CSP Closing Remarks

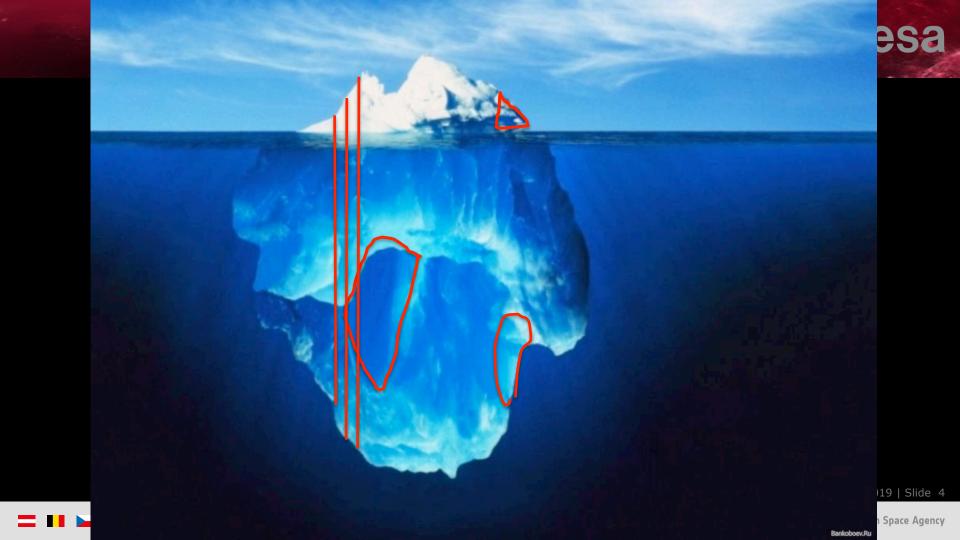
Bruno Merín

IVOA Committee on Science Priorities (CSP) http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaSciencePriorities

ESAC Science Data Centre (ESA), Madrid, Spain

IVOA Paris Interop, 17/05/2019

- 1. Motivation
- 2. Scientific priorities
 - 1. Currently identified
 - 2. Upcoming
- 3. Final recommendations

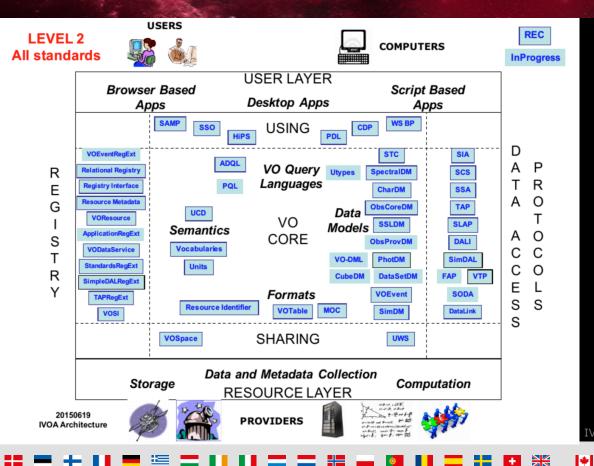

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 2

= II 🛏 :: 🖛 + II 💻 🔚 = II II = = : :: 🖬 🛶 🚳 II = :: II 💥 🙌

We do this because is has a lot of meaning !!

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 3

So what do scientists need?


- 1. Visualization tools
- 2. Simple / easy access to reliable, relevant and big data
- 3. Fast computation on new data
- 4. Easy comparison tools between data and *models/theory*
- 5. Data *completeness* and *consistency*
- 6. Reproducible data representation

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 5

The set of th

What does the IVOA provide?

Technology

P. Dowler TCG Report

IVOA Paris Interop 2019 | 17/05/2019 | Slide 6

Current scientific priorities at IVOA

- Time-domain astronomy: light-curves -> see new proposed TIMESYS and T-MOC
- Multi-dimensional data: spectral or time cubes (sky + wavelength/frequency or sky + time)
 - Python reference implementations prioritized for major services?
 - Ways for accessing large amounts of data from future surveys?
 - Other growing areas/priorities?

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 7

_ II ⊾ II = + II = ≝ _ II II = = H = Ø II = II ₩ II

WG	Standard	Task Driver
DAL	TAP - Table Access Protocol (Rel)	Querying catalogues remotely
DAL	SLAP - Simple Line Access Protocol	VAMDC Accessing lines
DM	SSLDM v2.0	VAMDC Accessing lines
DAL	ObsLocTAP - Observation Locator Table Access Protocol	XMM-Newton, Integral, Chandra Coordinating observations between facilities
DAL	ObjVisSAP - Object Visibility Simple Access Protocol	XMM-Newton, Integral, Chandra Coordinating observations between facilities
DAL	ProvTAP - Provenance Table Access Protocol	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DM	Provenance	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DAL	ProvSAP	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DAL	Datalink	Data discovery Links to further data
DAL	DALI - Data Access Layer Interface	Core standard to support other DAL standards. Allow DAL standards to do things consistently IVOA infrastructure
DAL	ADQL - Astronomical Data Query Language (Rel)	Community Input

ency

		Task Driver
WG	Standard	
DM	Coordinates model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC
DM	Transform model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC
DM	Measurement model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC
DM	Cube v1.0	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC
DM	VODML-Mapping	IVOA Infrastructure Needed to serialize IVOA DMs
DM	DatasetMetadata v1.0	Generalized DM for datasets Link with CAOM ? Multi Dimension phase 2
DM	Translation of DMs to VODML/ VODML modeling utilities	IVOA Infrastructure
DM	SourceDM	Gaia, Chandra DM for catalogues - Data discovery for sources
DM	TimeSeries	Comparing light curves
GWS	Group Membership Service 1.0	User authorization - Data sharing between groups of users
GWS	VOSI Best Practice	IVOA Infrastructure

Milline :	002
	630

		Task Driver	
WG	Standard		
GWS	VOSI	IVOA Infrastructure	
GWS	Science Platforms	ing the code to the data are data and code among users Ilaborative virtual environment	
Reg	RegTΔP	IVOA Infrastructure TAP query to the IVOA Registry	
Reg	STC in Registry	Identify the coverage of the VOResources in the Registry	
Semantics	Maintenance of the list of UCD words	IVOA infrastructure	
Semantics	UCD1+ controlled vocabulary	IVOA infrastructure	

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 10

Milline :	002
	630

		Task Driver	
WG	Standard		
GWS	VOSI	IVOA Infrastructure	
GWS	Science Platforms	ng the code to the data are data and code among users Ilaborative virtual environment	
Reg	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	IVOA Infrastructure TAP query to the IVOA Registry	
Reg	STC in Registry	Identify the coverage of the VOResources in the Registry	
Semantics	Maintenance of the list of UCD words	IVOA infrastructure	
Semantics	UCD1+ controlled vocabulary	IVOA infrastructure	

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 11

= II 🛌 := 🖛 II 💻 🚝 = II II = = = := 🖬 🛶 🔯 II = := := := ::

High-level view of current priorities

esa

- Visualization tools
- Data access
 - Discovery
 - Access
 - Interoperability
- Data context
- Computing resources
- Data analysis
- Follow-up time-domain event

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 12

The set of th

WSJF = Weighted Shortest Job First

https://www.scaledagileframework.com/wsjf/

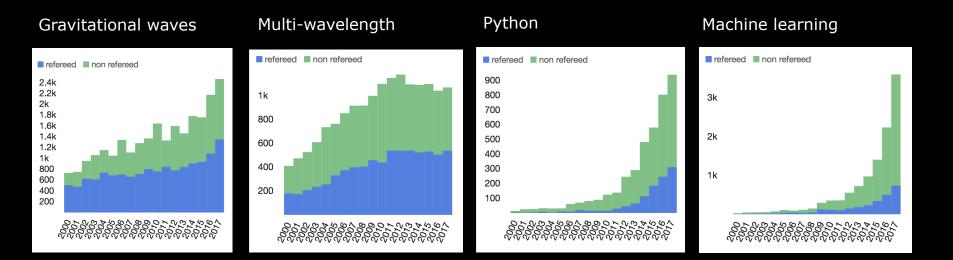
B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 13

= II 🕨 ## ## II 💻 🚝 == II II = = = ## 🛶 🚺 II == ## ## ## ##

European Space Agency

esa

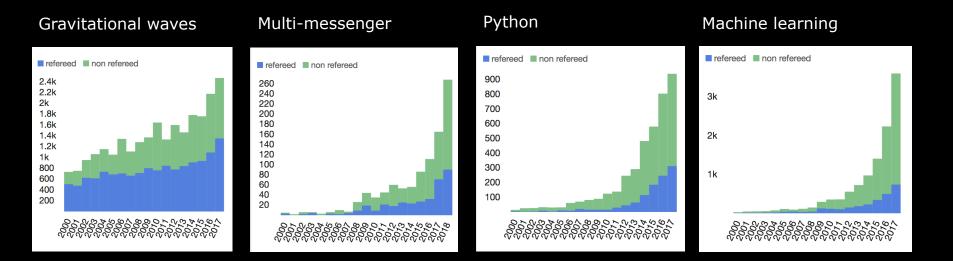
Possible prioritization of activities within IVOA


Milline	-	-
ie, mm	Q	2
MES		
le		

	Business value	Time	Risk reduction - Opportunity enablement	Cost of Delay	Job size	Weighted Shortest Job First
Data access - access	20	8	2	30	2	15
Data Access - discovery	13	13	3	29	2	14,5
follow-up time-domain events	2	20	13	35	3	11,66666667
Data access - interoperability	8	5	8	21	5	4,2
Computing resources	5	8	A B	21	8	2,625
Visualization tools	8	3	5	16	8	2
Data context (provenance, quality)	1	1	20	22	13	1,692307692
Data analysis tools	3	8	1	12	20	0,6

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 14

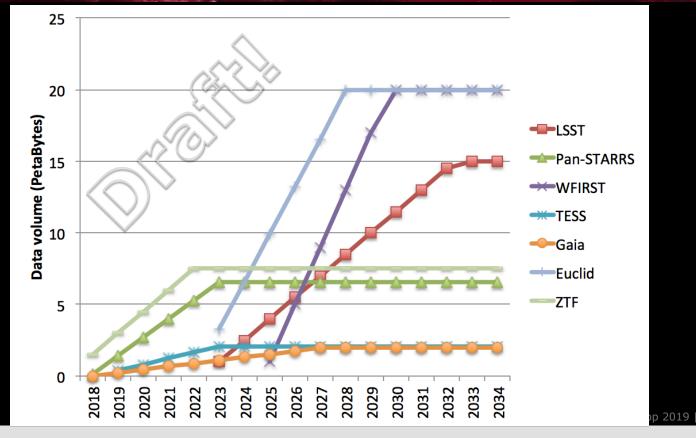
Upcoming scientific priorities at IVOA


ADS-listed articles containing those key-words as a function of time

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 15

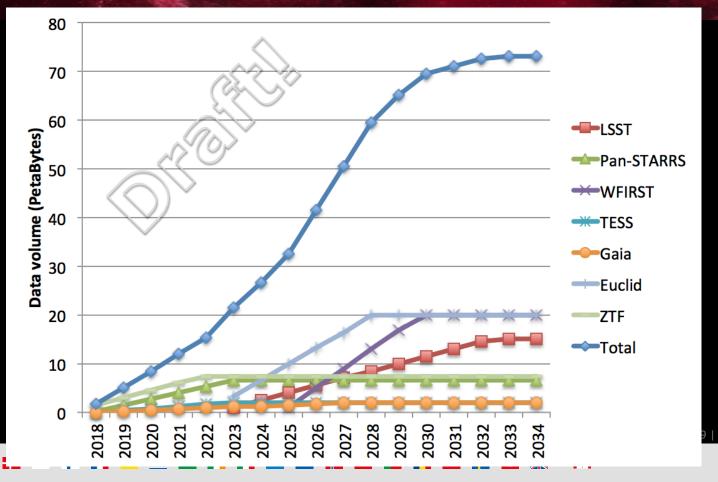
□ II > II = + II = ≥ □ II II = 2 □ H = 0 II = 10 H

Upcoming scientific priorities at IVOA


ADS-listed articles containing those key-words as a function of time

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 16

_ II ⊾ II = + II = 'E _ II II _ II _ II = 'E L II \ II \ ...


Survey	Q1: max. data volumes & dates	Q2: plans	Q3: code to data?	Q4: X- correlate?	Q5: IVOA?
LSST	30e12 sources 15 PBs (2023 to 2033)	Portal + Notebook + Web APIs	Yes	At least w/ Gaia	TAP+ADQL, SIAv2, SODA, VOSpace, WebDAV, PyVO
Pan-STARRS	11e9 sources 1.4 PBs (Jan 2019)	MASP portal + astroquery	AWS ?	?	MAST API, TAP, Cone, likely DataLink, SODA
WFIRST	20 PBs (~2025 TBC)	MASP portal + astroquery	AWS ?	?	MAST API, TAP, Cone, likely DataLink, SODA
TESS	260 TBs (2018 - 2020+)	MASP portal + astroquery	AWS ?	?	MAST API, TAP, Cone, likely DataLink, SODA
Gaia	2 PB (2018 - 2027)	Gaia archive + astroquery	SEPP	Several all- sky cats.	TAP+, datalink, SODA, VOSpace
Euclid	20 PB (2022 - 2028)	Euclid archive + astroquery	SEPP	Several all- sky cats.	TAP+, datalink, SODA, VOSpace
SKA	600 PB/year (2028 -)	TBD	TBD	TBD	TBD
ZTF	63e9 sources 1.5 PBs (2018 -)	IRSA APIs	?	?	IRSA APIS

Forecast of evolution in public astronomy data volumes esa

9 | 17/05/2019 | Slide 18

Forecast of evolution in public astronomy data volumes esa

European Space Agency

.7/05/2019 | Slide 19

Possible solutions to the big data challenges

- To distribute TBs of data to users
 - Most users don't need TBs, but just MBs or GBs
 - They will run jobs in a cloud and download less data
- Allow people discovering datasets from new surveys
 - Add data to registry?
- Provide sufficient computing resources for users (who pays?)
 - Clone data to commercial clouds?
- What is missing in the IVOA set of standards?
 - SODA for cut-outs, rebinning, resampling?
 - > Interoperable Notebooks?
 - > Hierarchical data structures for discoverability?
 - Standard for code-to-the-data?
 - New data distribution standards like torrent?

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 20

The set of th

What does the IVOA provide?

- 5. Fast computation on new data
 -> GWS, Computing resources close to the data, VOSpace
 interface for distributed storage -> Focus Session on Big Data
- 6. Easy comparison tools between data and models/theory-> SimDAL, but models usually created by users..
- 7. Data *completeness* and *consistency*
- -> Registry complete and consistent? Glots?
- 8. Reproducible data representation
- -> Scripting interfaces, python? ADQL, TOPCAT -> Astropy Hackathon

The best way to make progress is via a constant dialogue:

$science \leftrightarrow technology$

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 22

_ II ⊾ :: ■ + II ■ ½ _ II II _ Z = :: II ▲ M II _ II

Example case for the Multi-Dimensional use-case

User requirements defined in 2013:

- Data Discovery (Query) as a function of
 - RA, Dec
 - Frequency/wavelnegth
 - Polarization states
 - Spatial scale
 - Angular resolution
 - Integration time
 - Time of observations
 - Data Access
 - Download complete science data
 - Download simple cutouts

Simple cut-outs Spatial : a circle (a coordinate + radius) Energy : one interval (energy1 - energy2) Time : one interval (time1 - time2) Polarization : a list

Additional requirements for cut-outs: Sum along any one or more axes Re-bin in one or more axes Multiply by a function Other action on the data

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 23

Example case for the Multi-Dimensional use-case

- October 2012: "Time-Domain Astronomy and Multi-Dimensional data were AGREED as priority areas for the IVOA" FM46S
- May 2013: Focus session on multi-dimensional data in Heidelberg
- May 2014: Focus session on multi-dimensional data at ESAC/ Madrid
- June 2015: DataLink 1.0 IVOA Recommendation
- December 2015: SIA 2.0 IVOA Recommendation 23 Dec. 2015
- May 2016: Focus Session on "Interoperability of data from major astronomical projects"
- May 2017:
 - SODA 1.0 IVOA Recommendation 17 May 2017
 - Obscore 1.1 IVOA Recommendation 9 May 2017
 - Announced the milestone IVOA multi-d standards: first set of standards to address
 Discovery, Access and Simple cut-out of multi-D data
- July 2018: IVOA note on Feedback on the DAL protocols relevant to Multi-D standards
- Feb. 2019: Reference implementation on ASTERICS DADI Technology Forum

_ II ⊾ :: ■ + II ■ ≝ _ II II _ _ : **:** :: II ■ ™ !!

 Several core developers of the Astropy and Astroquery groups will attend part of the IVOA interop and will run a two-days hackathon/sprint with a few Astropy contributors from IVOA in a parallel session (Tue and Wed).

Goals:

- Explore how best to build cooperation between the IVOA and Astropy
- Discuss role of PyVO
- Deliver new VO features !

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 25

Focus session on Big Data Challenges in Astronomy CSA

Tuesday, May 14, 16:00--17:30, Salle Le Verrier

Speaker	Title	Presentation	Time
Bruno Merín	Motivation for the Focus Session		2
Gregory Dubois-Felsmann	LSST data exploitation plans		5+5
Tom Donaldson	Pan-STARRS, WFIRST and TESS data exploitation plans		5+5
Juan González	Gaia data exploitation plans		5+5
Jesús Salgado	Euclid data exploitation plans		5+5
Séverin Gaudet	SKA RC data exploitation plans		5+5
	Open discussion on challenges and opportunities		28

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 26

Questions for large surveys :

- Describe the data volumes and types of data expected from the mission/survey.
- Describe your data dissemination/exploitation plan for users.
- Are you looking at sending data to users or looking at a code to the data approaches?
- How would you cross-correlate data with different surveys?
- How and where does the IVOA fit into your plans?

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 27

_ II ⊾ := = + II = ≝ _ II II _ = := := M II _ II _ = ...

The IVOA needs you

- We need active and enthusiastic scientists at the Committee of Science Priorities!!
- Talk to us if you are interested!!

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 28

= II 🛌 == + II = 😑 = II II = = = 🔚 🛶 🚺 II = = II 💥 🙌

Final recommendations from the CSP

- You have the best judgement for what to work on !
- But always ask the question: how is the user going to use this?
- Try follow the user workflow to the paper and keep the big picture (is provenance clear? Can I explain/make a plot of this?)
- Connect to the future generation of users where they are: e.g. python, github, open source projects, social media, online open fora, connected to new big astronomy projects, using mobile devices and expecting quick answers

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 29

Thanks for all the great work!

Committee on Science Priorities : csp@ivoa.net

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 30