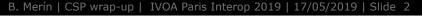
CSP Closing Remarks

Bruno Merín

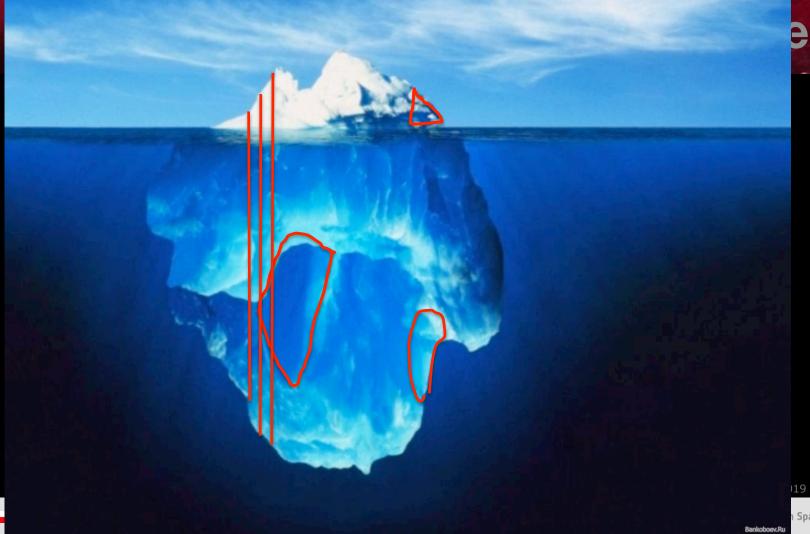
IVOA Committee on Science Priorities (CSP) http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaSciencePriorities


ESAC Science Data Centre (ESA), Madrid, Spain

IVOA Paris Interop, 17/05/2019

Outline

- 1. Motivation
- 2. Scientific priorities
 - 1. Currently identified
 - 2. Upcoming
- 3. Final recommendations

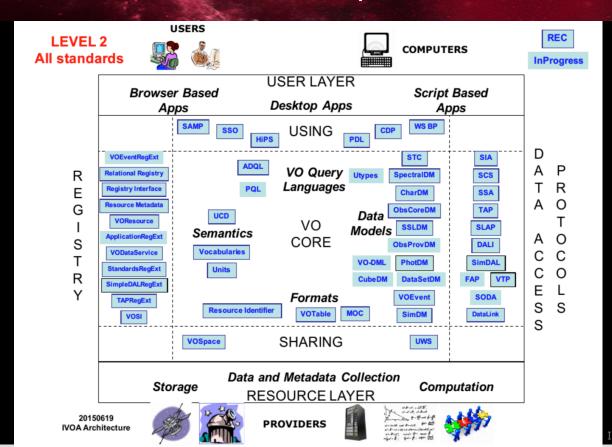


We do this because is has a lot of meaning!!

esa

15 | Shac 1

Space Agency


So what do scientists need?

- 1. Visualization tools
- 2. Simple / easy access to reliable, relevant and big data
- 3. Fast computation on new data
- 4. Easy comparison tools between data and models/theory
- 5. Data *completeness* and *consistency*
- 6. Reproducible data representation

What does the IVOA provide?

Technology

P. Dowler TCG Report

1+1

IVOA Paris Interop 2019 | 17/05/2019 | Slide 6

Current scientific priorities at IVOA

European Space Agency

- Time-domain astronomy: light-curves -> see new proposed TIMESYS and T-MOC
- Multi-dimensional data: spectral or time cubes (sky + wavelength/frequency or sky + time)
 - Python reference implementations prioritized for major services?
 - Ways for accessing large amounts of data from future surveys?
 - Other growing areas/priorities?

Mapping of IVOA standards to science cases

	riapping or	1 VOTT Startaaras to science cases
WG	Standard	Task Driver
DAL	TAP - Table Access Protocol (Rel)	Querying catalogues remotely
DAL	SLAP - Simple Line Access Protocol	VAMDC Accessing lines
DM	SSLDM v2.0	VAMDC Accessing lines
DAL	ObsLocTAP - Observation Locator Table Access Protocol	XMM-Newton, Integral, Chandra Coordinating observations between facilities
DAL	ObjVisSAP - Object Visibility Simple Access Protocol	XMM-Newton, Integral, Chandra Coordinating observations between facilities
DAL	ProvTAP - Provenance Table Access Protocol	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DM	Provenance	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DAL	ProvSAP	CTA, Pollux, SVOM, MuseWise, CDS DB, triple Store Accessing provenance DM through TAP. Also useful for ML
DAL	Datalink	Data discovery Links to further data
DAL	DALI - Data Access Layer Interface	Core standard to support other DAL standards. Allow DAL standards to do things consistently IVOA infrastructure
	ADQL - Astronomical Data Query	

Community Input

DAL

Language (Rel)

Mapping of IVOA standards to science cases

WG	Standard	Task Driver	
DM	Coordinates model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC	
DM	Transform model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC	
DM	Measurement model	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC	
DM	Cube v1.0	CSP priority - Multi Dimension use case - Needed for the Cubes - Search for space, time and Coordinates Partial replacement of STC	
DM	VODML-Mapping	IVOA Infrastructure Needed to serialize IVOA DMs	
DM	DatasetMetadata v1.0	Generalized DM for datasets Link with CAOM ? Multi Dimension phase 2	
DM	Translation of DMs to VODML/ VODML modeling utilities	IVOA Infrastructure	
DM	SourceDM	Gaia, Chandra DM for catalogues - Data discovery for sources	
DM	TimeSeries	Comparing light curves	
GWS	Group Membership Service 1.0	User authorization - Data sharing between groups of users	
GWS	VOSI Best Practice	IVOA Infrastructure	11

Mapping of IVOA standards to science cases

WG	Standard	Task Driver
GWS		IVOA Infrastructure
GWS	Science Platforms	Bring the code to the data Share data and code among users Collaborative virtual environment
Reg	ReσTΔP	IVOA Infrastructure TAP query to the IVOA Registry
Reg	STC in Registry	Identify the coverage of the VOResources in the Registry
Semantics	Maintenance of the list of UCD words	IVOA infrastructure
Semantics	UCD1+ controlled vocabulary	IVOA infrastructure

High-level view of current priorities

- Visualization tools
- Data access
 - Discovery
 - Access
 - Interoperability
- Data context
- Computing resources
- Data analysis
- Follow-up time-domain event

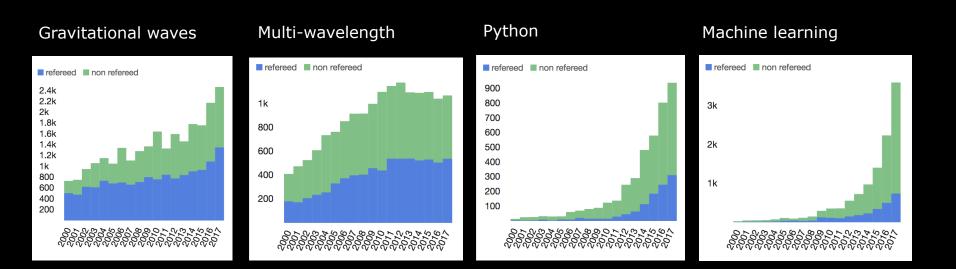
A possible way to prioritize the WG and IG activities

WSJF = Weighted Shortest Job First

https://www.scaledagileframework.com/wsjf/

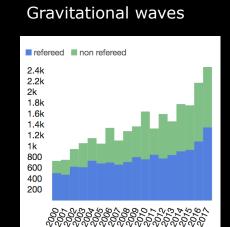
Possible prioritization of activities within IVOA

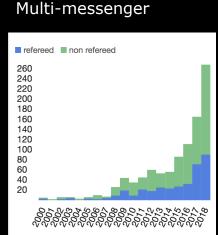
		Time criticality	Risk reduction - Opportunity enablement	Cost of Delay	Job size	Weighted Shortest Job First
Data access - access	20	8	2	30	2	15
Data Access - discovery	13	13	3	29	2	14,5
follow-up time-domain events	2	20	13	35	3	11,66666667
Data access - interoperability	8	5	8	21	5	4,2
Computing resources	5	8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21	8	2,625
Visualization tools	8	3	5	16	8	2
Data context (provenance, quality)	1	1	20	22	13	1,692307692
Data analysis tools	3	8	1	12	20	0,6

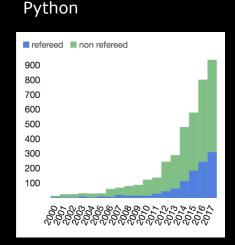


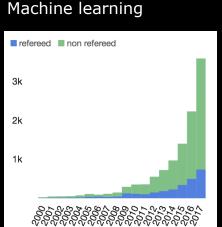
Upcoming scientific priorities at IVOA

ADS-listed articles containing those key-words as a function of time

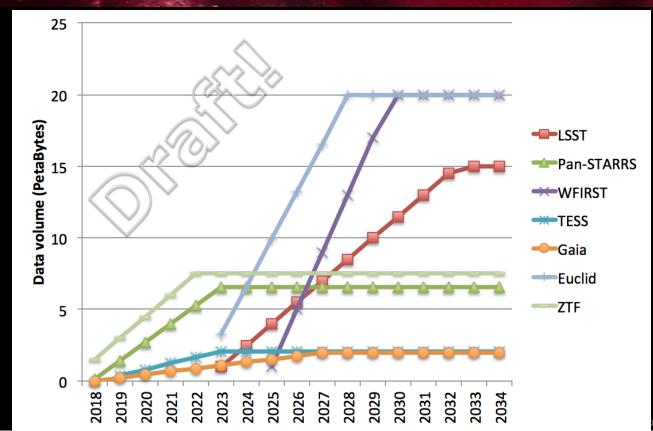


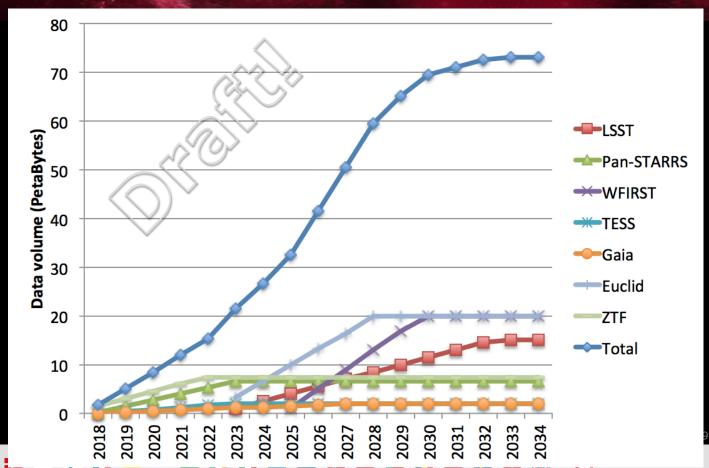





Upcoming scientific priorities at IVOA

ADS-listed articles containing those key-words as a function of time




Survey	Q1: max. data volumes & dates	Q2: plans	Q3: code to data?	Q4: X- correlate?	Q5: IVOA?	3
LSST	30e12 sources 15 PBs (2023 to 2033)	Portal + Notebook + Web APIs	Yes	At least w/ Gaia	TAP+ADQL, SIAv2, SODA, VOSpace, WebDAV, PyVO	
Pan-STARRS	11e9 sources 1.4 PBs (Jan 2019)	MASP portal + astroquery	AWS?	?	MAST API, TAP, Cone, likely DataLink, SODA	
WFIRST	20 PBs (~2025 TBC)	MASP portal + astroquery	AWS?	?	MAST API, TAP, Cone, likely DataLink, SODA	
TESS	260 TBs (2018 - 2020+)	MASP portal + astroquery	AWS?	?	MAST API, TAP, Cone, likely DataLink, SODA	
Gaia	2 PB (2018 - 2027)	Gaia archive + astroquery	SEPP	Several all- sky cats.	TAP+, datalink, SODA, VOSpace	
Euclid	20 PB (2022 - 2028)	Euclid archive + astroquery	SEPP	Several all- sky cats.	TAP+, datalink, SODA, VOSpace	
SKA	600 PB/year (2028 -)	TBD	TBD	TBD	TBD	
ZTF	63e9 sources 1.5 PBs (2018 -)	IRSA APIs	?	?	IRSA APIs	16 ncy

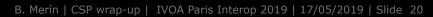
Forecast of evolution in public astronomy data volumes esa

1+1

Forecast of evolution in public astronomy data volumes esa

Possible solutions to the big data challenges

- To distribute TBs of data to users
 - Most users don't need TBs, but just MBs or GBs
 - They will run jobs in a cloud and download less data
- Allow people discovering datasets from new surveys
 - Add data to registry?
- Provide sufficient computing resources for users (who pays?)
 - Clone data to commercial clouds?
- What is missing in the IVOA set of standards?
 - SODA for cut-outs, rebinning, resampling?
 - Interoperable Notebooks?
 - Hierarchical data structures for discoverability?
 - Standard for code-to-the-data?
 - New data distribution standards like torrent?



What does the IVOA provide?

- 5. Fast computation on new data
- -> GWS, Computing resources close to the data, VOSpace interface for distributed storage -> Focus Session on Big Data
- 6. Easy comparison tools between data and models/theory
- -> SimDAL, but models usually created by users...
- 7. Data *completeness* and *consistency*
- -> Registry complete and consistent? Glots?
- 8. Reproducible data representation
- -> Scripting interfaces, python? ADQL, TOPCAT -> Astropy Hackathon

General recommendation

The best way to make progress is via a constant dialogue:

science \impute technology

Example case for the Multi-Dimensional use-case

User requirements defined in 2013:

- Data Discovery (Query) as a function of
 - RA, Dec
 - Frequency/wavelnegth
 - Polarization states
 - Spatial scale
 - Angular resolution
 - Integration time
 - Time of observations
- Data Access
 - Download complete science data
 - Download simple cutouts

Simple cut-outs

Spatial: a circle (a coordinate + radius)

Energy: one interval (energy1 - energy2)

Time: one interval (time1 - time2)

Polarization: a list

Additional requirements for cut-outs:

Sum along any one or more axes

Re-bin in one or more axes

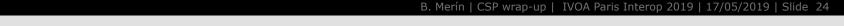
Multiply by a function

Other action on the data

Example case for the Multi-Dimensional use-case

- October 2012: "Time-Domain Astronomy and Multi-Dimensional data were AGREED as priority areas for the IVOA" FM46S
- May 2013: Focus session on multi-dimensional data in Heidelberg
- May 2014: Focus session on multi-dimensional data at ESAC/ Madrid
- June 2015: DataLink 1.0 IVOA Recommendation
- December 2015: SIA 2.0 IVOA Recommendation 23 Dec. 2015
- May 2016: Focus Session on "Interoperability of data from major astronomical projects"
- May 2017:
 - SODA 1.0 IVOA Recommendation 17 May 2017
 - Obscore 1.1 IVOA Recommendation 9 May 2017
 - Announced the milestone IVOA multi-d standards: first set of standards to address Discovery, Access and Simple cut-out of multi-D data
- July 2018: IVOA note on Feedback on the DAL protocols relevant to Multi-D standards
- Feb. 2019: Reference implementation on ASTERICS DADI Technology Forum

 B. Merin | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 23


IVOA - Astropy hackathon

• Several core developers of the Astropy and Astroquery groups will attend part of the IVOA interop and will run a two-days hackathon/sprint with a few Astropy contributors from IVOA in a parallel session (Tue and Wed).

Goals:

- Explore how best to build cooperation between the IVOA and Astropy
- Discuss role of PyVO
- Deliver new VO features!

Focus session on Big Data Challenges in Astronomy

Motivation for the Focus Session

LSST data exploitation plans

Time

5+5

5+5

European Space Agency

Presentation

B. Merín | CSP wrap-up | IVOA Paris Interop 2019 | 17/05/2019 | Slide 25

Tuesday	May 14	16:0017:30,	م ا مالوک	Varriar
Tuesday,	iviay 14,	10.0017.30,	Salle Le	verner

Speaker

Bruno Merín

Tom Donaldson

Gregory Dubois-Felsmann

Title

Juan González	Gaia data exploitation plans	5+5
Jesús Salgado	Euclid data exploitation plans	5+5
Séverin Gaudet	SKA RC data exploitation plans	5+5
	Open discussion on challenges and opportunities	28

Pan-STARRS, WFIRST and TESS data exploitation plans

Focus session on Big Data Challenges in Astronomy CS2

Questions for large surveys:

- Describe the data volumes and types of data expected from the mission/survey.
- Describe your data dissemination/exploitation plan for users.
- Are you looking at sending data to users or looking at a code to the data approaches?
- How would you cross-correlate data with different surveys?
- How and where does the IVOA fit into your plans?

The IVOA needs you

We need active and enthusiastic scientists at the Committee of Science Priorities!!

Talk to us if you are interested!!

Final recommendations from the CSP

- You have the best judgement for what to work on !
- But always ask the question: how is the user going to use this?
- Try follow the user workflow to the paper and keep the big picture (is provenance clear? Can I explain/make a plot of this?)
- Connect to the future generation of users where they are: e.g. python, github, open source projects, social media, online open fora, connected to new big astronomy projects, using mobile devices and expecting quick answers

Thanks for all the great work!

Committee on Science Priorities : csp@ivoa.net

