

1. Advanced Column Metadata

Markus Demleitner msdemlei@ari.uni-heidelberg.de

Blind Discovery: Don't look for "2MASS", look for "Infrared data around Betelgeuze down to 18 mag in K".

Part 1: Enabling registry queries in space, time, and spectrum. See VODataService 1.2 and RegTAP 1.2.

Part 2: Characterising column content (the "down to 18 mag" part).

(cf. Fig. 1)

2. Use Cases

Somewhat more precisely, here are potential use cases for advanced column metadata:

- \bullet Deep Survey Give me data for the M32 reaching 25 mag in the infrared K band.
- High Redshift I am looking for Galaxies with redshifts above 1.
- High Precision I need a catalogue of proper motions with errors below 0.2 mas/yr.
- High Precision advanced I need a catalogue of proper motions with errors below $0.2\,\rm{mas/yr}$ at 15^m in V.
- Calibrated Where are flux-calibrated spectra for stars in globular clusters?
- Planning How many rows will WHERE col<30 return (approximately)?

High Precision advanced and Planning will probably be science fiction for a long time to come; they are mainly here to say where I think at this point the boundaries of this endeavour are.

3. Prior Art

VOTable: VALUES/MIN, VALUES/MAX, OPTION

Missing from VODataService's column model.

Missing in the TAP columns schema

Then, Grègory's Gaia DR1 publication, with, per float column:

- min_value, max_value
- q1, median, q3
- mean
- filling (number of non-NULLs)

4. Float Columns

Derived from that, I'm now proposing for metadata of float columns:

- min_value, max_value mainly for VOTable compatibility
- percentile03, percentile97 for Gaussians, that's pretty much " 2σ "
- median
- fill_factor that's n_{NULL} /n_{rows}

Absent at this point: Moments (mean, stddev, skewness, kurtosis, ...). I've left them out because many of the distributions interesting here (e.g., magnitudes or redshifts in catalogues) are severely non-Gaussian, and these familiar measures tend to be misinterpreted then. Also, in contrast to the percentiles, they are not linear, so, for instance, with distance r and parallax ϖ , you have $r = 1/\varpi$, but $\langle r \rangle \neq \langle 1/\varpi \rangle$. I'm willing to haggle, though.

5. Discrete Values

Why? Well: "Do you have rows with o_calib_status=2?" Model: A sequence of values (perhaps even: bin centres?) and relative frequencies:

$[(v_1, f_1), (v_2, f_2), \ldots].$

Perhaps constrain how large these may become?

6. To Do

 ${\bf VODataService}: {\tt Add vs:Stats-typed element stats to vs:BaseParam. Continuous stats are attributes of that.}$

We need serialised values (the $v_i,$ possibly even for median and friends): What XSI type? Proposal: xsi:type with VOTable serialisation. But really, I think we need to be guided by implementation here.

TAP: For symmetry with VOSI tables, TAP_SCHEMA should grow \sim the same information. But: efficiently queriable columns must be type-clean, so: no token trick here.

RegTAP: Extend rr.table_column? Or rather add tables rr.stat_num, rr.stat_token, and rr.stat_discrete to deal with non-number types?

7. Implementation Status

There's a Note¹ out spelling out these proposals.

Metadata for continous columns is produced and published via a VODataService extension in the upcoming DaCHS 2.4.

The GAVO RegTAP network at http://reg.g-vo.org/tap has a rr.g_num_stat table that publishes the harvested information (\sim 1000 records).

Thanks!

¹ https://ivoa.net/documents/Notes/colstatnote/index.html