Implementing VO services in the commercial cloud

André Schaaff, Thomas Boch, Mihaela Buga, Pierre Fernique, Grégory Mantelet, Anaïs Oberto, François-Xavier Pineau *Centre de Données astronomiques de Strasbourg*

IVOA, College Park, 8-10/11/2018, Operations IG session

Foreword

- During the last Interop in Victoria i gave a short feedback about quick experiments around HiPS with AWS to host / generate HiPS
- We made deeper tests over the Summer to have a better and realistic idea about the cost and the performances
- The aim was not to switch to the cloud but to make a comparison with our own hardware / architecture and to answer questions like: are we better ?, cheaper ?, ...

(Remark: prices are at the time of the experiments, you can probably find similar offers and prices with other cloud providers)

• Acknowledgment: AWS Cloud Credits for Research

HiPS generation in the Cloud

- The generation of a HiPS depends on the initial material (FITS files)
- It is not always done in a single process => multiple tries with several hours / days at each time
- What did we expect ?
 - Benefit from AWS EC2 resizing to reduce the time between 2 tries
 - Benefit from data storage resizing to handle large datasets
 - A reasonable rate
- Our use case : VISTA band K (3.5TB to upload, HiPS => 2TB)

□ HiPS generation in the Cloud (2)

- HiPS generation is threaded on a same server, no cluster parallelization
 - AWS EC2 is cheap for small instances but for HiPS generation we need large instances

369.524 Hrs	\$165.55
147.739 Hrs	\$132.37
8.054 Hrs	\$14.64
1.266 Hrs	\$2.45
2.120 Hrs	\$35.63
27.239 Hrs	\$99.04
55.035 Hrs	\$295.87
	147.739 Hrs 8.054 Hrs 1.266 Hrs 2.120 Hrs 27.239 Hrs

- Even with the larger instances we had not a better duration than with our own server (we tested with all the proposed storage possibilities, with dedicated instances, ...)
- We have not experimented with dedicated physical instances as it is too expensive

□ HiPS generation in the Cloud (3)

- We had not always the same duration for the same HiPS => cloud is a sharing of disks, cpu, ... => at the end not the same cost !
- The upload of the initial data is not free, depends on the storage / instance type
- The download of the result is expensive (around 70\$/TB)
 - 2TB for our use case => 140 \$ to download the HiPS
 - But PanSTARRs = 30 TB / band => 2100\$ (it is possible to transfer it directly on S3 / Cloud Front)

Hosting HiPS in the Cloud

• AWS S3

- The data is located in one data center, in a bucket
- Cheap (upload is free)

CloudFront

- You don't really know how it works but it is more efficient, the data (or a part ?) is replicated
- You can choose a worldwide coverage or regions
- You have access statistics by country, etc.
- An AWS S3 overlay with a thin price difference

		Location	Request Count	Request %	Bytes (Adjusted)
1		Brazil	9,376	20.11%	0.90 GB
2	0	Germany	6,580	14.12%	485.90 MB
3		United States	3,950	8.47%	319.60 MB
4		Italy	3,717	7.97%	295.78 MB
5	\bigcirc	France	2,143	4.60%	131.66 MB
6		Austria	1,990	4.27%	222.22 MB
7		United Kingdom	1,734	3.72%	103.42 MB
8		Greece	1,619	3.47%	87.77 MB
9		Ukraine	1,440	3.09%	118.42 MB
10		Spain	1,291	2.77%	72.04 MB

HiPS server on AWS S3 / Cloud Front

- Example of statistics (3 consecutive days) in July 2018, from the list of all the HiPS server
- The cloudfront HiPS server hosted only the DSSColor (270MB) which represents 50% of other server download

N.B.: Statistics provided by Aladin desktop

2918.0	MB	alasky.u-strasbg.fr
2825.5	MB	alaskybis.u-strasbg.fr
1716.0	MB	<pre>skies.esac.esa.int</pre>
409.0	MB	<pre>axel.u-strasbg.fr</pre>
357.8	MB	<pre>d1pim2jdtjozp.cloudfront.net</pre>
•••		
1638.5	MB	alasky.u-strasbg.fr
1065.9	MB	alaskybis.u-strasbg.fr
389.5	MB	d1pim2jdtjozp.cloudfront.net

2053.1 MB alasky.u-strasbg.fr 793.6 MB alaskybis.u-strasbg.fr 315.6 MB d1pim2jdtjozp.cloudfront.net

2053.1 MB => \sim 1000 MB for the DSSColor

315.6 MB for the DSSColor

X-Match in the Cloud

- We have also experimented the X-Match on AWS EC2
- We had the same kind of results than for the HiPS generation, not far from the CDS X-Match server but never better even with the best instances
- => We think that we had a bottleneck at the disk level (EBS volumes) both for the X-Match and the HiPS generation

• (we had also tested quickly AWS RDS / Aurora in the frame of Simbad)

Our opinion after these tests

- Hosting on AWS S3 / Cloud Front is really flexible, no consideration like the remaining space on your disks...
- No hardware to manage on site, everything can be done from your laptop
- No mirroring needed, World deployment through AWS Cloud Front
- Availability is high
- Efficient AWS support even at the basic price level
- Amazing when you release a new HiPS, you will not be afraid by the user rush !

🗆 But...

- You pay for the hosting => reasonable if you have not hundreds of TB
- Upload is free ?
 - ~ True if you upload your data on AWS S3
 - Not true if you upload data on an AWS EC2 instance associated disk as the instance is running and you pay for that
- Download is not free !
- You pay on demand for the traffic => you must be aware of this point (you can set alerts)

Conclusion

- If you want to propose a large set of (large) HiPS surveys, it is probably too expansive (many factors depending on your lab (existing manpower, own hardware, etc.))
- If you want to propose a HiPS server with a few TB of surveys and if you have no manpower to manage the hardware, AWS Cloud Front is a good solution, it can be setup in a few hours and it will be easy to manage online
- (compared to our server) Too expansive for HiPS generation with no real added value if you generate regularly HiPS
- A usage in the frame of the X-Match, even if we had good performances, is for us risky/costly as large volumes (depending on the sources and the parameters) are susceptible to be uploaded at many times in a month

Miscellaneous cost examples

• AWS S3 (/ month)

- 1 TB 24.46\$ (not linear)
- 24.87\$ with 1,000,000 "get"
- 28.65\$ with 10,000,000 "get"
- 66.45\$ with 100,000,000 "get"
- Data transfer to AWS CloudFront is free
- HiPS examples (/ month)
 - Most accessed HiPS: 300 GB with 10,000,000 "get" => 11,27 \$
 - AKARI-N60 with 1,000,000 "get" => < 1\$</p>

Miscellaneous cost examples (2)

- A HiPS server with 200 TB
 - 5012.35\$ / month for AWS S3
 - AWS CloudFront layer depends on the traffic =>
 262\$ / month for 100GB / day and an average of
 300KB / tile
- Total cost per year => 5275\$ * 12 => ~ 63,300\$

(1 PB on AWS S3 => 25586\$ = ~310,000\$ / year)

Miscellaneous cost examples (3)

- AWS CloudFront Out transfer ("get")
 - 2GB / day => 1\$ / month (tile ~ 100KB)
 - 100GB / day => 260\$ / month (tile ~ 500KB)
 - 100GB / day => 323\$ / month (tile ~ 50KB)