
Reading
VO-DML

Annotations
With

Java Code
https://github.com/lmichel/vodml-lite-mapping

Laurent MICHEL - College Park - 2018

https://github.com/lmichel/vodml-lite-mapping

The VO-DML Stack

model

Client

VOtable

Annotation process

Annotated VOTable

Annotation parsing

Science

This talk is focused
on the annotation
parsing whatever the
mapping syntax is

Client Expectations for Using Models

● Hiding the data complexity
○ Only see the model structure whatever the data are
○ Avoiding Inferences for Retrieving data
○ No specific code for specific data sets
○ Python API (O.L. Victoria 2018 https://olaurino.gitlab.io/ivoa-dm-examples)

● A clear way to finally get the VOTable content
○ This feature is still a lack for the VOTable schema

https://olaurino.gitlab.io/ivoa-dm-examples/

Java Client Expectation

● Avoiding Application Update
○ Adding new modules in Java implies software upgrades

■ Developers have to validate the upgrade
■ Users have to download it

● Parser Code Independent from any Particular Model
○ A unique parser for the VODML block
○ Paths leading to model nodes set by the caller

■ Something expressed with strings
■ Can be stored as external resources

I Would Like to Have Something Like This

vodmlParser = new VodmlParser(“Myvotable”);

if(vodmlParser.implements(“TSmodel”) {
 /* getting the position object */
 Element position = vodmlParser.element(“model:Source.Position”)
 ra = position.element(“Astro:position.lat”);
 dec = position.element(“Astro:position.long”);
 /* browsing the photometric points */

points = vodmlParser.element(“model:photometric.points”);
 for(int i=0 ; i<points.getLength() ; i++) {
 Element point = data.getValue(i);
 time = point.element(“Astro:mes.time”);
 mag = point.element(“Astro:mes.mag”);
 }
}

● In blue: Java words
● In black: VODML API code
● In “green” : Model related quantities, strings only

Resemblance to existing model

roles is purely coincidental.

Architecture

VOTable Instance
Builder

Mapping
DOM

Mapping
parser

Data
parser

Data
Interface

M
od

el
 A

PI

Model API:
● A reference to the root object
● A set of selectors to browse it

[DM role]

DM instance

No reference to a
specific model here

Sole reference
to the model

A key/value map

Browsing the Mapping DOM

INSTANCE
role=root

COMPOSITION
role=role2

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
role=role31

INSTANCE
role=role4

INSTANCE
role=role41

INSTANCE
role=role42

What the parser did

Browsing the Mapping DOM

INSTANCE
role=root

COMPOSITION
role=role2

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
role=role31

INSTANCE
role=role4

INSTANCE
role=role41

INSTANCE
role=role42

Node(role=role31) = Node(role=root)
 ->Node(role=role2)
 ->Node(role=role3)
 ->Node(role=role31)

What the client does

What the parser did

My API as it Is Now

Retrieving the list of contributors

Points onto the collection of contributors

Take all acknowledgements of all contributors

The dataset object is supposed to be unique

Sometime, a Risk of Confusions

Time JD
dmrole=meas:CoordMeasure.coord
dmtype=coords:domain.time.JD

Date
dmrole="coords:domain.time.JD.date

● Isolating the timestamp date with selectors based on dmroles may be confusing

Frame

INSTANCE
meas:CoordMeasure.coord

VALUE
coords:domain.time.JD.date

INSTANCE
coords:Coordinate.frame

VALUE
coords:domain.time.JD.date

Very simplified model view

Sometime, a Risk of Confusions

Time JD
dmrole=meas:CoordMeasure.coord
dmtype=coords:domain.time.JD

Date
dmrole="coords:domain.time.JD.date

● Isolating the timestamp date with selectors based on dmroles may be confusing

Frame

INSTANCE
meas:CoordMeasure.coord

VALUE
coords:domain.time.JD.date

INSTANCE
coords:Coordinate.frame

VALUE
coords:domain.time.JD.date

Very simplified model view

Mapping Element Selectors

INSTANCE
role=role1

COLLECTION
searched.role

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
searched.role

INSTANCE
role=role4

INSTANCE
searched.role

INSTANCE
role=role42

getSubElement...Return one or all sub-element(s) matching the role

Mapping Element Selectors

INSTANCE
role=role1

COLLECTION
searched.role

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
searched.role

INSTANCE
role=role4

INSTANCE
searched.role

INSTANCE
role=role42

getChild...

getSubElement...

Return one or all child(ern) matching the role

Return one or all sub-element (s)matching the role

Another Confusing Pattern

Observable
Let’s say a photometric point

Measure
Role = CoordMeasure.coord

1 2

● The 2 Measures have the same role.
● To know what is what, we have to check the dmtype (class

name) or to explore the inside of each instance

Time

Magnitude

Another Confusing Pattern

Take the first photometric point Take all measures of that point

Explore the measure objects to see what they are

A Shortcut

● Bypassing Object Instantiation
○ No need to systematically build an instance for each row

■ E.g. for plotting data

○ Knowing the dmrole of each column must be enough
■ Simple time series example:

Column #1 has the role “coords:domain.time.JD.date”
Column #3 has the role “ts:Magnitude.value”

○ This allow the client to use its own readout engine
■ Mapping used to extract meta-data
■ Standard way to read data tables with roles set for some columns

Done/BeingDone/2Do

● Done
○ Works with SimpleTimeSeries model
○ Data filtering (see TDIG talk on Nov 10)

● Being Done
○ Group by facility <SET groupby=”..”> (see TDIG talk on Nov 10)

● Todo
○ Simplify the API
○ Using DMTypes
○ Foreign keys implementation
○ Test on an extented data sample

https://github.com/lmichel/vodml-lite-mapping
Contributors are Welcome

https://github.com/lmichel/vodml-lite-mapping

Mapping Nodos vs Java Classes

Mapping Node Java Class

<INSTANCE> Instance Set of key/value pairs
Key are the dmrole of the values

<VALUE> Textual or Numerical Atomic value

<COMPOSITION> MultiInstanceCollection A collection of instances

<SET> GroupByCollection Set of “grouped by” instances

<ARRAY> DataTableCollection Iterator on <DATATABLE>

All of these classes inherit from the MappingElement abstract class

VODml serialization

The structure of VODML instance has nothing more than
complex JSON messages

It can be modeled as a tree of Tuple/Collection/Value

As we are not constrained by the JSON formalism
(STring) we can had some metadata at each node

Test Results

Test Case Status Comment

Simple model without <DATATABLE> OK

Simple model with <DATATABLE> OK Use of <ARRAY>

Simple model with <DATATABLE> and
<GLOBALS>

OK Use of ID/ref

Complex model: TS data model, a mix of
STC, DatasetMetadata, PhotDM + time
domain classes but one single light curve

OK Model provided by Mark C.D.
VOTable provided by ESAC

Complex model: TS data model, a mix of
STC, DatasetMetadata, PhotDM + time
domain classes but 3 light curves

OK Use of
<ARRAY>
 <INSTANCE>
 <FILTER>

Set of Time Series, one light curve each and
grouped by bands

Work in progress Use of <SET groupby=”band”>

Test achieved on hand-annotated VOTable and validated with my Java API

My Proposal

● JSON: my leitmotiv
○ Incredibly complex data are exchange with JSON messages
○ JSON messages rely on 3 concepts

■ Values
■ Tuple
■ Collection

○ We must be able map our data with these 3 concepts
■ Could lose some ORM features
■ Will gain lot of expressivity

○ I do not propose to use JSON for the mapping
○ I propose to apply the JSON philosophy to our XML syntax

● dmrole=root, my other leitmotiv
○ Tagging the root object of the mapping with dmrole=root allows to clearly

show what is the content of the VOTable

What I’m Experimenting with TD Data

● Keeping the proposed workflow
○ Reference to VODML models
○ VODML/MODELS/GLOBALS/TEMPLATES pattern
○ Mapping block below <VOTABLE>
○ A syntax reflecting the model structure

● Helping Clients to see what the VOTable Content Is

● Supporting sa Much Existing Data Files as Possible
○ Include directives for the parser such as aggregation operators

● Syntax More Human Readable, then More Reliable

The Mapping Cat

My Guidelines

● Syntax Simplification
○ Just writing what the client really needs
○ Making it more human readable, then more reliable

● Client Oriented
○ Helping clients to identify what the actual content of the votable
○ Making easier the design of generic API (my talk in apps)

● Versatility
○ Supporting as much existing data files as possible
○ Making easier a possible templating

