

An X-ray Astrophysicist Looks at ObsCore

Ian Nigel Evans *Chandra* X-ray Center Center for Astrophysics | Harvard & Smithsonian

IVOA Interop 2024 Nov 16

ObsCore And High Energy Astrophysics Data

- ObsCore is an IVOA standard for data discovery — but how well does it work for high-energy astrophysics (HEA) data?
- Perspective of a working X-ray astrophysicist not (just) a data provider
 - Can I search for the data products I'm looking for effectively?
- Typical HEA experiments detect individual particles (e.g., Chandra detects X-ray photons)

- Use *Chandra X-ray Observatory* data as an example to investigate
 - Focus on a few examples
- Two main categories of *Chandra* data products
 - Archival single-observation datasets
 - Chandra Source Catalog (CSC) data products
- Chandra science data products post telemetry decom are recorded primarily in FITS format

The HEA Data Hypercube

- Each event records a (typically) 4-D set of observables that map to physical properties (*i.e.*, α, δ, t_{TT}, E)
- A set of events (e.g., from an observation) is termed an event list

- Event list is an efficient way to store a sparse photon list
 - A typical *Chandra* observation stored as a non-sparse pixelated 4-D cube would require O(10¹³) voxels
- We try not to pixelate the data until necessary for specific analysis
 - · Select only the events of interest
 - Binning loses information photon spatial positions are measured with subpixel resolution for *Chandra* instruments
- Chandra data analysis requires multiple additional data products

harvard & smithsonian 3

CENTER FOR ASTROPHYSICS

What's An Observation?

 The ObsCore recommendation doesn't define the term "observation"

- We define an observation in the traditional sense for individual *Chandra* archival observation data products
 - An observation is a single science exposure obtained with the telescope pointing at a target of interest
 - The longest possible single exposure duration for *Chandra* is ~190 ks

- ~50% of *Chandra* Source Catalog data products combine data from more than one *Chandra* observation
- ObsCore recommends treating these "advanced data products" as a new "observation"
 - Assign obs_id = stack_id for stack-based products and obs_id = name for master source-based products

Chandra Archival Observation Data Products

- ~25 types of data products, ~25–60 files per observation, depending on instrument, mode, and exposure
- ~25,000 observations in the current archive, so ~800,000 total files
- *Typically downloaded as a package* for an observation for data analysis

- Using ObsTAP we provide access to a tar package that includes these data products as a set for data analysis
- Most individual data products are not accessible via ObsTAP (only L2 event list and center, full images)

Data Product	dataproduct_type	Data Product	dataproduct_type
Photon event list (L1, L1.5, L2)	event	Exposure statistics (ACIS)	timeseries?
Images (center, full)	image	GTI filter	timeseries?
Bias images (ACIS)	image	Bad pixel regions	?
PHA spectrum (ACIS, HRC+TG)	spectrum	Mask	?
Aspect solution (+ OBC solution)	timeseries	Field of View	?
Aspect quality	timeseries	Parameter block (ACIS)	?
Ephemerides (spacecraft, lunar, solar)	timeseries	ARF (TG)	?
Mission time line	timeseries	RMF (TG)	?
Deadtime factors (HRC)	timeseries	V&V report and summary (PDF format)	?

CENTER FOR **ASTROPHYS**

5

Chandra Source Catalog Data Products

- ~38 types of data products
- ~90 million total files
- Generally used individually or multiples of same type for selected sources/detections
- Using ObsTAP we provide access to stack images only

27% per single observation
19% per observation stack
30% per observation detection
16% per observation stack detection
8% per source

Data Product	dataproduct_type	Data Product	dataproduct_type
Photon event list (obs, stack, obs det, stack det)	event	Aperture photometry MPDFs (obs det, stack det, src)	?
Images (obs, stack, obs det, stack det)	image	Detection fit MCMC draws (obs det, stack det)	?
Background images (obs, stack)	image	Bayesian blocks properties (src)	?
Exposure maps (obs, stack, obs det, stack det)	image	Detection list (stack)	?
Pixel mask (obs)	image	Extended source region (obs, src)	?
Point spread function (obs det)	image	Bad pixel regions (obs)	?
Limiting sensitivity (stack)	image	ARF (obs det)	?
PHA spectrum (obs det)	spectrum	RMF (obs det)	?
Light curve (obs det)	timeseries	Source region (obs det, stack det)	?
Aspect solution (obs)	timeseries	Field of View (obs, stack)	?
Aspect histogram (obs)	?	CENTER FOR A	STROPHYSICS

Data Product Type

- ObsCore includes a limited set of dataproduct_type values
- ~50% of *Chandra* data products don't conform to existing data product type classifications
- Could set dataproduct_type = 'NULL' and use dataproduct_subtype, but this doesn't work so well for global data discovery
- Generic type "measurements" could be useful but is restricted by caveat Note that "measurements" extends the set of accepted values for dataproduct_type in ObsCore 1.0. This extension is meant to expose derived data products together with the progenitor observation dataset. (emphasis added)

which is not desirable for CSC data products

• Advanced data products would benefit greatly from a wider array of carefully selected data product types

Calibration Level = 1.5

- ObsCore suggested classifications include
 - Level 1: Instrumental data in a standard format
 - Level 2: Calibrated, science ready data with the instrument signature removed

Calibration Level = 1.5

- ObsCore suggested classifications include
 - Level 1: Instrumental data in a standard format
 - Level 2: Calibrated, science ready data with the instrument signature removed

Left: RMF gives probability that a photon with a given energy will be detected in a given detector channel *Right:* ARF gives effective area as a function photon energy Both depend on location on the detector and observation epoch

- Calibrated HEA event lists typically include calibrated event spatial positions and times and are considered "science ready"
- However, the spectral axis typically does not have the instrument signature removed
 - Mapping from energy to PHA channel is probabilistic and depends on the responses
 - For *Chandra*, the ARF for an energy band depends on the (unknown) source spectrum and the RMF depends on selection of events (because of spacecraft dither)

CENTER FOR

 \Rightarrow Needs input from scientist

ASTROPHYSIC

Calibration Level = 1.5

- ObsCore suggested classifications include
 - Level 1: Instrumental data in a standard format
 - Level 2: Calibrated, science ready data with the instrument signature removed

Left: RMF gives probability that a photon with a given energy will be detected in a given detector channel *Right:* ARF gives effective area as a function photon energy Both depend on location on the detector and observation epoch

- Calibrated HEA event lists typically include calibrated event spatial positions and times and are considered "science ready"
- However, the spectral axis typically does not have the instrument signature removed
 - Mapping from energy to PHA channel is probabilistic and depends on the responses
 - For Chandra, the ARF for an energy band depends on the (unknown) source spectrum and the RMF depends on selection of events (because of spacecraft dither)
 - \Rightarrow Needs input from scientist
- For Chandra, we choose to set calib_level = 2 for these event lists

CENTER FOR **ASTROPHYSICS**

Observable Axes o_ucd(s)

- Unlike an image whose observable is the quantity stored in each pixel, event lists typically include *multiple* observables for each event
 - HEA event lists include one event per detected particle, and many record a spatial position (2 axes), a time, and a spectral measure
 - Chandra event lists include many more than these 4 columns (e.g., additional coordinate systems such as chip or detector, event grade, event status information, ...)
 - Like event lists, HEA data products are often recorded as FITS BINTABLES (and possibly multi-HDU BINTABLES) so the presence of multiple observables in a single data product is not uncommon

Observable Axes o_ucd(s)

- Unlike an image whose observable is the quantity stored in each pixel, event lists typically include *multiple* observables for each event
 - HEA event lists include one event per detected particle, and many record a spatial position (2 axes), a time, and a spectral measure
 - *Chandra* event lists include many more than these 4 columns (*e.g.*, additional coordinate systems such as chip or detector, event grade, event status information, ...)
 - Like event lists, HEA data products are often recorded as FITS BINTABLES (and possibly multi-HDU BINTABLES) so the presence of multiple observables in a single data product is not uncommon
- The ObsCore recommendation in this case is that o_ucd be left NULL unless a specific axis should be highlighted
 - This is not very satisfactory because it hides the details of the data content some HEA experiments may not have spectral resolution, or may only have a single spatial axis, or may measure polarization, ...

Observable Axes o_ucd(s)

- Unlike an image whose observable is the quantity stored in each pixel, event lists typically include *multiple* observables for each event
 - HEA event lists include one event per detected particle, and many record a spatial position (2 axes), a time, and a spectral measure
 - *Chandra* event lists include many more than these 4 columns (*e.g.*, additional coordinate systems such as chip or detector, event grade, event status information, ...)
 - Like event lists, HEA data products are often recorded as FITS BINTABLES (and possibly multi-HDU BINTABLES) so the presence of multiple observables in a single data product is not uncommon
- The ObsCore recommendation in this case is that o_ucd be left NULL unless a specific axis should be highlighted
 - This is not very satisfactory because it hides the details of the data content some HEA experiments may not have spectral resolution, or may only have a single spatial axis, or may measure polarization, ...
- HEA would benefit greatly from a way to represent the presence of multiple observable axes

Spectral Bounds em_min, em_max

- HEA typically expresses spectral quantities in units of eV (keV, MeV, GeV, TeV)
 - Units of *m* are very HEA-unfriendly
- The radio extension proposed recommendation includes example use cases in ADQL like

```
... WHERE 299792458 / em_max > 1.0e+9
```

taking advantage of $\nu = c / \lambda$ where everyone knows the exact value of c in units of m s⁻¹

Spectral Bounds em_min, em_max

- HEA typically expresses spectral quantities in units of eV (keV, MeV, GeV, TeV)
 - Units of *m* are very HEA-unfriendly
- The radio extension proposed recommendation includes example use cases in ADQL like

```
... WHERE 299792458 / em_max > 1.0e+9
```

taking advantage of $v = c / \lambda$ where everyone knows the exact value of c in units of m s⁻¹

- Can we do the same with $E = hc / \lambda$?
- Let's do an experiment who can tell me the value of *hc* in units of eV m ?

Spectral Bounds em_min, em_max

- HEA typically expresses spectral quantities in units of eV (keV, MeV, GeV, TeV)
 - Units of *m* are very HEA-unfriendly
- The radio extension proposed recommendation includes example use cases in ADQL like

```
... WHERE 299792458 / em_max > 1.0e+9
```

taking advantage of $v = c / \lambda$ where everyone knows the exact value of c in units of m s⁻¹

- Can we do the same with $E = hc / \lambda$?
- Let's do an experiment who can tell me the value of *hc* in units of eV m ?

~1/806554.3937

 We should consider whether HEA-friendly values such as energy_min, energy_max would be preferable

Time Bounds t_min, t_max

- ObsCore defines t_min (t_max) as the minimum (maximum) start time for data products that are combinations of multiple frames
- This definition may not be very useful for advanced data products
 - Some CSC data products have t_min to t_max spanning >20 yr (but very sparsely!)
- Can we encode (t_min, t_max) for the list of observations (others have suggested using TMOC)?
 - For HEA datasets a similar mechanism could be used to represent GTIs or STIs

Flexible Definitions

- Some ObsCore elements are expressly left to the data provider to decide what makes sense
- For other elements the level of flexibility is unclear
- Example: Central Coordinates
 - Section 4.10 defines (s_ra, s_dec) as the ICRS (RA, Dec) "... of the center of the observation"
 - Telescope pointing/optical axis? Where the best image quality is found
 - · Instrument center? Instrument doesn't have to be centered in the FoV
 - What about cases where there are cut-outs (e.g., windows) that are not centered on either of the above?
 - Appendix B.6.1.2 uses the wording "... used to identify a reference position (typically the center) of an observation ..."
 - This is more flexible, and what we assume for Chandra

HEA Data May Be Different (1)

- For some HEA experiments many quantities are energy dependent (e.g., s_fov, s_resolution, em_resolution, ...) or depend on location within the FoV
 - Example: The Chandra PSF size varies by a factor ~50× across the FoV (and also depends on energy)
 - s_resolution is not very robust
 - s_resolution_min, s_resolution_max may be helpful
 - How do I query for datasets that have at least a certain spatial resolution at the location of my source?
- How do we associate the energy (or energy range) or off-axis angle that is relevant to the quantities to support queries?

- For non-pixelated data ObsCore recommends setting axes lengths <x>_xel to -1
 - The equivalent dimensionality for event lists is the *number of events*
 - This quantity is important for data discovery (scales as data size, and perhaps S/N)
- Suggest adding ev_number for HEA data

HEA Data May Be Different (2)

- Example: Data Product Type
 - ObsCore defines spectrum as "Any dataset for which spectral coverage is the primary attribute"
 - Great! Chandra PHA spectra meet this definition!
 - However, the IVOA data product types vocabulary defines *spectrum* as "Flux or magnitude as a function of spectral coordinates"
 - "Flux" is not defined but the standard astronomical definition of flux is energy flux (SI units W m⁻²)
 - In the optical/IR magnitude and energy flux density are tightly related $m = -2.5 \log f + const$
 - Chandra PHA spectra do not satisfy this definition: they are in units of counts (which may be mapped to a photon flux, but the actual photon energies are not determined)
 - The ObsTAP "List For Observables" describes "Flux" (phot.flux) as a "Photon Flux", but then specifies units of W m^{-2} , which is an energy flux rather than a photon flux
 - None of these would help if the messenger is (e.g.) neutrinos instead of photons
- How do we ensure that IVOA recommendations/definitions/... broadly cover the wide range of astronomical research and do not have unintentional biases for a particular waveband or type of data?
 CENTER FOR ASTROPHYSICS

Conclusions

- General
 - ObsCore recommendations work reasonably well for single *Chandra* observations but less so for advanced data products (especially those derived from multiple observations)
 - Limited set of dataproduct_type classifications don't map well to many types of data products
 - Event lists and many advanced products may include multiple observable axes
 - Recommendations and definitions should be flexible enough to enable data discovery for various wavebands and messengers
- HEA-specific
 - HEA event lists typically map to calibration level 1.5 but recommendation is flexible
 - Spectral units of *m* are not HEA friendly
 - Several elements don't work optimally for HEA data due to dependencies on energy etc.
 - Number of events is an important measure for event lists

dataproduct_type	obs_creator_did	s_dec	s_calib_status	t_stat_error	em_resolution
dataproduct_subtype	obs_release_date	s_fov	s_stat_error	em_xel	em_stat_error
calib_level	obs_publisher_did	s_region	s_pixel_scale	em_ucd	o_ucd
target_name	publisher_id	s_resolution	t_xel	em_unit	o_unit
target_class	bib_reference	s_xel1	t_refpos	em_calib_status	o_calib_status
obs_id	data_rights	s_xel2	t_min	em_min	o_stat_error
obs_title	access_url	s_ucd	t_max	em_max	pol_xel
obs_collection	access_format	s_unit	t_exptime	em_res_power	pol_states
obs_creation_date	access_estsize	s_resolution_min	t_resolution	em_res_power_min	instrument_name
obs_creator_name	s_ra	s_resolution_max	t_calib_status	em_res_power_max	proposal_id

