

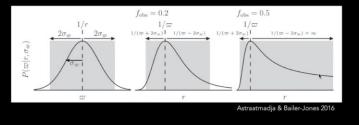
- Does stuff with tables
- Talks to the Virtual Observatory


Help is available:


- Comprehensive HTML / PDF user manual
- Help for Window 🕐 button on every window
- Email support:
 - on list: topcat-user@bristol.ac.uk
 - in person: m.b.taylor@bristol.ac.uk
- Acknowledgement: 2005ASPC...347...29T


http:/www.starlink.ac.uk/topcat/

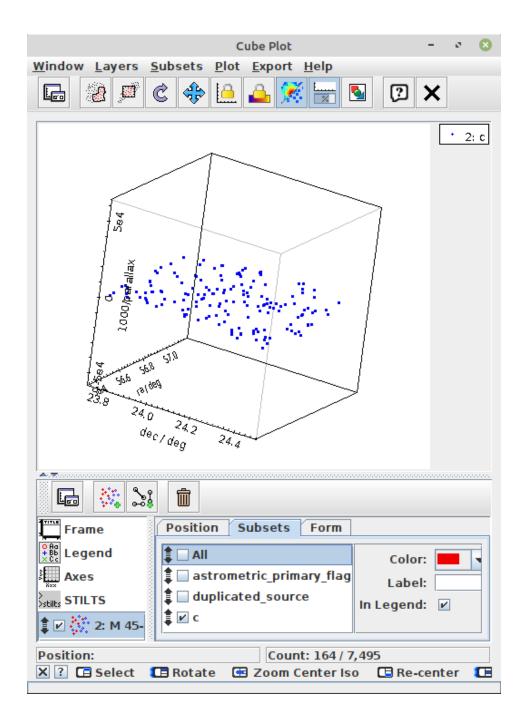


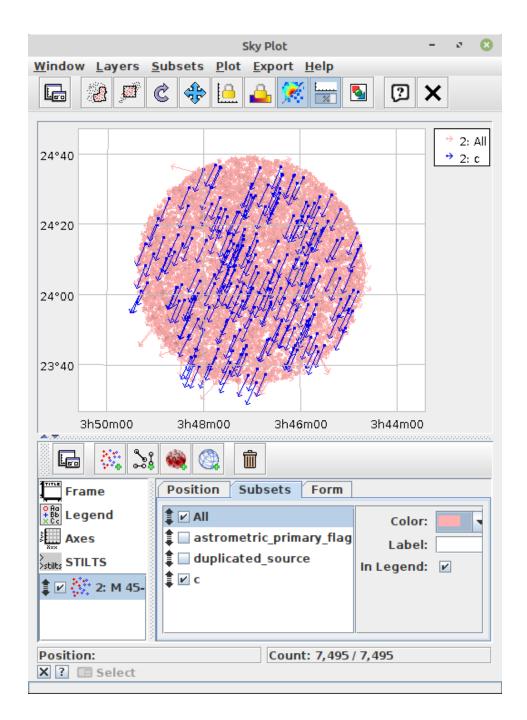

		Cone Sea	arch		- 0
indow <u>C</u>	olumns <u>R</u> egistry	<u>I</u> nterop <u>H</u> elp			
8	X				
~ 0					
⊂Availabl	e Cone Services				
	: http://reg.g-vo.o	rg/tap			▼ 0 RegTAP ▼
		· 9/- 0P			
-	ls: gaia dr2				And
Match Fi	elds: 🗹 Short Na	me 🗹 Title 🗹 9	Subjects	VID VP	ublisher 📃 Descr
🗹 Accep	t Resource Lists			Cancel	Find Services
hort Nam	e		Title		
ia	ARI's Cone Sear	ch Service for the l	ast Gaia D	ata Release)	(DR2)
R2	Gaia DR2 at ESA	-			=
R2 CS	GAIA DR2 ConeS				
ght SCS	Gaia DR2-light C				
R2	Gaia Source Cat	Collaboration, 2018	2)		
		33 billion stars in G	-		2018)
		So billion stars in o		Janer Jones I	•
	A	Descript			Manaian
https://au	AccessURL	Descript	ion		Version
nups://ge	ea.esac.esa.int/ta				
	e Count: 63				
	rameters				
Cone UR	L: https://gea.esac.	esa.int/tap-server/	coneseard	h?TABLE=ga	iadr2.gaia_source&l
Object N	ame: M 45				Resolve
RA:	56.75	degrees	▼ (J2000) 🗹 Acc	ept Sky Positions
Dec:	24.1167	degrees	(]2000)	
Radius:	5	degrees	-		
Verbosit	y: 2 (normal)	•			
		ОК			
		UK			

TOPCAT(2): Row Statistics

- 0 6

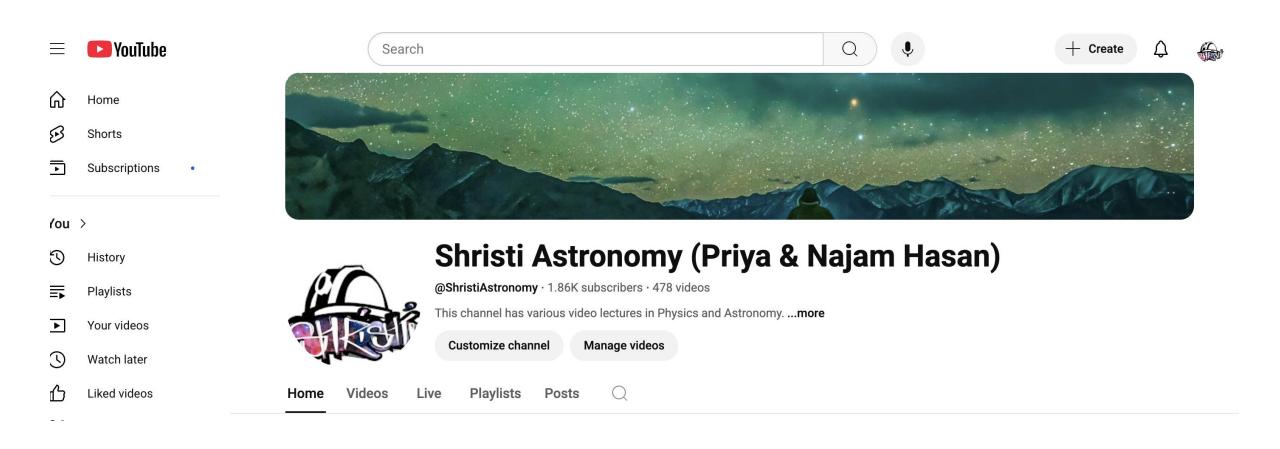
<u>Window Export</u> <u>Statistics</u> <u>Display</u> <u>Help</u>




Row Statistics for 2: M 45-GAIA DR2-5d

Name	Mean	SD	
dist	0.33153	0.135047	-
solution_id	1.63572E18	0.	
designation			G
source_id			
random_index	8.03996E8	4.89958E8	
ref_epoch	2015.5	0.	
ra	56.7202	0.269111	
ra_error	0.170321	0.179815	
dec	24.1173	0.259005	
dec_error	0.105053	0.116226	
parallax	7.31204	0.667127	
parallax_error	0.189652	0.202046	
parallax_over_error	74.534	56.9131	
pmra	19.7714	1.09229	
pmra_error	0.371743	0.417055	
pmdec	-45.3702	1.29892	
pmdec_error	0.242754	0.271062	
ra_dec_corr	0.145823	0.142298	
ra parallax corr	0.132565	0.217436	-

Subset for calculations: c


Ŧ

....And many more

with Jupyter Notebooks too

https://shristiastro.com/

Astrophysics Handbook

Or Priya Hasan

Or Prise Hearn did her Integrated Masters in Physics specialising in Astrophysics from the Maszow State University, Mascow, Russia in 1995. She did her PhD in Astronomy at Osmania University. Hyderabad in 2004. She did post-doctoral rch in Prance and IUCAA, Pure. She was awarded the Women Scientist Award by Department of Science and Technology, New Selfvin 2006. The US Consulate, Hyderabad selected her for the international Visitors Landau Program is 2011 to with and deliver loctores at wheth universities in the US like MIT, Harvard, CalTech, etc. She have presented her work invertious conferences in India, Europe and US and in the United Nations, Vienna, Hier set Interests are in deservational astronomy, size formation, user clusters and parales. As present the total borates with groups in India, Europe, US and Egypt. Priva recently visited The Harverd Smithupnen Center for Astrophysics, Cents USA on a Seminar Internal/op Program of the International Astronomical Usion. She is a member of the International etrophysics, Cambgidge Science Driven Team of the Thirty Meter Telescope. Prive II activity theired in objective, public outreact and science popularization programs for children and adults and has washed on various projects with the IAU-OAD, US Consulate lightended, etc. At prevent the is an Aut Professor in Physics at the Maulane Arad National Unite University, Hyde abad. She is the co-Cheir of the Warren is Automoting Working Croup of the International Astronomical University. Hyde abad. Secretary of the Public Outrefich and Education Committee, Autronomical Society of India. She is a Regional Autronomy Education Coordinator of the WUIGHtics of Astronomy for Education.

Prof 5 N Hasan

Prof S N Hasan Is the Dean, Alarmi and Foreign Affairs, MacLana Acad National Urdu University. Before joining MANUU he was Head Boot of Adronamy, Curvania University, Hyderabed and Director Jacob-

Rengepur Observatories.

He completed his MSc and M Philat the University of Hyderabed and PhD at the Moscow State University, Moscow, Russia.

He was recipient of National Merit Scholarship, University Merit Scholarship for his Master's program and Ministry of Human Resource Development (HHRD), Government of India scholarship for Doctoral Studies His research interests are Celestial Mechanics and Dynamical Astronomy, He has published his research in national and international journals and has more than 25 years of teaching experience. He is actively involved in Olympiada, public

outreach and advence popularization programs for children and advits. He has lead the inclan been in international Olympiads.

He has published in National and International Journals and delivered lectures at both National International Universities