
Authentication in Web Services
and TAP-1.1 specific issues

Patrick Dowler
Canadian Astronomy Data Centre

VOSI-capabilities 101

● a web service endpoint for a self-describing service
− e.g. http://example.net/service/capabilities
− (contains 1+) capability standardID: what feature is this?
− (contains 1+) interface: a single callable endpoint
− contains 1 accessURL
− contains 1 securityMethod* (optional)

<capability standardID="vos://cadc.nrc.ca~vospace/CADC/std/LOGGING#logControl-1.0">
 <interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
 <accessURL use="full">
 https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/ams/logControl
 </accessURL>
 <securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate" />
 </interface>
</capability>

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/ams/logControl

Web Service A&A @ CADC

● 23 RESTful web services in operation (CADC + CANFAR)
− 15 are IVOA standard services
− 8 are custom services

● all of these use VOSI-capabilities
● all of these have at least one capability which describes

authenticated access (~45 capabilities)

● clients consult a runtime-registry to find the capabilities
− optimised for resourceID → capabilities URL

● clients read the capabilities document and look for the combination
of {standardID,securityMethod} that match:
− the feature they want to invoke
− the credentials they want to use to authenticate

● @CADC: {resourceID,standardID,securityMethod} → {accessURL}
happens several times per request & millions of times per day

TAP and Authentication

● VOSI-capabilities / VOResource model is that a capability is a single
feature

● In TAP-1.0, we specified relative names for the endpoints:
− /availability
− /capabilities
− /tables
− /async
− /sync

● BUT we specified one standardID for the base URL
− clients have to append the specified names
− auth methods that use alternate path names not feasible

● TAP-1.0 doesn’t play nice with all securityMethod(s)
● TAP-1.0 over-specified how accessURL(s) should look (IMO)
● TAP-1.1 must support authentication and must provide a good

backwards-compatible experience for older client s/w

TAP and Authentication

● prototype #1: one capability for each securityMethod

● pros:
− none

● cons:
− naive client that assumed one anonymous capability per

standardID would fail or depend on ordering
− lots of redundancy in VOSI-capabilities documents
− inside-out with respect to the VOResource model where

securityMethod is at the leaf
− make an assumption that multiple capability(s) with the same

standardID are the same underlying thing rather than different
things…

− … if that was specified, it would restrict how people deploy
services

TAP and Authentication

● prototype #2: separate standardID for sync and async
ivo://ivoa.net/std/TAP#sync-1.1
ivo://ivoa.net/std/TAP#async-1.1
SODA-1.0 defines #sync-1.0 and #async-1.0
VOSpace-2.1 defines #transfers-2.1 and #synctrans-2.1

● pros:
− did not break any old clients (we had this in operational use for

years)
− matches design of VOResource
− backwards compatible records simple
− allows for different TAPRegExt metadata (e.g. optional features,

limits) in sync and async
● cons:

− duplicates TAPRegExt info in sync and async
− makes example RegTAP queries return different (more) results

TAP and Authentication

● prototype #3: separate interface type for sync and async
● lookup becomes:

{resourceID,standardID,interfaceType,securityMethod} → accessURL

● pros:
− does not break any old clients (in operational use for a few

months)
− backwards compatible records possible

● cons:
− backwards compatible records are subtle
− set of interface(s) mixes base (client appends resource name)

and full (accessURL includes resource name)
− makes example RegTAP queries return different (more) results

that users have to grok

TAP and Authentication

● approach #1: it’s horrible and it breaks stuff

● approach #3 works, BUT: introduces subtle use of interface types
and mixed interface style in a single capability

● approach #2: separate #sync-1.1 and #async-1.1
− matches the VOResource/VOSI-capabilities design
− works the same way as all other IVOA services

● I am convinced that:
− we made a mistake in TAP-1.0 when we specified one

standardID for two features
− when we make mistakes we have to admit it and stop doing it in

order to improve out standards
− sometimes that makes things a little more complex

